JP2001102410A - Mounting structure for semiconductor device - Google Patents

Mounting structure for semiconductor device

Info

Publication number
JP2001102410A
JP2001102410A JP27487299A JP27487299A JP2001102410A JP 2001102410 A JP2001102410 A JP 2001102410A JP 27487299 A JP27487299 A JP 27487299A JP 27487299 A JP27487299 A JP 27487299A JP 2001102410 A JP2001102410 A JP 2001102410A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
anisotropic conductive
conductive film
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27487299A
Other languages
Japanese (ja)
Other versions
JP3578011B2 (en
Inventor
Katsutoshi Furuhata
勝利 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27487299A priority Critical patent/JP3578011B2/en
Publication of JP2001102410A publication Critical patent/JP2001102410A/en
Application granted granted Critical
Publication of JP3578011B2 publication Critical patent/JP3578011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Abstract

PROBLEM TO BE SOLVED: To solve the problem that at the time of mounting a plurality of semiconductor devices on one substrate, an anisotropic conductive film is adhered in a batch, that at first, one semiconductor is heated and pressurized so as to be mounted, that at that time, heat at the time of mounting is transmitted through a substrate or a wiring pattern arranged on the surface of the substrate, and the heat hardening of insulating resin constituting the anisotropic conductive film which is already adhered to the part on which the other semiconductor should be mounted is accelerated, that in this case, slits are formed at the substrate between the plural substrates so that the insulating resin can be sufficiently softened at the time of heating and pressing the other semiconductor device, that the substrate and the semiconductors can be sufficiently held, and that even when the semiconductor devices are arranged so as to be made adjacent to each other, electric conduction between bumps and the electrodes of the substrate can be ensured while miniaturization and high density can be maintained. SOLUTION: A mounting structure using an anisotropic conductive film is provided with slits at the substrate between a plurality of semiconductor devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置を異方
性導電膜を用い基板に実装する半導体装置の実装構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device mounting structure for mounting a semiconductor device on a substrate using an anisotropic conductive film.

【0002】[0002]

【従来の技術】従来からの公知の技術として、半導体装
置の電極上に設けられた突起状の電極であるバンプと、
基板上に配置されたパターンとを電気機械的に接続する
構造として、異方性導電膜を利用する構造が知られてい
る。この実装構造の従来技術を実装工程順に図5を用い
て説明する。
2. Description of the Related Art As a conventionally known technique, a bump which is a protruding electrode provided on an electrode of a semiconductor device,
As a structure for electromechanically connecting a pattern arranged on a substrate, a structure using an anisotropic conductive film is known. The prior art of this mounting structure will be described with reference to FIG.

【0003】図5は、従来技術を示す断面図である。図
5(a)において半導体装置であるところのベアチップ
IC1が実装される基板2の部品実装面3には複数の配
線パターン4が導電材料にて形成されており、各配線パ
ターン4の先端の表面には金メッキがなさた電極5が形
成されている。また、各配線パターン4には、電極5の
部分を除いてソルダーレジスト6で覆われている。
FIG. 5 is a sectional view showing the prior art. In FIG. 5A, a plurality of wiring patterns 4 are formed of a conductive material on a component mounting surface 3 of a substrate 2 on which a bare chip IC 1, which is a semiconductor device, is mounted. Is formed with a gold-plated electrode 5. Each wiring pattern 4 is covered with a solder resist 6 except for a part of the electrode 5.

【0004】ベアチップIC1は、所定の面7にアルミ
等の導電材料で形成された複数の電極が基板の電極に対
応させて配置され、各電極の表面にはバンプ8が形成さ
れている。バンプ8はAu又はSn−Pb合金等の金属
材料で形成されている。
The bare chip IC1 has a plurality of electrodes formed of a conductive material such as aluminum on a predetermined surface 7 corresponding to the electrodes of a substrate, and bumps 8 are formed on the surface of each electrode. The bump 8 is formed of a metal material such as Au or a Sn-Pb alloy.

【0005】図5(b)は、異方性導電膜を仮圧着する
工程の断面図を示す。ベアチップIC1の実装のために
用いられる異方性導電膜20は絶縁性樹脂21に導電粒
子22を分散させて形成されている。この異方性導電膜
20はベアチップIC1の所定の面7の幅よりも大きな
幅を有するテープ状に形成され、保護用テープで覆われ
た状態でリールに巻かれている。
FIG. 5B is a sectional view showing a step of temporarily compressing the anisotropic conductive film. The anisotropic conductive film 20 used for mounting the bare chip IC1 is formed by dispersing conductive particles 22 in an insulating resin 21. This anisotropic conductive film 20 is formed in a tape shape having a width larger than the width of the predetermined surface 7 of the bare chip IC1, and is wound around a reel while being covered with a protective tape.

【0006】ベアチップIC1の実装に際しては、まず
リールに巻かれた異方性導電膜20を保護用テープ23
と共に必要な長さに切断し、基板2の部品実装面3に載
せる。次に異方性導電膜20を保護用テープ23側から
加熱、加圧ツール24で加熱(80度C、2秒程度)、
加圧して異方性導電膜20の仮圧着を行う。この場合
に、異方性導電膜20は基板2の配線パターン4や電極
5を覆うようにしてベアチップIC1実装箇所に接着さ
れるが、基板2に対する異方性導電膜20の位置ズレ等
を考慮し、異方性導電膜20の面積はベアチップIC1
の所定の面7の面積より大きめにするのが望ましい。ま
た、異方性導電膜20の厚みは、バンプ8の高さより1
0μm程度厚いものを用いるのが望ましい。
In mounting the bare chip IC1, first, the anisotropic conductive film 20 wound on a reel is
At the same time, it is cut to a required length and mounted on the component mounting surface 3 of the substrate 2. Next, the anisotropic conductive film 20 is heated from the protective tape 23 side, and heated by the pressing tool 24 (80 ° C., about 2 seconds),
The anisotropic conductive film 20 is temporarily pressed by applying pressure. In this case, the anisotropic conductive film 20 is adhered to the mounting position of the bare chip IC 1 so as to cover the wiring patterns 4 and the electrodes 5 of the substrate 2. The area of the anisotropic conductive film 20 is the bare chip IC1.
It is desirable that the area be larger than the area of the predetermined surface 7. In addition, the thickness of the anisotropic conductive film 20 is one more than the height of the bump 8.
It is desirable to use one having a thickness of about 0 μm.

【0007】次に、図5(c)は半導体装置を実装して
いる断面図を示す。基板2に接着された異方性導電膜2
0の保護用テープ23を剥がし、ベアチップIC1の所
定の面7が異方性導電膜20に向くように設定して異方
性導電膜20上にベアICチップ1を載せ、ベアチップ
IC1を介し異方性導電膜20を加圧(180度C、2
0秒程度)、加熱してベアチップIC1の実装を行う。
加熱することにより、異方性導電膜20の絶縁性樹脂2
1が軟化し、加圧することにより押し広げられ、ベアチ
ップIC1の所定の面7と基板2の部品実装面3の間を
充填する。また、余った絶縁性樹脂21は、矢印a方向
に押し出され、ベアチップIC1の側面を充填し保護す
る。この状態を図5(d)に示す。
Next, FIG. 5C shows a cross-sectional view in which the semiconductor device is mounted. Anisotropic conductive film 2 bonded to substrate 2
The bare IC chip 1 is placed on the anisotropic conductive film 20 by setting the predetermined surface 7 of the bare chip IC1 so as to face the anisotropic conductive film 20, and removing the protective tape 23 via the bare chip IC1. The anisotropic conductive film 20 is pressurized (180 ° C., 2
(Approximately 0 seconds), and the bare chip IC1 is mounted by heating.
By heating, the insulating resin 2 of the anisotropic conductive film 20 is formed.
1 is softened and expanded by applying pressure to fill the space between the predetermined surface 7 of the bare chip IC 1 and the component mounting surface 3 of the substrate 2. The surplus insulating resin 21 is extruded in the direction of arrow a to fill and protect the side surface of the bare chip IC1. This state is shown in FIG.

【0008】これで、基板2の部品実装面3とベアチッ
プIC1の所定の面7とは異方性導電膜20の絶縁性樹
脂21を介して接合される。また、異方性導電膜20に
混在する導電粒子22はバンプ8により基板2の電極5
に押圧されるので基板2とベアチップIC1とは電気的
にも接続される。
[0008] Thus, the component mounting surface 3 of the substrate 2 and the predetermined surface 7 of the bare chip IC 1 are joined via the insulating resin 21 of the anisotropic conductive film 20. In addition, the conductive particles 22 mixed in the anisotropic conductive film 20 are bumped by the bumps 8 so that
The substrate 2 and the bare chip IC1 are also electrically connected.

【0009】[0009]

【発明が解決しようとする課題】電子機器の多機能化に
伴い、複数の半導体装置を1枚の基板に高密度に実装す
る、マルチチップモジュールが多く用いられているが、
下記欠点を有していた。
With the increase in the functions of electronic devices, multi-chip modules for mounting a plurality of semiconductor devices on a single substrate at a high density have been widely used.
It had the following disadvantages.

【0010】複数の半導体装置を1枚の基板に実装する
場合、それぞれの半導体装置の実装される部分に異方性
導電膜を半導体装置の数だけ貼りつけなくてはならず、
生産性が著しく悪くなっていた。また、生産設備も複雑
で大掛かりなものが必要となっていた。
When a plurality of semiconductor devices are mounted on a single substrate, anisotropic conductive films must be attached to portions where the respective semiconductor devices are mounted, by the number of semiconductor devices.
Productivity was significantly worse. Also, the production equipment required complicated and large-scale equipment.

【0011】一方、簡略化の為に、異方性導電膜を各半
導体装置の実装部分に、それぞれ貼るのではなく、一括
して異方性導電膜を貼る構造もある。この場合、複数の
半導体装置の間隔が充分に離れていれば問題はないが、
コンパクト化、高密度化が要求される場合は、前記半導
体装置を隣接して配置せざるをえない。
On the other hand, for the sake of simplicity, there is also a structure in which an anisotropic conductive film is collectively attached to a mounting portion of each semiconductor device, instead of being attached to each mounting portion of each semiconductor device. In this case, there is no problem if a plurality of semiconductor devices are sufficiently separated from each other.
When compactness and high density are required, the semiconductor devices must be arranged adjacent to each other.

【0012】この場合、まず一方の半導体装置を加熱・
加圧して実装する。この時、実装時の熱が基板や基板表
面に配置した配線パターンを伝導し、他方の半導体装置
をこれから実装する部分に既に仮圧着されている異方性
導電膜を構成する絶縁性樹脂の熱硬化を進めてしまい、
他方の半導体装置を実装する際に、加熱・加圧しても絶
縁性樹脂が充分軟化せず、基板と半導体装置の保持が不
十分となり、バンプと基板の電極との電気的導通が確保
できなくなるという、電子機器としては致命的な欠陥と
なるという問題がある。
In this case, first, one semiconductor device is heated and
Press and mount. At this time, heat at the time of mounting conducts through the substrate and the wiring pattern arranged on the surface of the substrate, and heat of the insulating resin constituting the anisotropic conductive film that has been temporarily crimped to a portion where the other semiconductor device is to be mounted. Hardening,
When mounting the other semiconductor device, the insulating resin does not sufficiently soften even when heated and pressed, and the holding of the substrate and the semiconductor device becomes insufficient, and electrical conduction between the bump and the electrode of the substrate cannot be secured. That is, there is a problem that a fatal defect occurs as an electronic device.

【0013】そこで、一方の半導体装置を実装する際の
加熱・加圧により絶縁性樹脂の熱硬化が進まない距離ま
でそれぞれの半導体装置を離さなくてはならず、高密度
実装化の大きな妨げになっていた。
Therefore, each semiconductor device must be separated by a distance such that heat hardening of the insulating resin does not proceed by heating and pressing when mounting one of the semiconductor devices, which greatly hinders high-density mounting. Had become.

【0014】もちろん、複数の半導体装置ごとに異方性
導電膜を個別に貼りつける方法もある。つまり、まず一
方の半導体装置を実装するための異方性導電膜を貼りつ
けた後、半導体装置を実装する。その後、他方の半導体
装置を実装するための異方性導電膜を貼りつけ他方の半
導体装置を実装する。この場合は、全く熱硬化の心配は
ないが、同一工程を繰り返すことになり、生産性が著し
く損なわれることが容易に考えられる。
Of course, there is also a method of individually attaching an anisotropic conductive film to each of a plurality of semiconductor devices. That is, an anisotropic conductive film for mounting one semiconductor device is first attached, and then the semiconductor device is mounted. After that, an anisotropic conductive film for mounting the other semiconductor device is attached, and the other semiconductor device is mounted. In this case, there is no concern about heat curing, but the same process is repeated, and it is easily considered that productivity is significantly impaired.

【0015】つまり、異方性導電膜を一括して貼りつ
け、しかも複数の半導体装置を短間隔で配置できる実装
構造が求められている。
That is, there is a demand for a mounting structure in which anisotropic conductive films can be attached together and a plurality of semiconductor devices can be arranged at short intervals.

【0016】[0016]

【課題を解決するための手段】以上のような問題を解決
するために、本発明の半導体装置の実装構造では、複数
の半導体装置の間の基板にスリットを設けたことを特徴
とする。
In order to solve the above problems, a semiconductor device mounting structure according to the present invention is characterized in that a slit is provided in a substrate between a plurality of semiconductor devices.

【0017】[0017]

【発明の実施の形態】(1)第一実施形態 以下図面により本発明の実施形態を詳述する。図1は本
発明の複数の半導体装置を1枚の基板に高密度に実装す
る、マルチチップモジュールの図面を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) First Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a drawing of a multichip module in which a plurality of semiconductor devices of the present invention are mounted on a single substrate at a high density.

【0018】図1(a)は、基板に異方性導電膜が仮圧
着され、一方の半導体装置を実装する直前の状態を示す
断面図である。
FIG. 1A is a cross-sectional view showing a state in which an anisotropic conductive film is temporarily pressed on a substrate and immediately before one semiconductor device is mounted.

【0019】図1(b)は、異方性胴電膜を除いた状態
の、図1(a)の平面図である。
FIG. 1B is a plan view of FIG. 1A with the anisotropic conductive film removed.

【0020】図1(c)は、一方の半導体装置を実装し
た状態を示す断面図である。
FIG. 1C is a sectional view showing a state where one semiconductor device is mounted.

【0021】図1(d)は、他方の半導体装置も実装し
た状態を示す断面図である。
FIG. 1D is a sectional view showing a state where the other semiconductor device is also mounted.

【0022】図1(a)において、基板2の部品実装面
3上に、異方性導電膜20が仮圧着され、保護用テープ
は既にはがされている状態を示す。25及び27は半導
体装置を示す。ここで、図中のh1,h2は各々の半導
体装置のパンプ高さを示している。異方性導電膜20の
厚みは、ベアチップIC25の所定の面26と基板2の
部品実装面3との間の充填性を考慮し、バンプ高さh1
より10μm程度厚いものを用いる。29は、ベアチッ
プIC25とベアチップIC27の間の設けられた、基
板のスリット部を示す。
FIG. 1A shows a state in which an anisotropic conductive film 20 has been temporarily pressed on the component mounting surface 3 of the substrate 2 and the protective tape has already been removed. Reference numerals 25 and 27 denote semiconductor devices. Here, h1 and h2 in the figure indicate the pump height of each semiconductor device. The thickness of the anisotropic conductive film 20 is determined in consideration of the filling property between the predetermined surface 26 of the bare chip IC 25 and the component mounting surface 3 of the substrate 2 and the bump height h1.
A layer about 10 μm thicker is used. Reference numeral 29 denotes a slit portion of the substrate provided between the bare chip IC 25 and the bare chip IC 27.

【0023】まず、図1(a)において、ベアチップI
C25を加熱・加圧して異方性導電膜を介し実装する。
図1(b)はベアチップIC25が実装される直前の状
態を示す平面図である。本図では、基板2に設けたスリ
ット部29が分かり易いよう、異方性導電膜20を除い
た状態の平面図である。図1(c)において、加熱・加
圧ツール24がベアチップIC25を実装することによ
り実装時の熱が異方性導電膜20、配線パターン4、基
板2を介し矢印a,矢印b方向に伝導する。しかし、も
っとも熱容量が大きな基板2にスリット29が設けられ
ているため、熱の大部分は矢印a方向に伝わり、ベアチ
ップIC27が実装される部分の異方性導電膜に熱は伝
導せず、熱硬化は進まない。
First, in FIG.
C25 is heated and pressurized and mounted via an anisotropic conductive film.
FIG. 1B is a plan view showing a state immediately before the bare chip IC 25 is mounted. FIG. 3 is a plan view showing a state in which the anisotropic conductive film 20 is removed so that the slit portion 29 provided in the substrate 2 can be easily understood. In FIG. 1C, when the heating / pressing tool 24 mounts the bare chip IC 25, heat at the time of mounting is conducted in the directions of the arrows a and b through the anisotropic conductive film 20, the wiring pattern 4 and the substrate 2. . However, since the slit 29 is provided in the substrate 2 having the largest heat capacity, most of the heat is transmitted in the direction of arrow a, and the heat is not conducted to the anisotropic conductive film in the portion where the bare chip IC 27 is mounted. Curing does not proceed.

【0024】つまり、ベアチップIC25とベアチップ
IC27の間の基板2にスリット29を設けることによ
り、ベアチップIC間隔を短くでき、より高密度な実装
が可能な構造を実現できる。
That is, by providing the slit 29 in the substrate 2 between the bare chip IC 25 and the bare chip IC 27, the interval between the bare chip ICs can be shortened, and a structure capable of higher density mounting can be realized.

【0025】本実施形態では、一枚の基板に二個の半導
体装置が実装される例を述べたが、更に多くの半導体装
置が実装される場合では、より多くの効果が得られるの
は言うまでもない。
In this embodiment, an example in which two semiconductor devices are mounted on one substrate has been described. However, when more semiconductor devices are mounted, it goes without saying that more effects can be obtained. No.

【0026】(2)第二実施形態 本実施形態は、第一実施形態の変形例である。本変形例
は、複数の半導体装置の間の基板に設けるスリットを、
基板表面と裏面に配置された配線パターンの電気的導通
を確保する為のスルーホールで代用したことを特徴とす
る。
(2) Second Embodiment This embodiment is a modification of the first embodiment. In this modification, a slit provided on a substrate between a plurality of semiconductor devices is provided.
It is characterized in that through holes for ensuring electrical continuity between the wiring patterns arranged on the front surface and the back surface of the substrate are substituted.

【0027】図2は、基板2のベアチップIC25とベ
アチップIC27が実装される部分の間に、基板2の表
面の配線パターンと裏面の配線パターンの電気的導通を
行うための、スルーホール31がほぼ直線状に設けられ
ている様子を示す平面図である。本実施形態は第一実施
形態に比較するとベアチップIC25の実装時の熱は多
く伝わるものの、前記スルーホール31の間に配線パタ
ーン4を配置でき、基板設計の自由度が大きくなる。
FIG. 2 shows that a through hole 31 for electrically connecting the wiring pattern on the front surface and the wiring pattern on the rear surface of the substrate 2 is formed between the bare chip IC 25 and the bare chip IC 27 of the substrate 2. It is a top view showing signs that it is provided in the shape of a straight line. In this embodiment, compared to the first embodiment, although more heat is transferred during mounting of the bare chip IC 25, the wiring pattern 4 can be arranged between the through holes 31, and the degree of freedom in board design is increased.

【0028】(3)第三実施形態 本実施形態は、第二実施形態の変形例である。本実施形
態では、基板2のベアチップIC25とベアチップIC
27が実装される部分の間に、設けられたスルーホール
31の内部を熱伝導の低い物質で充填させた例である。
(3) Third Embodiment This embodiment is a modification of the second embodiment. In this embodiment, the bare chip IC 25 and the bare chip IC
This is an example in which the inside of the provided through hole 31 is filled with a material having low thermal conductivity between the portions where the semiconductor device 27 is mounted.

【0029】図3は、本実施形態を示す断面図である。FIG. 3 is a sectional view showing the present embodiment.

【0030】前記スルーホール31内には、基板2の材
質である例えばガラスエポキシの熱伝導率に対し熱伝導
率が低い炭素32を充填している。このことにより、ベ
アチップIC25実装時の熱は、ベアチップIC27の
実装する部分の異方性導電膜への熱伝導は大幅に削減さ
れ、安定した実装品質を得ることができる。
The through holes 31 are filled with carbon 32 having a lower thermal conductivity than the thermal conductivity of the material of the substrate 2, for example, glass epoxy. As a result, the heat at the time of mounting the bare chip IC 25, the heat conduction to the anisotropic conductive film in the portion where the bare chip IC 27 is mounted is greatly reduced, and stable mounting quality can be obtained.

【0031】(4)第四実施形態 本実施形態は、第一実施形態の変形例である。本実施形
態では、基板2のベアチップIC25とベアチップIC
27が実装される部分の間のスリットを基板に設けるの
ではなく、異方性導電膜20に設けたことを特徴として
いる。
(4) Fourth Embodiment This embodiment is a modification of the first embodiment. In this embodiment, the bare chip IC 25 and the bare chip IC
The slit is provided in the anisotropic conductive film 20 instead of providing the slit between the parts where the 27 is mounted on the substrate.

【0032】図面4(a)は、本実施形態の断面図を示
し、図面4(b)は平面図を示す。
FIG. 4A is a sectional view of the present embodiment, and FIG. 4B is a plan view.

【0033】図面4(b)において、30は異方性導電
膜20に設けられたスリット部を示す。図面4(a)に
おいて、スリット部30の直下の基板2には、何もスリ
ットや穴を設けていないため、配線パターン4を自由に
配置でき、設計上の配線自由度を全く損なわずに、熱伝
導を防止することができる。
In FIG. 4B, reference numeral 30 denotes a slit provided in the anisotropic conductive film 20. In FIG. 4 (a), since no slits or holes are provided on the substrate 2 immediately below the slit portion 30, the wiring pattern 4 can be arranged freely, without impairing the degree of freedom of wiring in design at all. Heat conduction can be prevented.

【0034】[0034]

【発明の効果】請求項1記載の発明によれば、複数のベ
アチップICを一枚の基板に実装するいわゆるマルチチ
ップモジュールの場合、一方のベアチップICを実装す
る際の熱が基板を伝わり、他方のベアチップICを実装
する為にあらかじめ貼られている異方性導電膜に伝わ
り、熱硬化を進めてしまい、安定した実装品質を得られ
なくなってしまう。
According to the first aspect of the present invention, in the case of a so-called multi-chip module in which a plurality of bare chip ICs are mounted on a single substrate, heat when one of the bare chip ICs is mounted is transmitted to the substrate and the other is mounted on the other. This is transmitted to the anisotropic conductive film that has been pasted in order to mount the bare chip IC, and heat curing proceeds, so that stable mounting quality cannot be obtained.

【0035】一方のベアチップICと他方のベアチップ
ICの間の基板の部分にスリットを設けることにより、
熱硬化を防ぎ複数のベアチップICを近接して配置する
ことが可能となり、小型でコンパクトな実装構造を得る
ことができる。
By providing a slit in the portion of the substrate between one bare chip IC and the other bare chip IC,
A plurality of bare chip ICs can be arranged close to each other while preventing heat curing, and a small and compact mounting structure can be obtained.

【0036】請求項2記載の発明によれば、一方のベア
チップICと他方のベアチップICの間の基板の部分に
スルーホールを配置することにより、一方のベアチップ
ICを実装する際の熱が基板を伝わり、他方のベアチッ
プICを実装する為にあらかじめ貼られている異方性導
電膜に伝わり、熱硬化を進めることを防ぐと同時に、各
スルーホール間に配線パターンを配置でき、より配線設
計の自由度をも向上させた実装構造が実現できる。
According to the second aspect of the present invention, by disposing the through holes in the portion of the substrate between the one bare chip IC and the other bare chip IC, the heat generated when the one bare chip IC is mounted can transfer the heat to the substrate. It is transmitted to the anisotropic conductive film that has been pasted to mount the other bare chip IC, preventing heat curing, and at the same time, allowing a wiring pattern to be placed between each through hole, allowing more freedom in wiring design. A mounting structure with an improved degree can be realized.

【0037】請求項3記載の発明によれば、熱伝導を防
ぐ為に配置されたスルーホールの内部に熱伝導の低い物
質を充填させることにより、さらに熱伝導を下げること
が可能となり、より複数のベアチップICを近接して配
置が可能となる。
According to the third aspect of the present invention, the heat conduction can be further reduced by filling the inside of the through hole arranged to prevent heat conduction with a substance having low heat conduction. Can be arranged close to each other.

【0038】請求項4記載の発明によれば、一括して貼
りつけられた異方性導電膜の、複数のベアチップICを
実装する間の部分の前記異方性導電膜にスリットを設け
ることにより、熱硬化を防ぎ、基板には何もスリットや
スルーホールを配置しないため、配線自由度が最も高く
することが可能となる。
According to the fourth aspect of the present invention, the slit is provided in a portion of the anisotropic conductive film which is collectively attached to the portion between the mounting of a plurality of bare chip ICs. In addition, since heat curing is prevented and no slits or through holes are arranged on the substrate, the degree of freedom in wiring can be maximized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態を示す実装構造の断面図
を示す。
FIG. 1 is a sectional view of a mounting structure showing a first embodiment of the present invention.

【図2】本発明の第二実施形態を示す実装構造の平面図
を示す。
FIG. 2 is a plan view of a mounting structure according to a second embodiment of the present invention.

【図3】本発明の第三実施形態を示す実装構造の断面図
を示す。
FIG. 3 is a sectional view of a mounting structure showing a third embodiment of the present invention.

【図4】本発明の第四実施形態を示す実装構造の図面を
示す。
FIG. 4 is a drawing of a mounting structure showing a fourth embodiment of the present invention.

【図5】本発明の従来例を示す実装構造を示す。FIG. 5 shows a mounting structure showing a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

1、25,27…ベアチップIC 2…基板 3…部品実装面 4…配線パターン 5…電極 6…ソルダーレジスト 7、26、28…所定の面 8…バンプ 20…異方性導電膜 21…絶縁性樹脂 22…導電粒子 23…保護用テープ 24…加熱、加圧ツール 29…基板のスリット部 30…異方性導電膜のスリット部 31…スルーホール 32…炭素 1, 25, 27 ... bare chip IC 2 ... substrate 3 ... component mounting surface 4 ... wiring pattern 5 ... electrode 6 ... solder resist 7, 26, 28 ... predetermined surface 8 ... bump 20 ... anisotropic conductive film 21 ... insulating property Resin 22 ... Conductive particles 23 ... Protective tape 24 ... Heating and pressing tool 29 ... Slit part of substrate 30 ... Slit part of anisotropic conductive film 31 ... Through hole 32 ... Carbon

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性樹脂に導電粒子が分散してなる異
方性導電膜を介在させた状態で、半導体装置の所定の面
を基板の部品実装面に加熱下で圧着することにより、前
記半導体装置の所定の面と前記基板の部品実装面とを前
記絶縁性樹脂で接合すると共に、前記半導体装置の所定
の面に形成されたバンプと、このバンプに対向する前記
基板の部品実装面に形成の電極とを、前記導電粒子を介
して電気的に接続する半導体装置の実装構造において、 複数の半導体装置を実装するために、異方性導電膜を一
括して基板の部品実装面に貼りつけ、 複数の半導体装置の間の基板にスリットを設けたことを
特徴とする、半導体装置の実装構造。
In a state in which an anisotropic conductive film in which conductive particles are dispersed in an insulating resin is interposed, a predetermined surface of a semiconductor device is pressure-bonded to a component mounting surface of a substrate under heating to thereby form the semiconductor device. A predetermined surface of the semiconductor device and a component mounting surface of the substrate are joined with the insulating resin, and a bump formed on the predetermined surface of the semiconductor device and a component mounting surface of the substrate facing the bump are provided. In a semiconductor device mounting structure in which electrodes for formation are electrically connected via the conductive particles, an anisotropic conductive film is collectively attached to the component mounting surface of the substrate in order to mount a plurality of semiconductor devices. A mounting structure of a semiconductor device, wherein a slit is provided in a substrate between a plurality of semiconductor devices.
【請求項2】 請求項1において、複数の半導体装置の
間の基板に、基板表面の配線パターンと裏面の配線パタ
ーンとの電気的導通を行うための、スルーホールをほぼ
直線状に設けたことを特徴とする半導体装置の実装構
造。
2. A through-hole according to claim 1, wherein a through-hole for providing electrical continuity between a wiring pattern on the front surface of the substrate and a wiring pattern on the back surface is provided in the substrate between the plurality of semiconductor devices. A semiconductor device mounting structure characterized by the above-mentioned.
【請求項3】 請求項2において、電気的導通を行うた
めの、スルーホール内に基板より熱伝導の低い物質を充
填したことを特徴とする半導体装置の実装構造。
3. The mounting structure of a semiconductor device according to claim 2, wherein a substance having lower heat conductivity than the substrate is filled in the through hole for electrical conduction.
【請求項4】 絶縁性樹脂に導電粒子が分散してなる異
方性導電膜を介在させた状態で半導体装置の所定の面を
基板の部品実装面に加熱下で圧着することにより、前記
半導体装置の所定の面と前記基板の部品実装面とを前記
絶縁性樹脂で接合すると共に、前記半導体装置の所定の
面に形成されたバンプと、このバンプに対向する前記基
板の部品実装面に形成の電極とを、前記導電粒子を介し
て電気的に接続する半導体装置の実装構造において、 複数の半導体装置を実装するために、一括して基板の部
品実装面に貼りつけられた異方性導電膜の、 複数の半導体装置が実装される部分の異方性導電膜に、
スリットを設けたことを特徴とする、半導体装置の実装
構造。
4. A semiconductor device according to claim 1, wherein a predetermined surface of the semiconductor device is press-bonded to a component mounting surface of the substrate under heating with an anisotropic conductive film in which conductive particles are dispersed in an insulating resin. A predetermined surface of the device and a component mounting surface of the substrate are joined with the insulating resin, and a bump formed on a predetermined surface of the semiconductor device and a bump formed on the component mounting surface of the substrate facing the bump. In the semiconductor device mounting structure in which the electrodes are electrically connected via the conductive particles, the anisotropic conductive material attached to the component mounting surface of the substrate at once to mount a plurality of semiconductor devices. The anisotropic conductive film in the portion of the film where a plurality of semiconductor devices are mounted,
A mounting structure of a semiconductor device, wherein a slit is provided.
【請求項5】 請求項1及び請求項4を用いることを特
徴とする、半導体装置の実装構造。
5. A mounting structure of a semiconductor device according to claim 1 or claim 4.
JP27487299A 1999-09-28 1999-09-28 Semiconductor device mounting structure Expired - Fee Related JP3578011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27487299A JP3578011B2 (en) 1999-09-28 1999-09-28 Semiconductor device mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27487299A JP3578011B2 (en) 1999-09-28 1999-09-28 Semiconductor device mounting structure

Publications (2)

Publication Number Publication Date
JP2001102410A true JP2001102410A (en) 2001-04-13
JP3578011B2 JP3578011B2 (en) 2004-10-20

Family

ID=17547745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27487299A Expired - Fee Related JP3578011B2 (en) 1999-09-28 1999-09-28 Semiconductor device mounting structure

Country Status (1)

Country Link
JP (1) JP3578011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244219A (en) * 2004-02-23 2005-09-08 Samsung Techwin Co Ltd Lead frame for semiconductor package and manufacturing method for same
WO2006112383A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Electronic circuit device and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244219A (en) * 2004-02-23 2005-09-08 Samsung Techwin Co Ltd Lead frame for semiconductor package and manufacturing method for same
JP4601449B2 (en) * 2004-02-23 2010-12-22 三星テクウィン株式会社 Manufacturing method of lead frame for semiconductor package
WO2006112383A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Electronic circuit device and method for manufacturing same
JPWO2006112383A1 (en) * 2005-04-14 2008-12-11 松下電器産業株式会社 Electronic circuit device and manufacturing method thereof
US7935892B2 (en) 2005-04-14 2011-05-03 Panasonic Corporation Electronic circuit device and method for manufacturing same
JP4692544B2 (en) * 2005-04-14 2011-06-01 パナソニック株式会社 Electronic circuit device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3578011B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US7615871B2 (en) Method and apparatus for attaching microelectronic substrates and support members
US6621172B2 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic equipment
TW501208B (en) Semiconductor device and manufacturing method of the same
JP4023159B2 (en) Manufacturing method of semiconductor device and manufacturing method of laminated semiconductor device
EP0683517B1 (en) Semiconductor device having semiconductor chip bonded to circuit board through bumps and process of mounting thereof
US7413926B2 (en) Methods of making microelectronic packages
JP3502776B2 (en) Metal foil with bump, circuit board, and semiconductor device using the same
KR20080035974A (en) Multilayer wiring substrate mounted with electronic component and method for manufacturing the same
JPH07240496A (en) Semiconductor device, its manufacture method and board for testing semiconductor and manufacture of test board
JP2003522401A (en) Stacked integrated circuit package
KR20020033522A (en) Thin film attachment to laminate using a dendritic interconnection
US6713880B2 (en) Semiconductor device and method for producing the same, and method for mounting semiconductor device
US6489668B1 (en) Semiconductor device and method for manufacturing the same
JPH11145381A (en) Semiconductor multi-chip module
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
JP2000277649A (en) Semiconductor and manufacture of the same
JP3589928B2 (en) Semiconductor device
JP3578011B2 (en) Semiconductor device mounting structure
JP3874115B2 (en) Semiconductor device
JP2006173234A (en) Semiconductor device and its manufacturing method
JP3331146B2 (en) Manufacturing method of BGA type semiconductor device
JP3509532B2 (en) Semiconductor device substrate, semiconductor device, method of manufacturing the same, and electronic device
JPH10340925A (en) Semiconductor device and manufacture thereof
JP4371238B2 (en) Semiconductor device
JP3258564B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees