JP2001099793A - X-ray analysis device - Google Patents

X-ray analysis device

Info

Publication number
JP2001099793A
JP2001099793A JP28141899A JP28141899A JP2001099793A JP 2001099793 A JP2001099793 A JP 2001099793A JP 28141899 A JP28141899 A JP 28141899A JP 28141899 A JP28141899 A JP 28141899A JP 2001099793 A JP2001099793 A JP 2001099793A
Authority
JP
Japan
Prior art keywords
rays
detector
sample
fluorescent
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28141899A
Other languages
Japanese (ja)
Other versions
JP3443047B2 (en
Inventor
Bunjiro Ueki
文治郎 植木
Toshiyuki Kato
寿之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp, Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Industrial Corp
Priority to JP28141899A priority Critical patent/JP3443047B2/en
Priority to DE10048398A priority patent/DE10048398B4/en
Priority to US09/672,773 priority patent/US6404847B1/en
Publication of JP2001099793A publication Critical patent/JP2001099793A/en
Application granted granted Critical
Publication of JP3443047B2 publication Critical patent/JP3443047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray analysis device, such as a fluorescent X-ray analysis device of a wavelength dispersion type, an X-ray diffraction device or the like, capable of making a prompt and accurate analysis by continuous scan. SOLUTION: A count time for a predetermined scanning section is obtained by a count time counter 15 and a divider 16, and a count value of each section is corrected based on a corresponding count time by a correction operating means 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長分散型の蛍光
X線分析装置やX線回折装置等のX線分析装置におい
て、連続スキャンを行う装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing continuous scanning in an X-ray analyzer such as a wavelength-dispersive X-ray fluorescence analyzer or an X-ray diffractometer.

【0002】[0002]

【従来の技術】従来より、例えば波長分散型の蛍光X線
分析装置においては、試料に1次X線を照射し、試料か
ら発生する蛍光X線を分光素子で分光し、分光された蛍
光X線を検出器で検出してパルスを発生させる。このパ
ルスの電圧すなわち波高値は蛍光X線のエネルギーに応
じたものであり、単位時間あたりの数は蛍光X線の強度
に応じたものであるが、そのパルスのうち所定の波高範
囲のものを波高分析器で選別して、その数をスケーラで
計っている。すなわち、選別されたパルスの計数値をス
ケーラで求めている。
2. Description of the Related Art Conventionally, for example, in a wavelength-dispersive X-ray fluorescence spectrometer, a sample is irradiated with primary X-rays, X-rays generated from the sample are separated by a spectroscopic element, and the separated fluorescent X-rays are used. The line is detected by a detector to generate a pulse. The voltage of the pulse, that is, the peak value, is based on the energy of the fluorescent X-ray, and the number per unit time is based on the intensity of the fluorescent X-ray. The number is sorted by a wave height analyzer and the number is measured by a scaler. That is, the count value of the selected pulse is obtained by the scaler.

【0003】ここで、走査(スキャン)型の装置におい
ては、いわゆるゴニオメータ等の連動手段により、分光
素子で分光される蛍光X線の波長を変えながら、その分
光された蛍光X線が検出器に入射するように、分光素子
と検出器を連動させて走査させる。特に、定性分析や半
定量分析を行う場合には、迅速性が要求されるので、分
光素子と検出器を連続的に走査させる。すなわち、ゴニ
オメータを一定角度駆動しては一定時間停止して計数す
るというステップスキャンでなく、ゴニオメータを連続
的に駆動させながら計数する連続スキャンを行う。その
際、所定の走査区間例えば検出器の回転角度(いわゆる
2θ)で1/100度ごとに、スケーラで求めた計数値
を読み出し、各区間の蛍光X線強度としている。
Here, in a scanning (scanning) type apparatus, while changing the wavelength of the fluorescent X-rays separated by the spectroscopic element by the interlocking means such as a so-called goniometer, the separated fluorescent X-rays are sent to the detector. The spectroscopic element and the detector are scanned in association with each other so as to be incident. In particular, when performing qualitative analysis or semi-quantitative analysis, rapidity is required, so that the spectroscopic element and the detector are continuously scanned. That is, instead of the step scan in which the goniometer is driven at a fixed angle and then stopped and counted for a certain time, a continuous scan for counting while the goniometer is continuously driven is performed. At this time, the count value obtained by the scaler is read out at every 1/100 degree in a predetermined scanning section, for example, at a rotation angle (so-called 2θ) of the detector, and is set as the fluorescent X-ray intensity in each section.

【0004】[0004]

【発明が解決しようとする課題】さて、図2に、ゴニオ
メータの走査範囲(2θ)と走査速度との関係の例を示
すが、ゴニオメータを図中Bで示すように所望の高速で
連続的に駆動するには、その前にAで示すように加速で
の駆動が必要である。また、所望の高速で駆動している
ゴニオメータを停止するには、Cで示すように減速での
駆動が必要である。この加速または減速でのゴニオメー
タの駆動中A,Cは、同じ1/100度ごとの計数値で
も、計数に要した時間がそれぞれ異なるので、各区間の
正確な蛍光X線強度が得られない。
FIG. 2 shows an example of the relationship between the scanning range (2θ) of the goniometer and the scanning speed. The goniometer is continuously driven at a desired high speed as shown by B in the figure. Before driving, acceleration driving is required as shown by A. Further, in order to stop the goniometer driven at a desired high speed, it is necessary to drive at a reduced speed as shown by C. During the operation of the goniometer during the acceleration or deceleration, the time required for the counting is different from each other even with the same count value every 1/100 degree, so that the accurate fluorescent X-ray intensity in each section cannot be obtained.

【0005】一方、正確さを求めて、この加速または減
速でのゴニオメータの駆動中A,Cは計数しないことと
すると、ゴニオメータの走査範囲の両端近傍は、分析で
きないことになる。また、二点鎖線で示すように、加速
および減速が実際上不要となる程度にまでゴニオメータ
の駆動速度を下げて計数を行うのであれば、走査範囲の
両端近傍も含めて正確に分析できるが、これでは迅速な
分析ができない。したがって、定性分析や半定量分析を
広い波長範囲で迅速かつ正確に行うことができない。
On the other hand, if the accuracy of the goniometer is not counted during driving of the goniometer at the acceleration or deceleration for accuracy, the vicinity of both ends of the scanning range of the goniometer cannot be analyzed. In addition, as shown by the two-dot chain line, if the counting is performed by lowering the driving speed of the goniometer to the extent that acceleration and deceleration are practically unnecessary, accurate analysis can be performed including the vicinity of both ends of the scanning range. This does not allow quick analysis. Therefore, qualitative analysis and semi-quantitative analysis cannot be performed quickly and accurately in a wide wavelength range.

【0006】また、ゴニオメータで試料を載置した試料
台と検出器を連動させて、試料に対する入射X線の入射
角を変えながら、試料で回折された回折X線の強度を検
出器で測定することにより、試料の結晶構造等を分析す
るX線回折装置においては、高精度の測定は、ステップ
スキャンで行われるが長時間を要する。一方、連続スキ
ャンで迅速測定をすることができるが、所定の走査区間
ごとの計数時間が厳密に一定でないことから、正確な測
定を行うことはできなかった。
In addition, the intensity of diffracted X-rays diffracted by the sample is measured by the detector while changing the angle of incidence of the incident X-rays on the sample by linking the sample stage on which the sample is mounted with the goniometer and the detector. Thus, in an X-ray diffractometer for analyzing a crystal structure or the like of a sample, high-precision measurement is performed by a step scan, but requires a long time. On the other hand, quick measurement can be performed by continuous scanning, but accurate measurement cannot be performed because the counting time for each predetermined scanning section is not exactly constant.

【0007】本発明は前記従来の問題に鑑みてなされた
もので、波長分散型の蛍光X線分析装置やX線回折装置
等のX線分析装置において、連続スキャンで迅速かつ正
確な分析を行うことができる装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and performs rapid and accurate analysis by continuous scanning in an X-ray analyzer such as a wavelength-dispersive X-ray fluorescence analyzer or an X-ray diffractometer. It is an object of the present invention to provide a device capable of performing the above.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析装置は、まず、試料が載置
される試料台と、試料に1次X線を照射するX線源と、
試料から発生する蛍光X線を分光する分光素子と、その
分光素子で分光された蛍光X線が入射され、蛍光X線の
エネルギーに応じた電圧のパルスを強度に応じた数だけ
発生する検出器と、前記分光素子で分光される蛍光X線
の波長を変えながら、その分光された蛍光X線が前記検
出器に入射するように、前記分光素子と検出器を連動さ
せて連続的に走査させる連動手段とを備える。
In order to achieve the above object, an X-ray fluorescence spectrometer according to a first aspect of the present invention comprises a sample stage on which a sample is placed and an X-ray for irradiating the sample with primary X-rays. Source,
A spectroscopic element that disperses fluorescent X-rays generated from a sample, and a detector that receives the fluorescent X-rays separated by the spectroscopic element and generates a number of voltage pulses corresponding to the energy of the fluorescent X-rays according to the intensity. While changing the wavelength of the fluorescent X-rays split by the spectroscopic element, the spectroscopic element and the detector are linked and continuously scanned so that the split fluorescent X-rays enter the detector. Interlocking means.

【0009】また、この装置は、前記検出器で発生した
パルスのうち所定の電圧の範囲のものを選別する波高分
析器と、その波高分析器で選別されたパルスの計数値を
求めるスケーラと、そのスケーラでパルスを計数するの
に要した計数時間を測定する計数時間カウンタとを備え
る。さらに、この装置は、前記連動手段における所定の
走査区間ごとに、読み出し指令を発する分周器と、その
分周器からの読み出し指令を受けて、前記スケーラで求
めた計数値および前記計数時間カウンタで測定した計数
時間を読み出し、計数値を計数時間に基づいて補正する
補正演算手段とを備える。
The apparatus further comprises a pulse height analyzer for selecting pulses in a predetermined voltage range among the pulses generated by the detector, a scaler for calculating a count value of the pulses selected by the pulse height analyzer, A counting time counter for measuring a counting time required for counting pulses by the scaler. Further, the apparatus includes a frequency divider for issuing a read command for each predetermined scanning section in the interlocking means, a count value obtained by the scaler in response to the read command from the frequency divider, and the count time counter. And a correction operation means for reading out the counting time measured in the step (a) and correcting the counted value based on the counting time.

【0010】請求項1の装置によれば、計数時間カウン
タおよび分周器で所定の走査区間ごとの計数時間を求
め、補正演算手段で各区間の計数値を対応する計数時間
に基づいて補正するので、連動手段を高速で駆動する場
合に、加速および減速での駆動中も含めて、各区間の正
確な蛍光X線強度が得られる。したがって、蛍光X線分
析において、定性分析や半定量分析を広い波長範囲で迅
速かつ正確に行うことができる。すなわち、連続スキャ
ンで迅速かつ正確な分析を行うことができる。
According to the first aspect of the present invention, the counting time for each predetermined scanning section is obtained by the counting time counter and the frequency divider, and the count value of each section is corrected by the correction calculating means based on the corresponding counting time. Therefore, when the interlocking means is driven at a high speed, accurate fluorescent X-ray intensity in each section can be obtained even during driving at acceleration and deceleration. Therefore, in X-ray fluorescence analysis, qualitative analysis and semi-quantitative analysis can be performed quickly and accurately in a wide wavelength range. That is, rapid and accurate analysis can be performed by continuous scanning.

【0011】請求項2のX線回折装置は、まず、試料が
載置される試料台と、試料に入射X線を照射するX線源
と、試料で回折された回折X線が入射され、回折X線の
エネルギーに応じた電圧のパルスを強度に応じた数だけ
発生する検出器と、前記試料台を回転させながら、前記
回折X線が前記検出器に入射するように、前記試料台と
検出器を連動させて連続的に走査させる連動手段とを備
える。
In the X-ray diffractometer according to the present invention, first, a sample stage on which a sample is mounted, an X-ray source for irradiating the sample with incident X-rays, and diffracted X-rays diffracted by the sample are incident on the sample stage. A detector that generates a number of voltage pulses according to the intensity of the diffracted X-rays in accordance with the intensity, and the sample stage such that the diffracted X-rays are incident on the detector while rotating the sample stage. Interlocking means for interlocking the detectors for continuous scanning.

【0012】また、この装置は、前記検出器で発生した
パルスのうち所定の電圧の範囲のものを選別する波高分
析器と、その波高分析器で選別されたパルスの計数値を
求めるスケーラと、そのスケーラでパルスを計数するの
に要した計数時間を測定する計数時間カウンタとを備え
る。さらに、この装置は、前記連動手段における所定の
走査区間ごとに、読み出し指令を発する分周器と、その
分周器からの読み出し指令を受けて、前記スケーラで求
めた計数値および前記計数時間カウンタで測定した計数
時間を読み出し、計数値を計数時間に基づいて補正する
補正演算手段とを備える。
The apparatus further comprises a pulse height analyzer for selecting pulses in a predetermined voltage range among the pulses generated by the detector, a scaler for calculating a count value of the pulses selected by the pulse height analyzer, A counting time counter for measuring a counting time required for counting pulses by the scaler. Further, the apparatus includes a frequency divider for issuing a read command for each predetermined scanning section in the interlocking means, a count value obtained by the scaler in response to the read command from the frequency divider, and the count time counter. And a correction operation means for reading out the counting time measured in the step (a) and correcting the counted value based on the counting time.

【0013】請求項2の装置によれば、計数時間カウン
タおよび分周器で所定の走査区間ごとの計数時間を求
め、補正演算手段で各区間の計数値を対応する計数時間
に基づいて補正するので、各区間の正確な回折X線強度
が得られ、X線回折分析において、連続スキャンで迅速
かつ正確な分析を行うことができる。
According to the second aspect of the present invention, the counting time for each predetermined scanning section is obtained by the counting time counter and the frequency divider, and the count value of each section is corrected by the correction calculating means based on the corresponding counting time. Therefore, accurate diffraction X-ray intensity in each section can be obtained, and in X-ray diffraction analysis, rapid and accurate analysis can be performed by continuous scanning.

【0014】請求項3のX線分析装置は、請求項1また
は2の装置において、前記分周器が、前記連動手段の主
軸に設けられたロータリーエンコーダからの信号に基づ
いて前記読み出し指令を発する。
According to a third aspect of the present invention, in the first or second aspect, the frequency divider issues the read command based on a signal from a rotary encoder provided on a main shaft of the interlocking means. .

【0015】請求項3の装置によれば、連動手段の機械
的構造に起因して所定の走査区間ごとの計数時間が不安
定になることも含めて各区間の計数値が補正されるの
で、各区間のいっそう正確なX線強度が得られ、X線分
析において、連続スキャンで迅速かついっそう正確な分
析を行うことができる。
According to the device of the third aspect, the count value of each section is corrected including the fact that the counting time for each predetermined scanning section becomes unstable due to the mechanical structure of the interlocking means. More accurate X-ray intensity in each section can be obtained, and in X-ray analysis, rapid and more accurate analysis can be performed by continuous scanning.

【0016】[0016]

【発明の実施の形態】以下、本発明の第1実施形態の装
置について説明する。まず、この装置の構成について、
図1にしたがって説明する。この装置は、蛍光X線分析
装置であり、まず、試料1が載置される試料台2と、試
料1に1次X線3を照射するX線管等のX線源4と、試
料1から発生する蛍光X線5を分光する分光素子6と、
その分光素子6で分光された蛍光X線7が入射され、蛍
光X線7のエネルギーに応じた電圧のパルスを強度に応
じた数だけ発生するSC、F−PC等の検出器8と、分
光素子6で分光される蛍光X線7の波長を変えながら、
その分光された蛍光X線7が検出器8に入射するよう
に、分光素子6と検出器8を連動させて連続的に走査さ
せるゴニオメータ等の連動手段10とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to a first embodiment of the present invention will be described below. First, regarding the configuration of this device,
This will be described with reference to FIG. This apparatus is a fluorescent X-ray analyzer, and firstly, a sample table 2 on which a sample 1 is placed, an X-ray source 4 such as an X-ray tube for irradiating the sample 1 with primary X-rays 3, and a sample 1 A spectroscopic element 6 for dispersing fluorescent X-rays 5 generated from
Fluorescent X-rays 7 split by the spectroscopic element 6 are incident thereon, and a detector 8 such as an SC or F-PC that generates a number of voltage pulses corresponding to the energy of the fluorescent X-rays 7 in accordance with the intensity; While changing the wavelength of the fluorescent X-rays 7 split by the element 6,
An interlocking unit 10 such as a goniometer for continuously scanning the spectroscopic element 6 and the detector 8 so that the spectroscopic X-rays 7 enter the detector 8 is provided.

【0017】すなわち、蛍光X線5がある入射角θで分
光素子6へ入射すると、その蛍光X線5の延長線9と分
光素子6で分光(回折)された蛍光X線7は入射角θの
2倍の分光角2θをなすが、連動手段10は、分光角2
θを変化させて分光される蛍光X線7の波長を変化させ
つつ、その分光された蛍光X線7が検出器8に入射し続
けるように、分光素子6を、その表面の中心を通る紙面
に垂直な軸Oを中心に回転させ、その回転角の2倍だ
け、検出器8を、軸Oを中心に円12に沿って回転させ
る。具体的には、分光素子6を回転させるθ軸と検出器
8を回転させる2θ軸とに、それぞれ、パルスモータ、
そのパルスモータの回転軸に取り付けられるウォーム、
およびそのウォームに噛み合い分光素子6または検出器
8が取り付けられるウォームホイールが設けられ、θ軸
と2θ軸のパルスモータが、パルススタート時期やパル
ス数制御において電気的に連動される。これらの機構の
全体が連動手段10である。
That is, when the fluorescent X-rays 5 enter the spectroscopic element 6 at a certain incident angle θ, the extension line 9 of the fluorescent X-rays 5 and the fluorescent X-rays 7 spectrally (diffracted) by the spectroscopic element 6 become incident angles θ. Is twice as large as the spectral angle 2θ.
While changing the wavelength of the fluorescent X-rays 7 to be dispersed by changing θ, the spectroscopic element 6 is positioned on a paper surface passing through the center of the surface so that the spectrally separated fluorescent X-rays 7 continue to be incident on the detector 8. , And the detector 8 is rotated along the circle 12 about the axis O by twice the rotation angle. Specifically, a pulse motor and a 2θ axis for rotating the detector 8 are respectively provided on the θ axis for rotating the spectroscopic element 6 and the 2θ axis for rotating the detector 8.
Worm attached to the rotating shaft of the pulse motor,
And a worm wheel on which the spectroscopic element 6 or the detector 8 is attached so as to mesh with the worm, and the pulse motors of the θ axis and the 2θ axis are electrically interlocked in the pulse start timing and pulse number control. The whole of these mechanisms is the interlocking means 10.

【0018】また、この装置は、検出器8で発生したパ
ルスのうち所定の電圧(波高)の範囲のものを選別する
波高分析器13と、その波高分析器13で選別されたパ
ルスの計数値を求める(選別されたパルスの数を計る)
スケーラ14と、そのスケーラ14でパルスを計数する
のに要した計数時間を水晶発振器等からの基準パルスに
基づいて測定する計数時間カウンタ15とを備える。さ
らに、この装置は、連動手段10における所定の走査区
間ごとに、読み出し指令を発する分周器16と、その分
周器16からの読み出し指令を受けて、スケーラ14で
求めた計数値および計数時間カウンタ15で測定した計
数時間を読み出し、計数値を計数時間に基づいて補正す
る補正演算手段11とを備える。
The apparatus comprises a pulse height analyzer 13 for selecting pulses within a predetermined voltage (wave height) from the pulses generated by the detector 8, and a counting value of the pulses selected by the pulse height analyzer 13. Find (count the number of selected pulses)
The scaler 14 includes a scaler 14 and a count time counter 15 that measures a count time required for counting pulses by the scaler 14 based on a reference pulse from a crystal oscillator or the like. Further, the apparatus includes a frequency divider 16 for issuing a read command for each predetermined scanning section in the interlocking means 10, and a count value and a count time obtained by the scaler 14 in response to the read command from the frequency divider 16. A correction operation unit for reading the count time measured by the counter and correcting the count value based on the count time;

【0019】具体的には、例えば、連動手段10を駆動
するパルスモータへの1パルスが2θでいえば5/10
00度に相当する場合に、分周器16は、その連動手段
駆動パルスを受けて、2パルスごとに、すなわち2θで
1/100度という連動手段10における所定の走査区
間ごとに、補正演算手段11に読み出し指令を与え、補
正演算手段11は、2θで1/100度ごとに、スケー
ラ14で求めた計数値および計数時間カウンタ15で測
定した計数時間を読み出し、計数値を計数時間で除して
補正し、その区間の蛍光X線強度とする。なお、所定の
走査区間は、例えば1/100〜1/10度の範囲で、
設定変更が可能である。
Specifically, for example, if one pulse to the pulse motor for driving the interlocking means 10 is 2θ, 5/10
In the case of equivalent to 00 degrees, the frequency divider 16 receives the interlocking means driving pulse, and every two pulses, that is, for each predetermined scanning section in the interlocking means 10 of 1/100 degrees in 2θ, the frequency divider 16 11, the correction operation means 11 reads out the count value obtained by the scaler 14 and the count time measured by the count time counter 15 every 1/100 ° in 2θ, and divides the count value by the count time. To make the fluorescent X-ray intensity in that section. The predetermined scanning section is, for example, in the range of 1/100 to 1/10 degrees,
Settings can be changed.

【0020】次に、定性分析を行う場合を例にとり、こ
の装置の動作について説明する。まず、試料台2に試料
1を載置し、X線源4から1次X線3を照射すると、発
生する蛍光X線5が分光素子6で分光され、分光された
蛍光X線7が検出器8に入射して蛍光X線7のエネルギ
ーに応じた電圧のパルスが強度に応じた数だけ発生す
る。そのパルスのうち所定の電圧の範囲のものが波高分
析器13で選別され、その選別されたパルスの計数値が
スケーラ14で求められる。
Next, the operation of this apparatus will be described by taking a case where a qualitative analysis is performed as an example. First, when the sample 1 is placed on the sample stage 2 and irradiated with primary X-rays 3 from the X-ray source 4, the generated fluorescent X-rays 5 are separated by the spectral element 6, and the separated fluorescent X-rays 7 are detected. The number of pulses corresponding to the intensity of the voltage is generated according to the intensity of the fluorescent X-rays 7 when the light enters the detector 8. Among the pulses, those having a predetermined voltage range are selected by the pulse height analyzer 13, and the count value of the selected pulses is obtained by the scaler 14.

【0021】ここで、分光素子6と検出器8を連動手段
10で連動させ連続的に走査(連続スキャン)させるこ
とにより、試料1から発生する蛍光X線5をそれぞれの
波長に分光し、検出するが、迅速のため、連動手段10
を、図2にBで示すように2θで240度/分の走査速
度になるように駆動する。なお、図2の横軸である走査
範囲(2θ)に目盛るべき数値は、用いる検出器8およ
び分光素子6(図1)によって異なるので記載しない
が、左端から右端までの最大限が100度程度である。
Here, the spectroscopic element 6 and the detector 8 are interlocked by the interlocking means 10 and are continuously scanned (continuously scanned), whereby the fluorescent X-rays 5 generated from the sample 1 are separated into respective wavelengths and detected. However, because of the speed, the interlocking means 10
Is driven at a scan speed of 240 degrees / minute at 2θ as shown by B in FIG. The numerical values to be graduated in the scanning range (2θ), which is the horizontal axis in FIG. 2, are not described because they differ depending on the detector 8 and the spectroscopic element 6 (FIG. 1) used, but the maximum from the left end to the right end is 100 degrees. It is about.

【0022】前述したが、このような高速で駆動するに
は、その前後に、例えば走査範囲(2θ)でそれぞれ5
度程度(図2では理解の容易のため誇張して示す)ず
つ、加速、減速での駆動が必要であり、この間は、図1
の分周器16を用いて1/100度の所定の走査区間ご
とにスケーラ14から計数値を読み出しても、区間ごと
に計数に要した時間がそれぞれ異なる。一方、スケーラ
14に入るパルスの単位時間あたりの数は蛍光X線7の
強度に応じたものである。したがって、加速、減速での
駆動中(図2のA,C)は、所定の走査区間ごとにスケ
ーラ14から計数値を読み出しても、そのままでは、各
区間の正確な蛍光X線強度にならない。
As described above, in order to drive at such a high speed, before and after the driving, for example, 5 times each in the scanning range (2θ).
It is necessary to drive by acceleration and deceleration by degrees (shown exaggerated in FIG. 2 for easy understanding).
Even if the count value is read from the scaler 14 for each predetermined scanning interval of 1/100 degrees using the frequency divider 16, the time required for counting differs for each interval. On the other hand, the number of pulses per unit time entering the scaler 14 depends on the intensity of the fluorescent X-rays 7. Therefore, during driving during acceleration and deceleration (A and C in FIG. 2), even if the count value is read from the scaler 14 for each predetermined scanning section, the fluorescent X-ray intensity in each section does not become accurate.

【0023】そこで、この装置では、計数時間カウンタ
15によりスケーラ14でパルスを計数するのに要した
計数時間を測定し、補正演算手段11が、1/100度
の所定の走査区間ごとに分周器16からの読み出し指令
を受けて、スケーラ14で求めた計数値のみならず計数
時間カウンタ15で測定した計数時間をも読み出す。こ
れにより、1/100度の区間ごとの計数時間が求めら
れる。そして、補正演算手段11は、1/100度の区
間ごとに、スケーラ14で求めた計数値を計数時間カウ
ンタ15で測定した計数時間で除して補正し、その区間
の蛍光X線強度とする。
Therefore, in this apparatus, the counting time required for counting the pulses by the scaler 14 is measured by the counting time counter 15, and the correction calculating means 11 divides the frequency every predetermined scanning section of 1/100 degree. In response to the read command from the scale 16, not only the count value obtained by the scaler 14 but also the count time measured by the count time counter 15 is read. Thus, the counting time for each 1/100 degree section is obtained. Then, for each 1/100 degree section, the correction calculating means 11 corrects the count value obtained by the scaler 14 by dividing the count value by the count time measured by the count time counter 15 to obtain the fluorescent X-ray intensity in that section. .

【0024】これにより、各分光角2θにおける蛍光X
線7の強度を示すスペクトルが得られ、ピーク検索、同
定解析が行われ、すなわち定性分析が行われる。その結
果は、図示しないCRT等の表示手段に表示される。ま
た、この定性分析結果に基づいて、いわゆる半定量分析
も行うことができる。なお、この装置では、走査速度が
一定か否かを判別せず、走査するすべての範囲において
補正を行うが、このような補正は、一定の高速での駆動
中(図2のB)の走査速度を1として、加速、減速での
駆動中(図2のA,C)においてのみ行ってもよい。
Thus, the fluorescence X at each spectral angle 2θ is obtained.
A spectrum indicating the intensity of the line 7 is obtained, and peak search and identification analysis are performed, that is, qualitative analysis is performed. The result is displayed on a display means such as a CRT (not shown). Further, a so-called semi-quantitative analysis can be performed based on the qualitative analysis result. In this apparatus, correction is performed in the entire scanning range without determining whether the scanning speed is constant or not. Such correction is performed during scanning at a constant high speed (B in FIG. 2). Assuming that the speed is 1, the driving may be performed only during driving during acceleration and deceleration (A and C in FIG. 2).

【0025】このように、第1実施形態の装置によれ
ば、計数時間カウンタ15および分周器16で所定の例
えば1/100度の走査区間ごとの計数時間を求め、補
正演算手段11で各区間の計数値を対応する計数時間に
基づいて補正するので、連動手段10を高速で駆動する
場合に、加速および減速での駆動中(図2のA,C)も
含めて、各区間の正確な蛍光X線強度が得られる。した
がって、蛍光X線分析において、定性分析や半定量分析
を広い波長範囲で迅速かつ正確に行うことができる。す
なわち、連続スキャンで迅速かつ正確な分析を行うこと
ができる。
As described above, according to the apparatus of the first embodiment, the counting time counter 15 and the frequency divider 16 determine the counting time for each predetermined scanning interval of, for example, 1/100 degree, and the correction calculating means 11 Since the count value of the section is corrected based on the corresponding counting time, when the interlocking means 10 is driven at a high speed, the accurate value of each section including the driving during acceleration and deceleration (A and C in FIG. 2) is included. Fluorescent X-ray intensity can be obtained. Therefore, in X-ray fluorescence analysis, qualitative analysis and semi-quantitative analysis can be performed quickly and accurately in a wide wavelength range. That is, rapid and accurate analysis can be performed by continuous scanning.

【0026】なお、第1実施形態の装置では、連動手段
10をパルスモータで駆動したが、サーボモータを用い
てもよい。この場合には、一定の高速での駆動中(図2
のB)でも微妙な速度むらが生じることがあるので、そ
の影響をも補正すべく、走査速度が一定か否かを判別せ
ず、走査するすべての範囲において補正を行う方がよ
い。
Although the interlocking means 10 is driven by a pulse motor in the apparatus of the first embodiment, a servo motor may be used. In this case, during driving at a constant high speed (FIG. 2)
Even in the case of (B), fine speed unevenness may occur. Therefore, in order to correct the influence, it is better to perform correction in the entire scanning range without determining whether the scanning speed is constant.

【0027】次に、本発明の第2実施形態の装置につい
て説明する。この装置は、X線回折装置であり、図3に
示すように、まず、試料1が載置される試料台2と、試
料1に入射X線(単色化されている場合が多い)23を
照射するX線管等のX線源4と、試料1で回折された回
折X線27が入射され、回折X線27のエネルギーに応
じた電圧のパルスを強度に応じた数だけ発生する検出器
8と、試料台2を回転させながら、回折X線27が検出
器8に入射するように、試料台2と検出器8を連動させ
て連続的に走査させるゴニオメータ等の連動手段20と
を備える。
Next, an apparatus according to a second embodiment of the present invention will be described. This apparatus is an X-ray diffraction apparatus. As shown in FIG. 3, first, a sample stage 2 on which a sample 1 is mounted and an incident X-ray (often monochromatic) 23 on the sample 1 are formed. An X-ray source 4 such as an X-ray tube to be irradiated and a detector that receives diffracted X-rays 27 diffracted by the sample 1 and generates a number of voltage pulses corresponding to the energy of the diffracted X-rays 27 according to the intensity. 8 and an interlocking means 20 such as a goniometer that interlocks the sample stage 2 and the detector 8 to continuously scan so that the diffracted X-rays 27 enter the detector 8 while rotating the sample stage 2. .

【0028】すなわち、入射X線23がある入射角θで
試料1へ入射すると、その入射X線23の延長線29と
試料1で回折された回折X線27は入射角θの2倍の回
折角2θをなすが、連動手段20は、入射角θを変化さ
せつつ、その入射角θで生じる回折X線27が検出器8
に入射し続けるように、試料1を載置した試料台2を、
試料1の表面の中心を通る紙面に垂直な軸Oを中心に回
転させ、その回転角の2倍だけ、検出器8を、軸Oを中
心に円12に沿って回転させる。具体的には、連動手段
20は、例えば、パルスモータの回転軸に取り付けられ
たウォームと、そのウォームに噛み合うウォームホイー
ルに軸Oを共通の中心として固定されて、試料台2が取
り付けられる回転軸である主軸と、その主軸に機械的に
連結されて検出器8が取り付けられる台とを含み、パル
スモータの回転により駆動される。
That is, when the incident X-ray 23 enters the sample 1 at a certain incident angle θ, the extension line 29 of the incident X-ray 23 and the diffracted X-ray 27 diffracted by the sample 1 are twice as large as the incident angle θ. Although the bending angle 2θ is formed, the interlocking means 20 changes the incident angle θ, and the diffraction X-rays 27 generated at the incident angle θ are detected by the detector 8.
The sample stage 2 on which the sample 1 is placed is
The detector 8 is rotated about an axis O perpendicular to the paper surface passing through the center of the surface of the sample 1, and the detector 8 is rotated about the axis O along the circle 12 by twice the rotation angle. Specifically, the interlocking means 20 includes, for example, a worm attached to a rotation shaft of a pulse motor and a worm wheel meshing with the worm, which is fixed with the axis O as a common center, and the rotation shaft to which the sample stage 2 is attached. And a base on which the detector 8 is attached by being mechanically connected to the main shaft, and driven by rotation of a pulse motor.

【0029】また、この装置は、前記第1実施形態の装
置と同様に、波高分析器13、スケーラ14、計数時間
カウンタ15、分周器16および補正演算手段11を備
える。ただし、第2実施形態の装置においては、分周器
16が、連動手段20の主軸に設けられた高分解能(例
えば1/10000度)のロータリーエンコーダ30か
らの信号に基づいて読み出し指令を発する。
This apparatus comprises a peak analyzer 13, a scaler 14, a counting time counter 15, a frequency divider 16 and a correction operation means 11, similarly to the apparatus of the first embodiment. However, in the device of the second embodiment, the frequency divider 16 issues a read command based on a signal from a high-resolution (for example, 1/10000 degree) rotary encoder 30 provided on the main shaft of the interlocking means 20.

【0030】具体的には、例えば、ロータリーエンコー
ダ30からの信号が、図4に示すように、周期Tがθで
いえば4/10000度に相当し、ONになる長さが半
周期であって位相が1/4周期ずれた2相の矩形波A,
Bである場合に、分周器16は、そのロータリーエンコ
ーダ30からの信号A,Bを受けて、B相がOFFであ
ってA相がONになるごとに、すなわちθで4/100
00度という図3の連動手段20における所定の走査区
間ごとに、補正演算手段11に読み出し指令を与え、補
正演算手段11は、θで4/10000度ごとに、スケ
ーラ14で求めた計数値および計数時間カウンタ15で
測定した計数時間を読み出し、計数値を計数時間で除し
て補正し、その区間の回折X線強度とする。なお、所定
の走査区間は、設定変更が可能である。
More specifically, for example, as shown in FIG. 4, the signal from the rotary encoder 30 corresponds to 4 / 10,000 degrees when the period T is θ, and the ON length is half the period. , Two-phase rectangular waves A whose phases are shifted by 1/4 cycle,
In the case of B, the frequency divider 16 receives the signals A and B from the rotary encoder 30 and every time the B phase is OFF and the A phase is ON, that is, 4/100 in θ.
For every predetermined scanning section of the interlocking means 20 of FIG. 3 of 00 degrees, a read command is given to the correction calculating means 11, and the correction calculating means 11 calculates the count value obtained by the scaler 14 every 4 / 10,000 degrees θ. The count time measured by the count time counter 15 is read out, the count value is divided by the count time, and the divided value is corrected to be the diffracted X-ray intensity in that section. The setting of the predetermined scanning section can be changed.

【0031】このような構成の第2実施形態の装置によ
れば、計数時間カウンタ15および分周器16で所定の
走査区間ごとの計数時間を求め、補正演算手段11で各
区間の計数値を対応する計数時間に基づいて補正するの
で、各区間の正確な回折X線強度が得られ、X線回折分
析において、連続スキャンで迅速かつ正確な分析を行う
ことができる。しかも、分周器16が、連動手段20を
駆動するパルスモータへのパルスに基づくのではなく、
連動手段20の主軸に設けられた高分解能のロータリー
エンコーダ30からの信号A,Bに基づいて読み出し指
令を発するので、連動手段20における機械的加工誤差
やバックラッシュに起因して所定の走査区間ごとの計数
時間が不安定になることも含めて各区間の計数値が補正
され、各区間のいっそう正確なX線強度が得られ、X線
回折分析において、連続スキャンで迅速かついっそう正
確な分析を行うことができる。
According to the apparatus of the second embodiment having such a configuration, the counting time counter 15 and the frequency divider 16 determine the counting time for each predetermined scanning section, and the correction calculating means 11 calculates the count value of each section. Since the correction is performed based on the corresponding counting time, an accurate diffracted X-ray intensity in each section can be obtained, and the X-ray diffraction analysis can be performed quickly and accurately by continuous scanning. Moreover, the frequency divider 16 is not based on the pulse to the pulse motor that drives the interlocking means 20,
Since a read command is issued based on the signals A and B from the high-resolution rotary encoder 30 provided on the main shaft of the interlocking means 20, every predetermined scanning interval occurs due to a mechanical processing error or backlash in the interlocking means 20. The count value of each section including the instability of the counting time is corrected, and more accurate X-ray intensity of each section can be obtained. In X-ray diffraction analysis, rapid and more accurate analysis can be performed by continuous scanning. It can be carried out.

【0032】さらに、従来のステップスキャンによる測
定では、長時間を要する上に、計数のために一定時間停
止すべき指定角度への位置決めにおいて、ロータリーエ
ンコーダの最小分解能の誤差を生じる(図4でいえば、
B相がOFFであってA相がONになる1/10000
度の範囲Xでは、どこに停止しているか特定できない)
が、この実施形態の装置では、ロータリーエンコーダ3
0からの信号のうちA相のエッジ(立ち上がりの瞬間)
を検出して読み出し指令を発するので、そのような誤差
を生じることもない。
Further, in the conventional measurement by the step scan, it takes a long time, and an error of the minimum resolution of the rotary encoder occurs in positioning at a specified angle to be stopped for a certain time for counting (see FIG. 4). If
1/10000 when B phase is OFF and A phase is ON
In the range of degrees X, it is not possible to specify where it has stopped)
However, in the device of this embodiment, the rotary encoder 3
A-phase edge of signal from 0 (moment of rising edge)
Is detected and a read command is issued, so that such an error does not occur.

【0033】[0033]

【発明の効果】以上詳細に説明したように、本発明によ
れば、計数時間カウンタおよび分周器で所定の走査区間
ごとの計数時間を求め、補正演算手段で各区間の計数値
を対応する計数時間に基づいて補正するので、各区間の
正確なX線強度が得られ、X線分析において、連続スキ
ャンで迅速かつ正確な分析を行うことができる。
As described above in detail, according to the present invention, the counting time for each predetermined scanning section is obtained by the counting time counter and the frequency divider, and the correction operation means corresponds to the count value of each section. Since the correction is performed based on the counting time, accurate X-ray intensity in each section can be obtained, and in X-ray analysis, quick and accurate analysis can be performed by continuous scanning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の蛍光X線分析装置を示
す概略図である。
FIG. 1 is a schematic diagram showing a fluorescent X-ray analyzer according to a first embodiment of the present invention.

【図2】ゴニオメータ(連動手段)における走査範囲
(2θ)と走査速度との関係の例を示す図である。
FIG. 2 is a diagram illustrating an example of a relationship between a scanning range (2θ) and a scanning speed in a goniometer (an interlocking unit).

【図3】本発明の第2実施形態のX線回折装置を示す概
略図である。
FIG. 3 is a schematic diagram illustrating an X-ray diffraction apparatus according to a second embodiment of the present invention.

【図4】同装置におけるロータリーエンコーダからの2
相の信号と分周器が発する読み出し指令との関係の例を
示す図である。
FIG. 4 is a diagram showing a signal from a rotary encoder in the device.
FIG. 7 is a diagram illustrating an example of a relationship between a phase signal and a read command issued by a frequency divider.

【符号の説明】[Explanation of symbols]

1…試料、2…試料台、3…1次X線、4…X線源、5
…試料から発生する蛍光X線、6…分光素子、7…分光
素子で分光された蛍光X線、8…検出器、10,20…
連動手段、11…補正演算手段、13…波高分析器、1
4…スケーラ、15…計数時間カウンタ、16…分周
器、23…入射X線、27…試料で回折された回折X
線、30…ロータリーエンコーダ。
DESCRIPTION OF SYMBOLS 1 ... sample, 2 ... sample stage, 3 ... primary X-ray, 4 ... X-ray source, 5
... X-ray fluorescence generated from the sample, 6 ... Spectroscopy element, 7 ... X-ray fluorescence separated by the spectroscopy element, 8 ... Detector, 10, 20 ...
Interlocking means, 11 correction operation means, 13 pulse height analyzer, 1
4 scaler, 15 counting time counter, 16 frequency divider, 23 incident X-ray, 27 diffraction X diffracted by the sample
Line, 30 ... Rotary encoder.

フロントページの続き (72)発明者 加藤 寿之 東京都昭島市松原町3丁目9番12号 理学 電機株式会社内 Fターム(参考) 2G001 AA01 BA04 BA18 CA01 EA01 EA03 GA01 GA06 GA13 HA01 JA06 JA08 KA01 PA12 SA07Continued on the front page (72) Inventor Toshiyuki Kato 3-9-1, Matsubara-cho, Akishima-shi, Tokyo F-term in Rigaku Electric Co., Ltd. (reference) 2G001 AA01 BA04 BA18 CA01 EA01 EA03 GA01 GA06 GA13 HA01 JA06 JA08 KA01 PA12 SA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料が載置される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線を分光する分光素子と、 その分光素子で分光された蛍光X線が入射され、蛍光X
線のエネルギーに応じた電圧のパルスを強度に応じた数
だけ発生する検出器と、 前記分光素子で分光される蛍光X線の波長を変えなが
ら、その分光された蛍光X線が前記検出器に入射するよ
うに、前記分光素子と検出器を連動させて連続的に走査
させる連動手段と、 前記検出器で発生したパルスのうち所定の電圧の範囲の
ものを選別する波高分析器と、 その波高分析器で選別されたパルスの計数値を求めるス
ケーラと、 そのスケーラでパルスを計数するのに要した計数時間を
測定する計数時間カウンタと、 前記連動手段における所定の走査区間ごとに、読み出し
指令を発する分周器と、 その分周器からの読み出し指令を受けて、前記スケーラ
で求めた計数値および前記計数時間カウンタで測定した
計数時間を読み出し、計数値を計数時間に基づいて補正
する補正演算手段とを備えた蛍光X線分析装置。
A sample stage on which a sample is placed; an X-ray source for irradiating the sample with primary X-rays; a spectroscopic element for separating fluorescent X-rays generated from the sample; Fluorescent X-rays are incident, and fluorescent X
A detector that generates a number of voltage pulses according to the intensity of the X-rays in accordance with the intensity; and changing the wavelength of the fluorescent X-rays separated by the spectroscopic element, and converting the separated fluorescent X-rays to the detector. Interlocking means for intermittently scanning the spectroscopic element and the detector so as to be incident so as to interlock, a wave height analyzer for selecting a pulse generated by the detector within a predetermined voltage range, and a wave height thereof. A scaler for calculating a count value of the pulses selected by the analyzer, a count time counter for measuring a count time required for counting pulses by the scaler, and a read command for each predetermined scanning section in the interlocking means. A frequency divider that generates the signal, and receives a read command from the frequency divider, reads the count value obtained by the scaler and the count time measured by the count time counter, and counts the count value by the count time. X-ray fluorescence analyzer and a correction calculating means for correcting, based.
【請求項2】 試料が載置される試料台と、 試料に入射X線を照射するX線源と、 試料で回折された回折X線が入射され、回折X線のエネ
ルギーに応じた電圧のパルスを強度に応じた数だけ発生
する検出器と、 前記試料台を回転させながら、前記回折X線が前記検出
器に入射するように、前記試料台と検出器を連動させて
連続的に走査させる連動手段と、 前記検出器で発生したパルスのうち所定の電圧の範囲の
ものを選別する波高分析器と、 その波高分析器で選別されたパルスの計数値を求めるス
ケーラと、 そのスケーラでパルスを計数するのに要した計数時間を
測定する計数時間カウンタと、 前記連動手段における所定の走査区間ごとに、読み出し
指令を発する分周器と、 その分周器からの読み出し指令を受けて、前記スケーラ
で求めた計数値および前記計数時間カウンタで測定した
計数時間を読み出し、計数値を計数時間に基づいて補正
する補正演算手段とを備えたX線回折装置。
2. A sample table on which a sample is mounted, an X-ray source for irradiating the sample with incident X-rays, a diffracted X-ray diffracted by the sample is incident, and a voltage corresponding to the energy of the diffracted X-rays is applied. A detector that generates pulses by the number corresponding to the intensity, and continuously scans the sample stage and the detector in conjunction with each other so that the diffracted X-rays are incident on the detector while rotating the sample stage. Interlocking means for causing a pulse height analyzer to select a pulse having a predetermined voltage range among the pulses generated by the detector; a scaler for calculating a count value of the pulse selected by the pulse height analyzer; and a pulse generated by the scaler. A counting time counter for measuring a counting time required for counting, a frequency divider for issuing a read command for each predetermined scanning section in the interlocking means, and receiving a read command from the frequency divider, Seeking with a scaler Count value and reads the counting time measured by the count time counter, X-rays diffractometer equipped with a correction calculation means for correcting, based a count value in the counting time.
【請求項3】 請求項1または2において、 前記分周器が、前記連動手段の主軸に設けられたロータ
リーエンコーダからの信号に基づいて前記読み出し指令
を発するX線分析装置。
3. The X-ray analyzer according to claim 1, wherein the frequency divider issues the read command based on a signal from a rotary encoder provided on a main shaft of the interlocking means.
JP28141899A 1999-10-01 1999-10-01 X-ray analyzer Expired - Fee Related JP3443047B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28141899A JP3443047B2 (en) 1999-10-01 1999-10-01 X-ray analyzer
DE10048398A DE10048398B4 (en) 1999-10-01 2000-09-29 Continuously scanning X-ray analyzer with improved availability and accuracy
US09/672,773 US6404847B1 (en) 1999-10-01 2000-09-29 Continuously scanning X-ray analyzer having improved readiness and accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28141899A JP3443047B2 (en) 1999-10-01 1999-10-01 X-ray analyzer

Publications (2)

Publication Number Publication Date
JP2001099793A true JP2001099793A (en) 2001-04-13
JP3443047B2 JP3443047B2 (en) 2003-09-02

Family

ID=17638894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28141899A Expired - Fee Related JP3443047B2 (en) 1999-10-01 1999-10-01 X-ray analyzer

Country Status (1)

Country Link
JP (1) JP3443047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685247A1 (en) * 2011-05-20 2014-01-15 Rigaku Corporation Wavelength-dispersive x-ray fluorescence analysis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685247A1 (en) * 2011-05-20 2014-01-15 Rigaku Corporation Wavelength-dispersive x-ray fluorescence analysis device
EP2685247A4 (en) * 2011-05-20 2014-10-08 Rigaku Denki Co Ltd Wavelength-dispersive x-ray fluorescence analysis device

Also Published As

Publication number Publication date
JP3443047B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US7483134B2 (en) Scanning monochromator with direct drive grating
JP5320807B2 (en) Wavelength dispersive X-ray spectrometer
CN108152313B (en) Automatic debugging and correcting system and method for light-splitting light path of X-ray fluorescence spectrometer
US4562585A (en) Sequential x-ray crystal spectrometer
US6404847B1 (en) Continuously scanning X-ray analyzer having improved readiness and accuracy
JP4773899B2 (en) X-ray spectroscopic measurement method and X-ray spectroscopic apparatus
DE4317948A1 (en) Monochromator for spectrometer
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
Koirtyohann et al. Effect of modulation wave form on the utility of emission background corrections obtained with an oscillating refractor plate
Farnsworth et al. Instrumental system for multidimensional spectroscopic characterization of a radio frequency boosted, pulsed hollow cathode lamp
JP3443047B2 (en) X-ray analyzer
US6970241B1 (en) Device for enabling slow and direct measurement of fluorescence polarization
JP3982731B2 (en) Spectrometer wavelength correction method
JP3422294B2 (en) Spectrophotometer wavelength calibration method
JP6256152B2 (en) X-ray measuring device
US6377899B1 (en) Method of calibrating spectrophotometer
US4283732A (en) Recording system with inter-line space positioning means
US4976541A (en) Automatic atomic-absorption spectrometry method
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP2000193616A (en) X-ray fluorescence analytical equipment
JP2002148220A (en) X-ray diffractometer and x-ray adjustment method
JPH07104297B2 (en) X-ray analyzer
JPH01156643A (en) Automatic optical axis adjusting device for goniometer of x-ray diffraction device
AU623851B2 (en) Improved automatic atomic absorption spectrometer
JP2002365245A (en) Wavelength dispersive x-ray fluorescence analyzer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees