JP2001098931A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001098931A
JP2001098931A JP27556899A JP27556899A JP2001098931A JP 2001098931 A JP2001098931 A JP 2001098931A JP 27556899 A JP27556899 A JP 27556899A JP 27556899 A JP27556899 A JP 27556899A JP 2001098931 A JP2001098931 A JP 2001098931A
Authority
JP
Japan
Prior art keywords
discharge
flow path
insulator
exhaust gas
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27556899A
Other languages
Japanese (ja)
Inventor
Miyao Arakawa
宮男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27556899A priority Critical patent/JP2001098931A/en
Publication of JP2001098931A publication Critical patent/JP2001098931A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect abnormality of a discharge state caused by deposition of soot or dew condensation on the surfaces of insulator flow passages. SOLUTION: A plurality of fluid passage structures 12 made of insulators having a plurality of insulator flow passages 13 are layered, and insulation resistance detecting terminals 21, 22 for detecting resistance values on upstream end surfaces of the insulating flow passages 13. As the deposit of soot and dew condensation is increased, the resistance values on the surfaces of the insulator flow passages 13 are lowered to deteriorate a discharge state. With focusing on the fact, the resistance values (resistance values on the upstream end surfaces of the insulating flow passages 13) between the insulation resistance detecting terminals 21, 22 are detected in a period capable of stopping the discharge before starting an engine and/or when the engine is in operation. The discharge state is determined based on the resistance values. When the engine is in operation and discharge abnormality caused by the deposit of soot is determined, an air-fuel ratio of exhaust gas is controlled to be temporarlly rich to burn off the soot deposited to the insulator flow passages 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電を利用して排
気ガスの浄化反応を促進させる内燃機関の排気浄化装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine which uses a discharge to promote a purification reaction of exhaust gas.

【0002】[0002]

【従来の技術】近年、放電エネルギを利用して排気ガス
を浄化する新たな排気ガス浄化技術が研究されている。
この技術は、例えば、特開平5−59934号公報に示
すように、内燃機関の排気ガスを、放電電極間に形成さ
れた流路に流し、該放電電極間に高電圧を印加して放電
を発生させることで、排気ガスを浄化するようにしてい
る。更に、この公報では、予め正常時の放電電圧と放電
電流との関係をメモリに記憶しておき、現在の放電電圧
と放電電流との関係を、メモリに記憶された正常時の関
係と比較して現在の放電状態を判定する技術が開示され
ている。
2. Description of the Related Art In recent years, a new exhaust gas purifying technique for purifying exhaust gas using discharge energy has been studied.
In this technique, for example, as disclosed in Japanese Patent Application Laid-Open No. 5-59934, an exhaust gas of an internal combustion engine is caused to flow through a flow path formed between discharge electrodes, and a high voltage is applied between the discharge electrodes to discharge. By generating the gas, the exhaust gas is purified. Further, in this publication, the relationship between the normal discharge voltage and the discharge current is stored in a memory in advance, and the relationship between the current discharge voltage and the discharge current is compared with the normal relationship stored in the memory. There is disclosed a technique for determining a current discharge state by using the above-described method.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記公報で
は、放電電極の表面に排気ガスが接触するようになって
いるが、排気ガスは高温で、酸化性成分(NOx等)や
還元性成分(CO,HC等)を含むため、放電電極の表
面が劣化しやすく、耐久性が悪いという欠点がある。
By the way, in the above publication, the exhaust gas comes into contact with the surface of the discharge electrode. However, the exhaust gas is at a high temperature and has an oxidizing component (such as NOx) or a reducing component (such as NOx). CO, HC, etc.), there is a disadvantage that the surface of the discharge electrode is easily deteriorated and durability is poor.

【0004】そこで、排気ガスの流路を絶縁体層で形成
し、この絶縁体層の内部に放電電極を埋め込むことで、
放電電極に排気ガスが接触しないようにすると共に、絶
縁体層を介して流路内で放電を発生させて、排気ガスを
浄化することが提案されている。
Therefore, a flow path of exhaust gas is formed by an insulator layer, and a discharge electrode is buried in the insulator layer.
It has been proposed to prevent the exhaust gas from contacting the discharge electrode, and to generate a discharge in the flow path via the insulator layer to purify the exhaust gas.

【0005】しかし、この構成では、絶縁体層の表面に
排気ガス中の未燃成分等の煤が付着したり、結露が生じ
たりすると、絶縁体層の表面の絶縁性(抵抗値)が低下
して良好な放電状態を得られなくなる可能性があるが、
このような状態になっても、放電電流の検出値には変化
が現れにくいという傾向がある。これは、放電が少なく
なっても、その分、絶縁体層の表面を流れる漏れ電流が
増加して、電流検出値の変化が少なくなるためである
(放電電流のみを漏れ電流と区別して検出することは困
難である)。従って、上記公報のように、放電電圧と放
電電流との関係に基づいて放電状態を判定する方法で
は、絶縁体層の表面ヘの煤の付着や結露によって放電状
態が異常になっても、その放電異常を精度良く検出する
ことは困難である。
However, in this configuration, if soot such as unburned components in exhaust gas adheres to the surface of the insulator layer or dew forms, the insulation (resistance) of the surface of the insulator layer decreases. May not be able to obtain a good discharge state,
Even in such a state, there is a tendency that the detected value of the discharge current hardly changes. This is because even if the discharge decreases, the leakage current flowing on the surface of the insulator layer increases and the change in the current detection value decreases accordingly (only the discharge current is detected separately from the leakage current). It is difficult). Therefore, in the method of determining the discharge state based on the relationship between the discharge voltage and the discharge current as described in the above publication, even if the discharge state becomes abnormal due to soot adhesion or dew condensation on the surface of the insulating layer, It is difficult to accurately detect a discharge abnormality.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、絶縁体層を介して放
電を発生させて排気ガスを浄化するものにおいて、絶縁
体層の表面ヘの煤や結露水の付着による放電状態の異常
を精度良く検出することができる内燃機関の排気浄化装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, has as its object to purify exhaust gas by generating discharge through an insulator layer. It is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine that can accurately detect an abnormality in a discharge state due to adhesion of soot or dew condensation water.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排気浄化装置は、絶
縁体流路を構成する絶縁体層を介して該絶縁体流路内で
放電を発生させて排気ガスを浄化するものにおいて、絶
縁体流路の表面の抵抗値を排気ガスが接触する部分で絶
縁抵抗検出手段により検出すると共に、その検出抵抗値
に基づいて放電状態判定手段により放電状態を判定する
ようにしたものである。つまり、絶縁体流路の表面に付
着する煤や結露水の付着量が増加するに従って、その部
分で、絶縁体流路表面の抵抗値が低下して、放電状態が
悪化していく。従って、絶縁体流路表面のうちの煤や結
露水が付着しやすい箇所で抵抗値を検出すれば、その抵
抗値は、煤や結露水の付着量や放電状態を評価するパラ
メータとなるため、その抵抗値に基づいて放電状態を判
定すれば、絶縁体流路の表面ヘの煤や結露水の付着によ
る放電状態の異常を精度良く検出することができる。
According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, comprising: an insulating layer that forms an insulator flow path; In a device that purifies exhaust gas by generating a discharge within the device, the resistance value of the surface of the insulator flow path is detected by the insulation resistance detecting means at a portion where the exhaust gas contacts, and the discharge state is determined based on the detected resistance value. The discharging state is determined by the determining means. That is, as the amount of soot or dew adhering water adhering to the surface of the insulator flow path increases, the resistance value of the surface of the insulator flow path decreases at that portion, and the discharge state deteriorates. Therefore, if the resistance value is detected at a location on the surface of the insulator flow path where soot and dew condensation water easily adheres, the resistance value is a parameter for evaluating the adhesion amount and the discharge state of the soot and dew water, If the discharge state is determined based on the resistance value, it is possible to accurately detect an abnormality in the discharge state due to the adhesion of soot or dew water on the surface of the insulator flow path.

【0008】この場合、請求項2のように、絶縁体流路
の上流側端面で抵抗値を検出するようにすると良い。つ
まり、絶縁体流路の上流側端面は、排気ガス中の煤が最
も付着しやすい箇所であるため、絶縁体流路の上流側端
面で抵抗値を検出すれば、絶縁体流路の表面ヘの煤の付
着による放電状態の異常を早期に検出することができ
る。
In this case, it is preferable that the resistance value is detected at the upstream end face of the insulator flow path. That is, since the upstream end face of the insulator flow path is the place where soot in the exhaust gas is most likely to adhere, if the resistance value is detected on the upstream end face of the insulator flow path, the surface of the insulator flow path will be exposed. Abnormality of the discharge state due to the adhesion of soot can be detected at an early stage.

【0009】ところで、複数の絶縁体流路を積層した構
成のものでは、排気管内の排気ガスの流れの速度分布に
よって、中央側の絶縁体流路の排気ガス流量が外周側の
絶縁体流路の排気ガス流量よりも多くなるため、各絶縁
体流路への煤の付着量は、中央側の絶縁体流路の方が多
くなる傾向にある。また、各絶縁体流路に結露した水滴
は時間と共に下方に垂れていくため、結露水の付着量
は、下方側の絶縁体流路の方が多くなる傾向にある。
In a configuration in which a plurality of insulator flow paths are stacked, the flow rate of the exhaust gas in the exhaust pipe causes the flow rate of the exhaust gas in the central insulator flow path to be reduced by the outer circumferential insulator flow path. Therefore, the amount of soot adhering to each of the insulator flow paths tends to be larger in the insulator flow path on the center side. In addition, since the water droplets that have condensed on each of the insulator flow paths hang downward with time, the amount of the condensed water attached to the lower insulator flow paths tends to be larger.

【0010】この点を考慮して、請求項3のように、絶
縁体流路の積層体の表面の抵抗値を上下方向に広範囲に
検出するようにしても良い。このようにすれば、煤の付
着による抵抗値の変化と結露水の付着による抵抗値の変
化との両方を容易且つ確実に検出することができる。
In consideration of this point, the resistance value of the surface of the laminated body of the insulator flow path may be detected in a wide range in the vertical direction. This makes it possible to easily and reliably detect both the change in the resistance value due to the adhesion of the soot and the change in the resistance value due to the adhesion of the dew water.

【0011】また、請求項4のように、絶縁体流路の積
層体を複数の放電制御領域に区分して各放電制御領域毎
に放電を独立して制御するように構成すると共に、各放
電制御領域毎に絶縁抵抗検出手段で該絶縁体流路の表面
の抵抗値を別々に検出し、放電状態判定手段で放電異常
が検出された時に、放電異常が検出された放電制御領域
の放電を停止し、他の放電制御領域の放電を継続するよ
うにしても良い。このようにすれば、一部の絶縁体流路
で結露水等による放電異常が発生しても、正常な放電状
態が得られる絶縁体流路で放電を継続して排気ガスの浄
化を続行することができる。
According to a fourth aspect of the present invention, the laminated body of the insulator flow path is divided into a plurality of discharge control areas so that the discharge is controlled independently for each discharge control area. The resistance value of the surface of the insulator flow path is separately detected by the insulation resistance detecting means for each control area, and when a discharge abnormality is detected by the discharge state determination means, the discharge of the discharge control area where the discharge abnormality is detected is detected. The discharge may be stopped and the discharge in the other discharge control areas may be continued. In this way, even if a discharge abnormality occurs due to dew condensation water or the like in some of the insulator flow paths, the discharge is continued in the insulator flow path in which a normal discharge state is obtained, and the purification of the exhaust gas is continued. be able to.

【0012】ところで、絶縁体流路の表面への結露は、
絶縁体流路の温度が低い時に発生し、排気熱により絶縁
体流路の温度が高くなると、たとえ、それ以前に絶縁体
流路の表面に結露が生じていたとしても、その結露水が
蒸発して絶縁体流路の表面の結露は無くなる。また、排
気ガス中の煤は、結露と比べてかなり長い時間をかけて
絶縁体流路の表面に少しずつ付着していき、絶縁体流路
の温度が高くなっても、煤の付着量が減少することはな
い。
By the way, dew condensation on the surface of the insulator flow path is as follows.
This occurs when the temperature of the insulator flow path is low, and when the temperature of the insulator flow path increases due to exhaust heat, even if dew condensation has occurred on the surface of the insulator flow path before that, the condensed water evaporates. As a result, condensation on the surface of the insulator flow path is eliminated. In addition, the soot in the exhaust gas gradually adheres to the surface of the insulator flow path over a considerably long period of time as compared with dew condensation. It does not decrease.

【0013】この点を考慮して、請求項5のように、絶
縁体流路の表面の抵抗値に基づいて放電異常を判定する
際に、絶縁体流路の表面への排気ガス中の煤の付着によ
る放電異常と結露水による放電異常とを絶縁体流路の温
度状態又は検出抵抗値の変化等に基づいて判別するよう
にしても良い。例えば、絶縁体流路の温度が高くなる
と、絶縁体流路の表面の結露は無くなるため、絶縁体流
路の温度が高い時に、放電異常と判定された場合は、煤
の付着による放電異常と判定することができる。また、
検出抵抗値が前回の検出値から急激に増加又は減少した
場合は、結露による放電異常と判定することができる。
In consideration of this point, when the discharge abnormality is determined based on the resistance value of the surface of the insulator flow path, the soot contained in the exhaust gas to the surface of the insulator flow path is determined. The discharge abnormality due to the adhesion of water and the discharge abnormality due to dew condensation water may be determined based on the temperature state of the insulator flow path, a change in the detected resistance value, or the like. For example, when the temperature of the insulator flow path increases, dew condensation on the surface of the insulator flow path disappears. Can be determined. Also,
When the detection resistance value sharply increases or decreases from the previous detection value, it can be determined that the discharge is abnormal due to condensation.

【0014】この場合、煤の付着による放電異常と判定
された時に、車両から絶縁体流路を取り外して清掃又は
交換するようにしても良いが、請求項6のように、煤付
着による放電異常と判定された場合は、絶縁体流路の温
度が高い時に排気ガスの空燃比を一時的にリッチに制御
して絶縁体流路に付着した煤を焼き取るようにしても良
い。このようにすれば、絶縁体流路への煤の付着量が多
くなる毎に、自動的に煤を取り除くことができるため、
絶縁体流路の清掃又は交換が不要になると共に、長期間
にわたって排気ガスの浄化能力を良好に維持できる。
In this case, when it is determined that the discharge is abnormal due to the adhesion of soot, the insulator flow path may be removed from the vehicle for cleaning or replacement. When it is determined that the air-fuel ratio of the exhaust gas is temporarily rich when the temperature of the insulator flow path is high, the soot attached to the insulator flow path may be burned. With this configuration, the soot can be automatically removed each time the amount of soot attached to the insulator flow path increases,
It is not necessary to clean or replace the insulator flow path, and the exhaust gas purifying ability can be favorably maintained for a long period of time.

【0015】また、放電中に絶縁体流路の表面の抵抗値
を検出すると、その検出値に放電によるノイズが乗って
しまうため、請求項7のように、放電停止中に絶縁体流
路の表面の抵抗値を検出すると良い。これにより、放電
の影響を受けずに、絶縁体流路の表面の抵抗値を精度良
く検出することができる。
Further, if the resistance value of the surface of the insulator flow path is detected during the discharge, noise due to the discharge is superimposed on the detected value. It is good to detect the resistance value of the surface. This makes it possible to accurately detect the resistance value of the surface of the insulator flow path without being affected by the discharge.

【0016】[0016]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図4に基づいて説明する。
図1に示すように、排気浄化装置11は、内燃機関の排
気管(図示せず)の途中に設けられ、複数の流路構造体
12が積層されている。各流路構造体12は、放電の生
じやすい誘電性のある耐熱性絶縁体(例えばアルミナ等
のセラミック、ガラス等)で形成され、排気ガスが通過
する複数の絶縁体流路13が1列に形成されている。各
流路構造体12の片面(例えば上面)には、印刷導体又
は導電板によって放電電極14が設けられている。この
放電電極14は、外部端子15と接続する接続部14a
が外部に露出し、他の部分は流路構造体12の内部に埋
め込まれている。各絶縁体流路13の内壁には、排気ガ
スの浄化反応を促進させる触媒(図示せず)がコーティ
ングされている。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the exhaust gas purification device 11 is provided in the middle of an exhaust pipe (not shown) of an internal combustion engine, and has a plurality of flow path structures 12 stacked thereon. Each of the flow path structures 12 is formed of a dielectric heat-resistant insulator (for example, ceramic such as alumina, glass, or the like) that easily generates a discharge, and a plurality of insulator flow paths 13 through which exhaust gas passes are arranged in a line. Is formed. On one surface (for example, the upper surface) of each flow path structure 12, a discharge electrode 14 is provided by a printed conductor or a conductive plate. This discharge electrode 14 is connected to a connection portion 14 a connected to the external terminal 15.
Are exposed to the outside, and the other portions are embedded inside the flow path structure 12. The inner wall of each of the insulator channels 13 is coated with a catalyst (not shown) that promotes a purification reaction of exhaust gas.

【0017】積層された流路構造体12は、各流路構造
体12間に放電電極14が位置した状態で、絶縁性のハ
ウジング20内に収納されている。各流路構造体12
は、交互に左右逆向きに積層され、放電電極14の接続
部14aが交互に左右反対側に位置している。尚、放電
電極14の数は、流路構造体12の積層数よりも1つ多
く必要であるため、例えば、最下段の流路構造体12の
下面(放電電極14が無い面)には、絶縁体18で保持
された放電電極19が重ね合わされている。
The stacked flow channel structures 12 are housed in an insulating housing 20 with the discharge electrodes 14 located between the flow channel structures 12. Each channel structure 12
Are alternately stacked in the left and right opposite directions, and the connection portions 14a of the discharge electrodes 14 are alternately located on the left and right opposite sides. Since the number of the discharge electrodes 14 is required to be one more than the number of laminations of the flow path structure 12, for example, the lower surface of the lowermost flow path structure 12 (the surface without the discharge electrode 14) The discharge electrodes 19 held by the insulator 18 are overlaid.

【0018】各流路構造体12の絶縁体流路13内に
は、それぞれ補助電極16が収納されている。各補助電
極16は、ステンレス板等の導電性耐熱金属で波板状に
形成され、その凹凸部が流路13に沿って延びるように
収納され、自身のばね力によって流路13内に固定され
ている。
Auxiliary electrodes 16 are accommodated in the insulator channels 13 of the respective channel structures 12. Each auxiliary electrode 16 is formed in a corrugated shape from a conductive heat-resistant metal such as a stainless steel plate, and is accommodated so that its concave and convex portions extend along the flow path 13 and is fixed in the flow path 13 by its own spring force. ing.

【0019】放電電極14の接続部14aに接続する外
部端子15は、ばね性のあるステンレス板等で形成さ
れ、該外部端子15のばね力によって該外部端子15と
接続部14aとの接触状態が保持され、振動や温度変化
に対して安定した接触状態が維持されるようになってい
る。尚、外部端子15は、放電電極14の接続部14a
に、かしめ、リベット、溶接等の耐熱性のある固定手段
で固定するようにしても良い。
The external terminal 15 connected to the connection portion 14a of the discharge electrode 14 is formed of a stainless steel plate or the like having a spring property, and the contact state between the external terminal 15 and the connection portion 14a is changed by the spring force of the external terminal 15. It is held so that a stable contact state is maintained against vibration and temperature changes. The external terminal 15 is connected to the connection portion 14a of the discharge electrode 14.
Alternatively, it may be fixed by heat-resistant fixing means such as caulking, rivets, welding, or the like.

【0020】排気浄化装置11の一方側(図1の左側)
に位置する外部端子15はグランド側に接続され、他方
側(図1の右側)に位置する外部端子15は、例えば高
周波の交流高電圧を発生する高電圧発生装置17の出力
端子に接続されている。これにより、高電圧発生装置1
7の動作時には、各流路構造体12を挟んで対向する放
電電極14間に高周波の交流高電圧が印加され、各絶縁
体流路13内で放電が発生する。
One side of the exhaust purification device 11 (left side in FIG. 1)
Is connected to the ground side, and the external terminal 15 located on the other side (the right side in FIG. 1) is connected to the output terminal of a high voltage generator 17 for generating, for example, a high frequency AC high voltage. I have. Thereby, the high voltage generator 1
In the operation of 7, a high-frequency AC high voltage is applied between the discharge electrodes 14 opposed to each other across the flow path structure 12, and a discharge occurs in each of the insulator flow paths 13.

【0021】また、絶縁体流路13の表面のうち排気ガ
ス中の未燃成分等の煤が最も付着しやすい箇所である上
流側端面には、絶縁体流路13の表面の抵抗値を検出す
る絶縁抵抗検出端子21,22(絶縁抵抗検出手段)が
設けられている。プラス側の絶縁抵抗検出端子21は、
印刷導体又は導電板によって各流路構造体12の中央付
近の絶縁体流路13の縦仕切壁の表面に沿って上下方向
に一直線状に延びるように形成されている。この絶縁抵
抗検出端子21の上端部は、図2に示すように最上段の
流路構造体12内に埋め込まれた配線導体23に接続さ
れている。この配線導体23は、信号線10を介してエ
ンジン制御回路27内の抵抗値検出回路(図示せず)に
接続されている。
The resistance value of the surface of the insulator flow path 13 is detected at the upstream end face of the surface of the insulator flow path 13 where soot such as unburned components in exhaust gas is most likely to adhere. Resistance detection terminals 21 and 22 (insulation resistance detection means) are provided. The plus side insulation resistance detection terminal 21
The printed conductor or the conductive plate is formed so as to extend linearly in the vertical direction along the surface of the vertical partition wall of the insulator flow path 13 near the center of each flow path structure 12. The upper end of the insulation resistance detection terminal 21 is connected to a wiring conductor 23 embedded in the uppermost flow path structure 12 as shown in FIG. The wiring conductor 23 is connected to a resistance value detection circuit (not shown) in the engine control circuit 27 via the signal line 10.

【0022】一方、グランド側の絶縁抵抗検出端子22
は、グランド側に接続された各放電電極14,19に一
体に形成され、該絶縁抵抗検出端子22の先端部が絶縁
体流路13の上流側端面のうちのプラス側の絶縁抵抗検
出端子21から所定距離だけ離れた位置に露出してい
る。これにより、絶縁抵抗検出端子21,22により流
路構造体12の積層体の上流側端面の抵抗値を上下方向
に広範囲に検出できるようになっている。
On the other hand, the ground-side insulation resistance detection terminal 22
Is formed integrally with each of the discharge electrodes 14 and 19 connected to the ground side, and the tip of the insulation resistance detection terminal 22 is connected to the positive insulation resistance detection terminal 21 of the upstream end surface of the insulator flow path 13. Is exposed at a predetermined distance from the camera. Thus, the resistance value of the upstream end surface of the laminated body of the flow path structure 12 can be detected in a wide range in the vertical direction by the insulation resistance detection terminals 21 and 22.

【0023】次に、高電圧発生装置17の構成を図3に
基づいて説明する。この高電圧発生装置17は、車両に
搭載されたバッテリ24から供給される直流電圧をDC
/DCコンバータ25で昇圧し、その電圧をインバータ
回路26によって高周波の交流高電圧に変換し、各流路
構造体12を挟んで対向する放電電極14間に交流高電
圧を印加する。インバータ回路26は、エンジン制御回
路27によって制御され、インバータ駆動回路28でH
ブリッジインバータ29を駆動してトランス30の二次
側出力を制御する。
Next, the configuration of the high voltage generator 17 will be described with reference to FIG. The high voltage generator 17 converts a DC voltage supplied from a battery 24 mounted on a vehicle into a DC voltage.
The DC / DC converter 25 boosts the voltage, converts the voltage into a high-frequency AC high voltage by an inverter circuit 26, and applies an AC high voltage between the discharge electrodes 14 facing each other with the flow path structures 12 interposed therebetween. The inverter circuit 26 is controlled by an engine control circuit 27, and the inverter drive circuit 28
The bridge inverter 29 is driven to control the secondary output of the transformer 30.

【0024】インバータ回路26によって、各流路構造
体12を挟んで対向する放電電極14間に高周波の交流
高電圧が印加されると、各絶縁体流路13内で、流路構
造体12の絶縁体層と補助電極16との間で放電プラズ
マが発生する。これにより、各絶縁体流路13の内壁や
それにコ−ティングされた触媒が活性化して、各絶縁体
流路13内を流れる排気ガス中のNOx等が吸着、還元
浄化される。
When a high frequency AC high voltage is applied between the discharge electrodes 14 facing each other across the flow path structure 12 by the inverter circuit 26, the flow path structure 12 Discharge plasma is generated between the insulator layer and the auxiliary electrode 16. As a result, the inner wall of each insulator channel 13 and the catalyst coated thereon are activated, and NOx and the like in the exhaust gas flowing through each insulator channel 13 are adsorbed, reduced and purified.

【0025】ところで、絶縁体流路13の表面に排気ガ
ス中の未燃成分等の煤が付着したり、結露が生じたりす
ると、絶縁体流路13の表面の絶縁性(抵抗値)が低下
して、正常な放電状態が得られなくなる可能性がある。
絶縁体流路13の表面に結露水が付着している場合は、
エンジン始動後、絶縁体流路13の温度が高くなると、
絶縁体流路13の表面の結露水は蒸発して無くなるた
め、その後は、正常な放電状態を確保することができ
る。しかし、絶縁体流路13の表面に煤が多く付着して
いる場合は、絶縁体流路13の温度が高くなっても、煤
の付着量が減少することはないため、そのままでは、正
常な放電状態を得ることができず、排気浄化能力が低下
したままになってしまう。
By the way, if soot such as unburned components in the exhaust gas adheres to the surface of the insulator flow path 13 or dew condensation occurs, the insulation (resistance) of the surface of the insulator flow path 13 decreases. As a result, a normal discharge state may not be obtained.
When dew water adheres to the surface of the insulator flow path 13,
After the engine starts, if the temperature of the insulator flow path 13 increases,
Since the dew water on the surface of the insulator flow path 13 evaporates and disappears, a normal discharge state can be secured thereafter. However, when a large amount of soot adheres to the surface of the insulator flow path 13, even if the temperature of the insulator flow path 13 increases, the amount of soot adhered does not decrease. The discharge state cannot be obtained, and the exhaust gas purifying ability remains reduced.

【0026】そこで、エンジン制御回路27は、図4に
示す放電異常判定プログラムを実行することで、エンジ
ン始動前とエンジン運転中に絶縁抵抗検出端子21,2
2間の抵抗値、つまり、絶縁体流路13の表面の抵抗値
を検出し、その抵抗値に基づいて放電状態を判定し、更
に、エンジン運転中に、煤の付着による放電異常と判定
した場合は、排気ガスの空燃比を一時的にリッチに制御
して絶縁体流路13に付着した煤を焼き取る。
Thus, the engine control circuit 27 executes the discharge abnormality determination program shown in FIG.
The resistance value between the two, that is, the resistance value of the surface of the insulator flow path 13 was detected, the discharge state was determined based on the resistance value, and further, during the operation of the engine, it was determined that the discharge was abnormal due to the adhesion of soot. In this case, the air-fuel ratio of the exhaust gas is temporarily controlled to be rich to burn off the soot attached to the insulator flow path 13.

【0027】図4の放電異常判定プログラムは、イグニ
ッションスイッチのオンと同時に実行され、放電状態判
定手段としての役割を果たす。本プログラムが起動され
ると、まずステップ101で、エンジン始動前に絶縁抵
抗検出端子21,22間に所定の検出電圧をかけて絶縁
体流路13の表面の抵抗値Rを検出する。エンジン始動
前は、放電が停止されているため、放電によるノイズの
影響を受けずに、絶縁体流路13の表面の抵抗値Rを精
度良く検出することができる。
The discharge abnormality determination program shown in FIG. 4 is executed at the same time when the ignition switch is turned on, and functions as a discharge state determination means. When the program is started, first, in step 101, a predetermined detection voltage is applied between the insulation resistance detection terminals 21 and 22 to detect a resistance value R on the surface of the insulator flow path 13 before the engine is started. Before the start of the engine, since the discharge is stopped, the resistance value R on the surface of the insulator flow path 13 can be detected with high accuracy without being affected by noise due to the discharge.

【0028】抵抗値Rの検出後、ステップ102に進
み、絶縁体流路13の表面の抵抗値Rが異常判定値Wよ
りも小さいか否かを判定する。ここで、異常判定値W
は、放電状態が異常になる可能性のある抵抗値の上限値
又はそれよりも少し高い抵抗値に設定されている。も
し、絶縁体流路13の表面の抵抗値Rが異常判定値W以
上(正常範囲)であれば、絶縁体流路13の表面への煤
の付着や結露が問題にならないと判断できるため、ステ
ップ110に進み、正常な放電状態を確保できると判断
して、放電を開始し、ステップ111に進む。
After detecting the resistance value R, the process proceeds to step 102, where it is determined whether or not the resistance value R on the surface of the insulator flow path 13 is smaller than the abnormality determination value W. Here, the abnormality determination value W
Is set to the upper limit value of the resistance value at which the discharge state may become abnormal or a resistance value slightly higher than the upper limit value. If the resistance value R of the surface of the insulator flow path 13 is equal to or greater than the abnormality determination value W (normal range), it can be determined that adhesion of soot to the surface of the insulator flow path 13 or dew condensation is not a problem. Proceeding to step 110, it is determined that a normal discharge state can be ensured, discharge is started, and the procedure proceeds to step 111.

【0029】一方、ステップ102で、エンジン始動前
(放電開始前)に絶縁体流路13の表面の抵抗値Rが異
常判定値Wよりも小さいと判定された場合は、放電異常
が発生する可能性がある(但し放電異常の原因が煤の付
着によるものか結露によるものかは不明である)。この
場合は、ステップ103に進み、放電を開始せずに、エ
ンジンを始動することになる。
On the other hand, if it is determined in step 102 that the resistance value R on the surface of the insulator flow path 13 is smaller than the abnormality determination value W before the engine is started (before starting discharge), a discharge abnormality may occur. (However, it is unclear whether the cause of the discharge abnormality is due to the adhesion of soot or condensation.) In this case, the routine proceeds to step 103, where the engine is started without starting discharge.

【0030】エンジン始動後は、ステップ104で、エ
ンジン始動から所定時間Tが経過したか否かを判定す
る。ここで、所定時間Tは、排気熱により絶縁体流路1
3の温度が上昇して絶縁体流路13の表面の結露水が蒸
発して無くなるのに十分な時間に設定されている。所定
時間T経過前であれば、ステップ104で待機し、その
後、所定時間Tが経過した時点で、ステップ105に進
み、絶縁体流路13の表面の抵抗値Rを検出する。
After starting the engine, it is determined in step 104 whether a predetermined time T has elapsed since the start of the engine. Here, the predetermined time T is equal to the length of the insulator flow path 1 due to the exhaust heat.
The time is set to a time sufficient for the temperature of 3 to rise and for the condensation water on the surface of the insulator flow path 13 to evaporate and disappear. If the predetermined time T has not elapsed, the process waits in step 104, and thereafter, when the predetermined time T has elapsed, the process proceeds to step 105, where the resistance value R of the surface of the insulator flow path 13 is detected.

【0031】その後、ステップ106で、絶縁体流路1
3の表面の抵抗値Rが異常判定値Wよりも小さいか否か
を判定する(この異常判定値Wはステップ102の異常
判定値Wと同じ値でも異なる値でも良い)。もし、絶縁
体流路13の表面の抵抗値Rが正常範囲(R≧W)に回
復していれば、ステップ110に進み、正常放電可能な
状態に回復していると判断して、放電を開始し、ステッ
プ111に進む。
Thereafter, at step 106, the insulator flow path 1
It is determined whether or not the resistance value R of the surface No. 3 is smaller than the abnormality determination value W (this abnormality determination value W may be the same value as or different from the abnormality determination value W in step 102). If the resistance value R on the surface of the insulator flow path 13 has recovered to the normal range (R ≧ W), the process proceeds to step 110, where it is determined that the state has been recovered to a state where normal discharge is possible, and discharge is performed. Start and proceed to step 111.

【0032】つまり、エンジン始動前に絶縁体流路13
の表面の抵抗値Rが異常範囲(R<W)になる場合は、
その原因が煤の付着によるものか結露によるものかが不
明であるが、エンジン運転中に絶縁体流路13の表面の
抵抗値Rが正常範囲(R≧W)に回復すれば、放電異常
の原因は結露であり、エンジン始動前に絶縁体流路13
の表面に付着していた結露水がエンジン運転中に排気熱
で蒸発して、正常放電可能な状態に回復したものと判断
できる。
That is, before the engine is started, the insulator flow path 13
When the resistance value R on the surface of the surface is in an abnormal range (R <W),
It is unknown whether the cause is due to the adhesion of soot or the dew condensation. However, if the resistance value R on the surface of the insulator flow path 13 recovers to the normal range (R ≧ W) during the operation of the engine, an abnormal discharge is detected. The cause is dew condensation.
It can be determined that the condensed water adhering to the surface of the sample has been evaporated by the exhaust heat during the operation of the engine, and has been restored to a state where normal discharge is possible.

【0033】一方、絶縁体流路13の表面に付着した煤
は、結露水とは異なり、絶縁体流路13の温度が高くな
っても減少しないため、絶縁体流路13の表面に付着し
た煤によって抵抗値Rが異常範囲(R<W)になる場合
は、エンジン運転中でも、絶縁体流路13の表面の抵抗
値Rが正常範囲(R≧W)に回復することはない。従っ
て、ステップ106で、エンジン運転中に、再び、絶縁
体流路13の表面の抵抗値Rが異常範囲(R<W)と判
定された場合は、ステップ107に進み、絶縁体流路1
3の表面に付着した煤によって放電異常が発生する可能
性があると判定して、ステップ108に進み、排気ガス
の空燃比を一時的にリッチに制御する。この処理を行う
ときは、既に暖機完了後で排気熱により絶縁体流路13
の温度が高くなっているため、排気ガスの空燃比をリッ
チにすると、絶縁体流路13に付着した煤を焼き取るこ
とができ、正常放電可能な状態に回復できる。この後、
ステップ109に進み、放電を実行して、ステップ11
1に進む。
On the other hand, the soot adhering to the surface of the insulator channel 13 does not decrease even when the temperature of the insulator channel 13 increases, unlike the dew condensation water. When the resistance value R falls within the abnormal range (R <W) due to soot, the resistance value R on the surface of the insulator flow path 13 does not recover to the normal range (R ≧ W) even during engine operation. Therefore, if it is determined in step 106 that the resistance value R on the surface of the insulator flow path 13 is again in the abnormal range (R <W) during the operation of the engine, the process proceeds to step 107, where the insulator flow path 1
It is determined that there is a possibility that a discharge abnormality may occur due to soot adhering to the surface of No. 3, and the routine proceeds to step 108, where the air-fuel ratio of the exhaust gas is temporarily controlled to be rich. When performing this process, the insulator flow path 13 is heated by exhaust heat after the warm-up is completed.
Therefore, if the air-fuel ratio of the exhaust gas is made rich, soot attached to the insulator flow path 13 can be burned out, and a state where normal discharge can be performed can be recovered. After this,
Proceeding to step 109, discharge is performed, and step 11
Proceed to 1.

【0034】ステップ111では、放電停止可能期間で
あるか否かを判定する。ここで、放電停止可能期間は、
例えば、減速時の燃料カット時、暖機完了後のアイドル
運転時等、排気エミッションが極めて少ない期間に設定
されている。もし、放電停止可能期間でなければ、ステ
ップ111で待機し、その後、放電停止可能期間になっ
た時点で、ステップ105以降の処理を繰り返す。これ
により、エンジン運転中は、放電停止可能期間になる毎
に放電を極めて短い時間だけ停止して絶縁体流路13の
表面の抵抗値Rを検出し、抵抗値Rが異常範囲(R<
W)であれば、絶縁体流路13の表面に付着した煤によ
って放電異常が発生する可能性があると判定して、絶縁
体流路13に付着した煤を焼き取る。
In step 111, it is determined whether or not it is the discharge stoppable period. Here, the period during which the discharge can be stopped is:
For example, the period is set to a period in which the exhaust emission is extremely small, such as during fuel cut during deceleration or during idle operation after warm-up is completed. If the period is not the discharge stoppable period, the process waits at step 111, and thereafter, when the discharge stoppable period is reached, the processing from step 105 onward is repeated. In this way, during the operation of the engine, the discharge is stopped for an extremely short time every time the discharge stoppable period is reached, the resistance value R on the surface of the insulator flow path 13 is detected, and the resistance value R falls within the abnormal range (R <
In the case of W), it is determined that there is a possibility that a discharge abnormality may occur due to the soot attached to the surface of the insulator channel 13, and the soot attached to the insulator channel 13 is burned.

【0035】以上説明した実施形態(1)によれば、絶
縁体流路13の表面に付着する煤や結露水の付着量が増
加するに従って、絶縁体流路13の表面の絶縁性(抵抗
値)が低下して、放電状態が悪化していくことに着目し
て、エンジン始動前又はエンジン運転中に絶縁体流路1
3の表面の抵抗値Rを検出し、その抵抗値Rを異常判定
値Wと比較して放電状態を判定するようにしているの
で、絶縁体流路13の表面ヘの煤の付着や結露による放
電異常を精度良く判定することができる。
According to the embodiment (1) described above, as the amount of soot and dew water adhering to the surface of the insulator flow path 13 increases, the insulation (resistance value) of the surface of the insulator flow path 13 increases. ) Decreases and the discharge state worsens, and the insulator flow path 1 is set before the engine is started or during the operation of the engine.
3, the resistance value R is detected on the surface, and the resistance value R is compared with the abnormality determination value W to determine the discharge state. Discharge abnormality can be accurately determined.

【0036】更に、本実施形態(1)では、絶縁体流路
13の表面のうち排気ガス中の煤が最も付着しやすい上
流側端面に、絶縁抵抗検出端子21,22を配置したの
で、絶縁体流路13の表面ヘの煤の付着による放電異常
を早期に検出することができる。
Further, in the present embodiment (1), the insulation resistance detection terminals 21 and 22 are arranged on the upstream end face of the surface of the insulator flow path 13 where soot in the exhaust gas is most likely to adhere. An abnormal discharge due to the adhesion of soot to the surface of the body channel 13 can be detected at an early stage.

【0037】しかも、本実施形態(1)では、流路構造
体12の積層体のうち、煤の付着量は中央側の絶縁体流
路13の方が多くなる傾向にあり、結露水の付着量は下
方側の絶縁体流路13の方が多くなる傾向にある点を考
慮して、流路構造体12の積層体の上流側端面の抵抗値
を上下方向に広範囲に検出することができるように絶縁
抵抗検出端子21,22を配置したので、煤の付着によ
る抵抗値の変化と結露水の付着による抵抗値の変化との
両方を容易且つ確実に検出することができ、前述した煤
による放電異常の早期検出効果と相俟って、放電異常検
出の信頼性を向上することができる。
Moreover, in the present embodiment (1), the amount of soot adhering in the laminated body of the flow path structure 12 tends to be larger in the insulator flow path 13 on the center side, and the adhesion of dew In consideration of the fact that the amount tends to be larger in the lower insulator flow path 13, the resistance value of the upstream end face of the laminated body of the flow path structure 12 can be detected in a wide range in the vertical direction. Since the insulation resistance detection terminals 21 and 22 are arranged as described above, it is possible to easily and reliably detect both the change in the resistance value due to the adhesion of soot and the change in the resistance value due to the adhesion of dew water. Combined with the early detection effect of the discharge abnormality, the reliability of the discharge abnormality detection can be improved.

【0038】また、本実施形態(1)では、エンジン運
転中に、煤による放電異常の可能性有りと判定した場合
は、排気ガスの空燃比を一時的にリッチにして絶縁体流
路13に付着した煤を焼き取るようにしているので、絶
縁体流路13への煤の付着量が多くなる毎に、自動的に
煤を取り除くことができ、絶縁体流路13の清掃又は交
換が不要になると共に、長期間にわたって排気ガスの浄
化能力を良好に維持することができる。
In this embodiment (1), when it is determined that there is a possibility of a discharge abnormality due to soot during the operation of the engine, the air-fuel ratio of the exhaust gas is temporarily made rich to allow the insulator flow path 13 to pass through. Since the attached soot is burned off, soot can be automatically removed every time the amount of soot attached to the insulator flow path 13 increases, and cleaning or replacement of the insulator flow path 13 is unnecessary. And the exhaust gas purifying ability can be maintained satisfactorily for a long period of time.

【0039】また、放電中に絶縁体流路13の表面の抵
抗値を検出すると、その検出値に放電によるノイズが乗
ってしまうが、本実施形態(1)では、放電停止中に絶
縁体流路13の表面の抵抗値を検出するようにしたの
で、放電によるノイズの影響を受けることなく、絶縁体
流路13の表面の抵抗値を精度良く検出することがで
き、放電異常の判定精度を向上することができる。
Further, if the resistance value of the surface of the insulator flow path 13 is detected during the discharge, noise due to the discharge will be superimposed on the detected value. Since the resistance value of the surface of the path 13 is detected, the resistance value of the surface of the insulator flow path 13 can be accurately detected without being affected by noise due to the discharge, and the accuracy of the determination of the discharge abnormality can be improved. Can be improved.

【0040】尚、本実施形態(1)では、エンジン始動
前とエンジン運転中の放電停止可能期間に絶縁体流路1
3の表面の抵抗値Rを検出して、絶縁体流路13の表面
の抵抗値Rの異常(放電異常)が、煤の付着によるもの
か結露によるものかを判別するようにしているが、前回
のエンジン停止直後と今回のエンジン始動前に、それぞ
れ絶縁体流路13の表面の抵抗値Rを検出し、今回のエ
ンジン始動前の抵抗値Rが前回のエンジン停止直後より
も減少して異常範囲(R<W)になっている場合は、結
露による抵抗値Rの異常と判断し、一方、今回のエンジ
ン始動前の抵抗値Rが前回のエンジン停止直後とほぼ同
じ値で異常範囲(R<W)になっている場合は、煤の付
着による抵抗値Rの異常と判断するようにしても良い。
In this embodiment (1), the insulator flow path 1 is provided before the engine is started and during the period in which the discharge can be stopped during the operation of the engine.
3, the resistance value R on the surface of the insulator flow path 13 is detected to determine whether the abnormality (discharge abnormality) on the surface of the insulator flow path 13 is due to adhesion of soot or condensation. Immediately after the previous engine stop and before the present engine start, the resistance value R of the surface of the insulator flow path 13 is detected, respectively. If the resistance value R is in the range (R <W), it is determined that the resistance value R is abnormal due to dew condensation. If <W), it may be determined that the resistance value R is abnormal due to the adhesion of soot.

【0041】また、上記実施形態(1)では、エンジン
運転中に放電停止可能期間になる毎に抵抗値Rの検出
(放電状態の判定)を繰り返すようにしたが、エンジン
運転中に1回のみ抵抗値Rの再検出(放電状態の判定)
を行うようにしても良い。
Further, in the embodiment (1), the detection of the resistance value R (discharge state determination) is repeated every time the discharge stoppage period is reached during the operation of the engine, but only once during the operation of the engine. Re-detection of resistance value R (discharge state determination)
May be performed.

【0042】更に、エンジン運転中は、絶縁体流路13
の温度が高温となるため、結露は発生せず、また、排気
ガス中の煤は、長い時間をかけて絶縁体流路13の表面
に少しずつ付着していき、1回のエンジン運転中に煤の
付着量が急激に増加することはないため、今回のエンジ
ン始動前に絶縁体流路13の表面への煤の付着や結露が
問題とならなければ、今回のエンジン運転中は、煤の付
着や結露による放電異常が発生しないと判断しても良
い。この観点から、今回のエンジン始動前に絶縁体流路
13の表面の抵抗値Rが正常範囲(R≧W)であれば、
今回のエンジン運転中は、正常な放電状態を確保できる
と判断してエンジン運転中の抵抗値Rの再検出(放電状
態の再判定)を行わないようにしても良い。
Further, during operation of the engine, the insulator flow path 13
Is high, so that dew condensation does not occur, and soot in the exhaust gas adheres little by little to the surface of the insulator flow path 13 over a long period of time, and during one engine operation, Since the amount of soot does not increase rapidly, soot and dew on the surface of the insulator flow path 13 do not cause a problem before the start of the engine, soot during the operation of the engine this time. It may be determined that no discharge abnormality occurs due to adhesion or condensation. From this viewpoint, if the resistance value R of the surface of the insulator flow path 13 is within the normal range (R ≧ W) before the current engine start,
During the current operation of the engine, it may be determined that a normal discharge state can be ensured, and the re-detection of the resistance value R during the operation of the engine (re-determination of the discharge state) may not be performed.

【0043】また、エンジン始動前の抵抗値Rの検出
(放電状態の判定)を行わず、エンジン運転中の放電停
止可能期間のみに絶縁体流路13の表面の抵抗値Rを検
出し、煤の付着による放電異常のみを検出するようにし
ても良い。
Also, the resistance value R on the surface of the insulator flow path 13 is detected only during the period during which the discharge can be stopped during the operation of the engine without detecting the resistance value R before starting the engine (determining the discharge state). It may be possible to detect only the discharge abnormality due to the adhesion of the ink.

【0044】[実施形態(2)]次に、図5乃至図7に
基づいて本発明の実施形態(2)を説明する。本実施形
態(2)の排気浄化装置31は、右側の外部端子32
U,32Lがスイッチ回路33を介して高電圧発生装置
17の出力端子に接続され、このスイッチ回路33によ
って排気浄化装置31の上側半分の外部端子32Uと下
側半分の外部端子32Lとに個別に電圧を印加できるよ
うになっている。これにより、排気浄化装置31は、上
下2つの放電制御領域に区分され、上側の放電制御領域
に属する排気浄化装置31の上側半分の流路構造体12
Uの絶縁体流路13U内の放電と、下側の放電制御領域
に属する排気浄化装置31の下側半分の流路構造体12
Lの絶縁体流路13L内の放電とを独立してオン/オフ
できるようになっている。
[Embodiment (2)] Next, an embodiment (2) of the present invention will be described with reference to FIGS. The exhaust gas purifying device 31 of the present embodiment (2) includes a right external terminal 32.
U and 32L are connected to the output terminal of the high-voltage generator 17 via a switch circuit 33, and the switch circuit 33 individually separates the upper half external terminal 32U and the lower half external terminal 32L of the exhaust gas purification device 31. A voltage can be applied. As a result, the exhaust gas purification device 31 is divided into two upper and lower discharge control regions, and the upper half flow path structure 12 of the exhaust gas purification device 31 belonging to the upper discharge control region.
The discharge in the insulator flow path 13U of the U and the lower half flow path structure 12 of the exhaust purification device 31 belonging to the lower discharge control area
The discharge in the L insulator flow path 13L can be turned on / off independently.

【0045】また、上側の放電制御領域では、該領域の
中央付近の流路構造体12Uの上流側端面の抵抗値RU
を検出する一対の絶縁抵抗検出端子21U,22U(絶
縁抵抗検出手段)が所定間隔で設けられている。一方、
下側の放電制御領域では、最下段の流路構造体12Lの
下面に保持された絶縁体18の上流側端面の抵抗値RL
を検出する一対の絶縁抵抗検出端子21L,22L(絶
縁抵抗検出手段)が所定間隔で設けられている。
In the upper discharge control region, the resistance RU of the upstream end face of the flow path structure 12U near the center of the discharge control region is determined.
A pair of insulation resistance detection terminals 21U and 22U (insulation resistance detection means) are provided at predetermined intervals. on the other hand,
In the lower discharge control region, the resistance value RL of the upstream end face of the insulator 18 held on the lower surface of the lowermost flow path structure 12L.
A pair of insulation resistance detection terminals 21L and 22L (insulation resistance detection means) are provided at predetermined intervals.

【0046】2つの放電制御領域のプラス側の絶縁抵抗
検出端子21U,21Lは、それぞれ絶縁体層(流路構
造体12U又は絶縁体18)内に埋め込まれた配線導体
23U,23Lに一体に形成され、それぞれ信号線10
U,10Lを介してエンジン制御回路27内の抵抗値検
出回路(図示せず)に接続されている。また、2つの放
電制御領域のグランド側の絶縁抵抗検出端子22U,2
2Lは、それぞれグランド側に接続された放電電極14
U,19に一体に形成されている。
The insulation resistance detection terminals 21U and 21L on the positive side of the two discharge control regions are formed integrally with the wiring conductors 23U and 23L embedded in the insulator layer (the flow path structure 12U or the insulator 18). And the respective signal lines 10
It is connected to a resistance value detection circuit (not shown) in the engine control circuit 27 via U and 10L. Also, the insulation resistance detection terminals 22U, 2 on the ground side of the two discharge control areas.
2L is a discharge electrode 14 connected to the ground side.
U and 19 are integrally formed.

【0047】本実施形態(2)では、エンジン制御回路
27は、図6及び図7に示す各放電異常判定プログラム
を実行する。図6の上側放電異常判定プログラムは、イ
グニッションスイッチのオンと同時に起動されて例えば
所定時間毎に実行され、上側の放電制御領域の放電異常
の有無を次のようにして判定する。まず、ステップ20
1で、エンジン始動前又は放電停止可能期間か否かを判
定し、エンジン始動前又は放電停止可能期間と判定され
る毎に、ステップ202に進み、放電を極めて短い時間
だけ停止し、その期間中に、上側の放電制御領域の絶縁
体流路13Uの表面の抵抗値RUを検出する。
In this embodiment (2), the engine control circuit 27 executes the respective discharge abnormality determination programs shown in FIGS. The upper discharge abnormality determination program in FIG. 6 is started at the same time as the ignition switch is turned on and is executed, for example, every predetermined time, and determines whether or not there is a discharge abnormality in the upper discharge control region as follows. First, step 20
In step 1, it is determined whether or not the engine is in a startable or discharge stoppable period. Every time the engine is started or in a discharge stoppable period, the process proceeds to step 202, in which the discharge is stopped for an extremely short time. Next, the resistance value RU of the surface of the insulator flow path 13U in the upper discharge control region is detected.

【0048】その後、ステップ203に進み、検出した
抵抗値RUが異常判定値Wよりも小さいか否かを判定
し、検出した抵抗値RUが正常範囲(RU≧W)であれ
ば、ステップ207に進み、上側の放電制御領域は正常
な放電状態を確保できると判断して、上側の放電制御領
域の放電を許可し(ステップ208)、本プログラムを
終了する。
Thereafter, the process proceeds to step 203, where it is determined whether or not the detected resistance value RU is smaller than the abnormality determination value W. If the detected resistance value RU is within the normal range (RU ≧ W), the process proceeds to step 207. Proceeding, the upper discharge control area is determined to be able to secure a normal discharge state, and discharge in the upper discharge control area is permitted (step 208), and this program ends.

【0049】一方、ステップ203で、抵抗値RUが異
常範囲(RU<W)と判定された場合は、ステップ20
4に進み、上側の放電制御領域の絶縁体流路13Uの表
面に付着した煤又は結露水によって上側の放電制御領域
で放電異常が発生すると判断して、ステップ205に進
み、上側の放電制御領域の放電を禁止する。この後、ス
テップ206に進み、警告ランプ(図示せず)を点灯し
て放電異常の発生を運転者に知らせると共に、異常コー
ドをエンジン制御回路27の不揮発性メモリに記憶する
等、適宜のフェイル処理を行って、本プログラムを終了
する。
On the other hand, if it is determined in step 203 that the resistance value RU is in the abnormal range (RU <W), the process proceeds to step 20.
Then, the process proceeds to step 205, where it is determined that a discharge abnormality occurs in the upper discharge control region due to soot or condensation water attached to the surface of the insulator flow path 13U in the upper discharge control region. Prohibit the discharge of Thereafter, the process proceeds to step 206, in which a warning lamp (not shown) is turned on to notify the driver of the occurrence of a discharge abnormality, and an appropriate failure process such as storing an abnormality code in a nonvolatile memory of the engine control circuit 27. To end the program.

【0050】尚、結露による抵抗値RUの異常の場合
は、排気熱により絶縁体流路13Uの温度が高くなる
と、絶縁体流路13Uの表面に付着していた結露水がエ
ンジン運転中に蒸発する。このため、一旦、抵抗値RU
が異常範囲(RU<W)と判定された場合でも、その
後、絶縁体流路13Uの表面に付着していた結露水が蒸
発すると、ステップ203で、絶縁体流路13Uの表面
の抵抗値RUが正常範囲(RU≧W)に回復したと判定
され、その時点で、上側の放電制御領域は正常な放電状
態を確保できると判定し(ステップ207)、上側の放
電制御領域の放電を許可して(ステップ208)、警告
ランプを消灯する。
In the case where the resistance value RU is abnormal due to dew condensation, if the temperature of the insulator flow path 13U rises due to exhaust heat, dew water adhering to the surface of the insulator flow path 13U evaporates during engine operation. I do. Therefore, once the resistance value RU
Is determined to be in the abnormal range (RU <W), when the dew condensation water adhering to the surface of the insulator flow path 13U evaporates thereafter, in step 203, the resistance RU of the surface of the insulator flow path 13U is determined. Is determined to have recovered to the normal range (RU ≧ W). At that point, it is determined that the upper discharge control area can maintain a normal discharge state (step 207), and discharge of the upper discharge control area is permitted. (Step 208), the warning lamp is turned off.

【0051】図7の下側放電異常判定プログラムも、図
6の上側放電異常判定プログラムと同じように、イグニ
ッションスイッチのオンと同時に起動されて所定時間毎
に実行され、下側の放電制御領域の放電異常の有無を次
のようにして判定する。エンジン始動前又は放電停止可
能期間と判定される毎に、放電を停止して下側の放電制
御領域の絶縁体流路13Lの表面の抵抗値RLを検出
し、その抵抗値RLが異常判定値Wよりも小さいか否か
を判定する(ステップ301〜303)。
The lower discharge abnormality determination program in FIG. 7 is started at the same time as the ignition switch is turned on and is executed at predetermined time intervals, similarly to the upper discharge abnormality determination program in FIG. The presence or absence of a discharge abnormality is determined as follows. Before the start of the engine or every time it is determined that the discharge can be stopped, the discharge is stopped and the resistance value RL of the surface of the insulator flow path 13L in the lower discharge control region is detected. It is determined whether it is smaller than W (steps 301 to 303).

【0052】もし、検出した抵抗値RLが正常範囲(R
L≧W)であれば、下側の放電制御領域は正常な放電状
態を確保できると判断して、下側の放電制御領域の放電
を許可する(ステップ307〜308)。一方、検出し
た抵抗値RUが異常範囲(RU<W)の場合は、下側の
放電制御領域で放電異常が発生すると判断して、下側の
放電制御領域の放電を禁止し、適宜のフェイル処理を行
う(ステップ304〜306)。
If the detected resistance value RL is within the normal range (R
If L ≧ W, it is determined that the lower discharge control area can maintain a normal discharge state, and discharge in the lower discharge control area is permitted (steps 307 to 308). On the other hand, if the detected resistance value RU is in the abnormal range (RU <W), it is determined that a discharge abnormality has occurred in the lower discharge control area, and the discharge in the lower discharge control area is prohibited. Processing is performed (steps 304 to 306).

【0053】以上説明した実施形態(2)では、排気浄
化装置31の上側半分の放電制御領域の放電と下側半分
の放電制御領域の放電とを独立してオン/オフできるよ
うすると共に、上側の放電制御領域の絶縁体流路13U
の表面の抵抗値RUと下側の放電制御領域の絶縁体流路
13Lの表面の抵抗値RLとを別々に検出して、上側の
放電制御領域と下側の放電制御領域の放電異常を別々に
判定するようにしているので、上側の放電制御領域と下
側の放電制御領域のいずれか一方で、煤や結露水の付着
による放電異常が発生しても、正常な放電状態が得られ
る絶縁体流路で放電を継続して排気ガスの浄化を続行す
ることができ、排気浄化能力を向上することができる。
In the embodiment (2) described above, the discharge in the upper half discharge control region and the discharge in the lower half discharge control region of the exhaust gas purification device 31 can be turned on / off independently. Insulator flow path 13U in the discharge control region of FIG.
And the resistance value RL of the surface of the insulator flow path 13L of the lower discharge control region are separately detected to separately determine the discharge abnormality of the upper discharge control region and the lower discharge control region. Therefore, even if a discharge abnormality occurs due to the adhesion of soot or condensed water in one of the upper discharge control area and the lower discharge control area, a normal discharge state can be obtained. Discharge can be continued in the body flow path to purify the exhaust gas, and the exhaust gas purifying ability can be improved.

【0054】また、本実施形態(2)では、結露水の付
着量は下方側の絶縁体流路の方が多くなる傾向にある点
を考慮して、下側の放電制御領域では、最下部に絶縁抵
抗検出端子21L,22Lを配置したので、結露が発生
した場合は、その結露水による抵抗値RLの変化を確実
に検出することができる。しかしながら、下側の放電制
御領域の絶縁抵抗検出端子21L,22Lの位置は適宜
変更しても良く、同様に、上側の放電制御領域の絶縁抵
抗検出端子21U,22Uの位置も適宜変更しても良
い。
Also, in the present embodiment (2), in consideration of the fact that the amount of condensed water adhered to the lower insulator flow path tends to be larger, the lowermost discharge control region has the lowermost discharge control region. Since the insulation resistance detection terminals 21L and 22L are disposed in the above, when dew condensation occurs, a change in the resistance value RL due to the dew water can be reliably detected. However, the positions of the insulation resistance detection terminals 21L and 22L in the lower discharge control region may be appropriately changed, and similarly, the positions of the insulation resistance detection terminals 21U and 22U in the upper discharge control region may be appropriately changed. good.

【0055】尚、本実施形態(2)では、エンジン運転
中に放電停止可能期間になる毎に、2つの放電制御領域
の抵抗値RU,ULの検出(放電状態の判定)を繰り返
すようにしたが、エンジン始動前の抵抗値RU,ULが
異常範囲と判定された場合のみ、エンジン運転中の放電
停止可能期間に抵抗値RU,ULの再検出(放電状態の
再判定)を行うようにしても良い。また、複数回連続し
て放電異常と判定された場合に、煤の付着による放電異
常と判断して、排気ガスの空燃比を一時的にリッチにし
て、絶縁体流路13U,13Lに付着した煤を焼き取る
ようにしても良い。
In this embodiment (2), the detection of the resistance values RU and UL in the two discharge control areas (judgment of the discharge state) is repeated every time the discharge stoppage period is reached during the operation of the engine. However, only when the resistance values RU, UL before the engine start are determined to be in the abnormal range, the resistance values RU, UL are re-detected (discharge state re-determination) during the period during which the discharge can be stopped during the operation of the engine. Is also good. Further, when it is determined that the discharge is abnormal plural times continuously, it is determined that the discharge is abnormal due to the adhesion of the soot, and the air-fuel ratio of the exhaust gas is temporarily made rich to adhere to the insulator flow paths 13U and 13L. The soot may be burned.

【0056】また、本実施形態(2)では、流路構造体
12の積層体を2つの放電制御領域に区分したが、3つ
以上の放電制御領域に区分して、各放電制御領域の絶縁
体流路の表面の抵抗値を別々に検出し、各放電制御領域
の放電状態の判定結果に応じて各放電制御領域毎に放電
を独立して制御するようにしても良い。
In this embodiment (2), the laminated body of the flow path structure 12 is divided into two discharge control areas. However, the laminated body is divided into three or more discharge control areas, and the insulation of each discharge control area is divided. The resistance value of the surface of the body flow path may be separately detected, and the discharge may be independently controlled for each discharge control area according to the determination result of the discharge state of each discharge control area.

【0057】その他、本発明は、流路構造体、絶縁体流
路、絶縁抵抗検出端子、放電電極、補助電極の形状等を
適宜変更したり、補助電極を用いない構成としても良い
等、種々変更して実施できる。
In addition to the above, the present invention may be applied to various configurations, such as a configuration in which the shape of the flow path structure, the insulator flow path, the insulation resistance detection terminal, the discharge electrode, the auxiliary electrode, and the like are not changed, and a configuration in which the auxiliary electrode is not used. Can be changed and implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)の排気浄化装置の縦断
正面図
FIG. 1 is a longitudinal sectional front view of an exhaust emission control device according to an embodiment (1) of the present invention.

【図2】排気浄化装置の横断面図FIG. 2 is a cross-sectional view of the exhaust gas purification device.

【図3】排気浄化装置の電気的構成を示す回路図FIG. 3 is a circuit diagram showing an electrical configuration of the exhaust gas purification device.

【図4】放電異常判定プログラムの処理の流れを示すフ
ローチャート
FIG. 4 is a flowchart showing a processing flow of a discharge abnormality determination program.

【図5】本発明の実施形態(2)の排気浄化装置の縦断
正面図
FIG. 5 is a vertical cross-sectional front view of the exhaust emission control device according to the embodiment (2) of the present invention.

【図6】上側放電異常判定プログラムの処理の流れを示
すフローチャート
FIG. 6 is a flowchart showing the processing flow of an upper discharge abnormality determination program

【図7】下側放電異常判定プログラムの処理の流れを示
すフローチャート
FIG. 7 is a flowchart showing a processing flow of a lower discharge abnormality determination program;

【符号の説明】[Explanation of symbols]

11…排気浄化装置、12,12U,12L…流路構造
体、13,13U,13L…絶縁体流路、14,14
U,14L…放電電極、15…外部端子、16…補助電
極、17…高電圧発生装置、19…放電電極、21,2
1U,21L,22,22U,22L…絶縁抵抗検出端
子(絶縁抵抗検出手段)、23,23U,23L…配線
導体、24…バッテリ、26…インバータ回路、27…
エンジン制御回路(放電状態判定手段)、31…排気浄
化装置、32U,32L…外部端子、33…スイッチ回
路。
11: Exhaust gas purification device, 12, 12U, 12L: Flow path structure, 13, 13U, 13L: Insulator flow path, 14, 14
U, 14L: discharge electrode, 15: external terminal, 16: auxiliary electrode, 17: high voltage generator, 19: discharge electrode, 21 and 22
1U, 21L, 22, 22U, 22L ... insulation resistance detection terminal (insulation resistance detection means), 23, 23U, 23L ... wiring conductor, 24 ... battery, 26 ... inverter circuit, 27 ...
Engine control circuit (discharge state determination means), 31: exhaust purification device, 32U, 32L: external terminal, 33: switch circuit.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 19/08 ZAB Fターム(参考) 3G091 AA02 AB01 AB14 BA03 BA14 BA34 CB02 DB10 EA26 EA29 EA30 FA04 FA05 FA06 FA12 FB02 FB12 FC02 FC04 FC07 4D002 AA08 AA12 AA40 BA05 BA07 CA20 DA70 GA02 GA03 GB20 HA01 4D048 AA06 AB02 CC41 EA03 EA04 4G075 AA03 AA37 AA62 BA05 BD12 BD24 CA15 EC21 FC15 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) B01J 19/08 ZAB F-term (Reference) 3G091 AA02 AB01 AB14 BA03 BA14 BA34 CB02 DB10 EA26 EA29 EA30 FA04 FA05 FA06 FA12 FB02 FB12 FC02 FC04 FC07 4D002 AA08 AA12 AA40 BA05 BA07 CA20 DA70 GA02 GA03 GB20 HA01 4D048 AA06 AB02 CC41 EA03 EA04 4G075 AA03 AA37 AA62 BA05 BD12 BD24 CA15 EC21 FC15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気ガスを、少なくとも1対
の放電電極間に絶縁体層で区画形成された絶縁体流路に
流し、該放電電極間で該絶縁体層を介して放電を発生さ
せることで、排気ガスを浄化する内燃機関の排気浄化装
置において、 前記絶縁体流路の表面の抵抗値を排気ガスが接触する部
分で検出する絶縁抵抗検出手段と、 前記絶縁抵抗検出手段で検出した前記絶縁体流路の表面
の抵抗値に基づいて放電状態を判定する放電状態判定手
段とを備えていることを特徴とする内燃機関の排気浄化
装置。
1. An exhaust gas of an internal combustion engine is caused to flow in an insulator flow path defined by an insulator layer between at least one pair of discharge electrodes, and a discharge is generated between the discharge electrodes via the insulator layer. In the exhaust gas purifying apparatus for an internal combustion engine that purifies the exhaust gas, the resistance value of the surface of the insulator passage is detected at a portion where the exhaust gas contacts, and the insulation resistance detection device detects the resistance value. And a discharge state determining means for determining a discharge state based on a resistance value of a surface of the insulator flow path.
【請求項2】 前記絶縁抵抗検出手段は、前記絶縁体流
路の上流側端面で抵抗値を検出することを特徴とする請
求項1に記載の内燃機関の排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said insulation resistance detection means detects a resistance value at an upstream end face of said insulator flow path.
【請求項3】 前記絶縁抵抗検出手段は、前記絶縁体流
路の積層体の表面の抵抗値を上下方向に広範囲に検出す
ることを特徴とする請求項1又は2に記載の内燃機関の
排気浄化装置。
3. The exhaust of an internal combustion engine according to claim 1, wherein the insulation resistance detecting means detects a resistance value of a surface of the laminated body of the insulator flow path in a wide range in a vertical direction. Purification device.
【請求項4】 前記絶縁体流路の積層体を複数の放電制
御領域に区分して各放電制御領域毎に放電を独立して制
御するように構成すると共に、各放電制御領域毎に前記
絶縁抵抗検出手段で該絶縁体流路の表面の抵抗値を別々
に検出し、前記放電状態判定手段で放電異常が検出され
た時に、放電異常が検出された放電制御領域の放電を停
止し、他の放電制御領域の放電を継続することを特徴と
する請求項1乃至3に記載の内燃機関の排気浄化装置。
4. A structure in which the laminate of insulator flow paths is divided into a plurality of discharge control areas so that discharge is independently controlled for each discharge control area, and the insulation is provided for each discharge control area. The resistance value of the surface of the insulator flow path is separately detected by the resistance detection means, and when the discharge abnormality is detected by the discharge state determination means, the discharge in the discharge control area where the discharge abnormality is detected is stopped. 4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the discharge in the discharge control region is continued.
【請求項5】 前記放電状態判定手段は、前記絶縁抵抗
検出手段の検出抵抗値に基づいて放電異常を判定する際
に、前記絶縁体流路の表面への排気ガス中の煤の付着に
よる放電異常と結露水による放電異常とを前記絶縁体流
路の温度状態又は検出抵抗値の変化等に基づいて判別す
ることを特徴とする請求項1乃至4のいずれかに記載の
内燃機関の排気浄化装置。
5. The discharge state judging means, when judging a discharge abnormality based on a resistance value detected by the insulation resistance detecting means, discharge by soot in exhaust gas on a surface of the insulator flow path. The exhaust gas purification of an internal combustion engine according to any one of claims 1 to 4, wherein an abnormality and a discharge abnormality due to dew water are determined based on a temperature state of the insulator flow path or a change in a detected resistance value. apparatus.
【請求項6】 前記放電状態判定手段によって煤の付着
による放電異常と判定された場合は、前記絶縁体流路の
温度が高い時に排気ガスの空燃比を一時的にリッチに制
御して前記絶縁体流路に付着した煤を焼き取ることを特
徴とする請求項5に記載の内燃機関の排気浄化装置。
6. When the discharge state determination means determines that the discharge is abnormal due to the adhesion of soot, the air-fuel ratio of the exhaust gas is temporarily controlled to be rich when the temperature of the insulator flow path is high. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the soot attached to the body flow path is burned off.
【請求項7】 前記絶縁抵抗検出手段は、放電停止中に
前記絶縁体流路の表面の抵抗値を検出することを特徴と
する請求項1乃至6のいずれかに記載の内燃機関の排気
浄化装置。
7. The exhaust gas purification of an internal combustion engine according to claim 1, wherein said insulation resistance detection means detects a resistance value of a surface of said insulator flow path during a stop of discharge. apparatus.
JP27556899A 1999-09-29 1999-09-29 Exhaust emission control device for internal combustion engine Pending JP2001098931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27556899A JP2001098931A (en) 1999-09-29 1999-09-29 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27556899A JP2001098931A (en) 1999-09-29 1999-09-29 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001098931A true JP2001098931A (en) 2001-04-10

Family

ID=17557273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27556899A Pending JP2001098931A (en) 1999-09-29 1999-09-29 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001098931A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051608A (en) * 2005-08-19 2007-03-01 Isuzu Motors Ltd Emission treatment method and device
JP2007100578A (en) * 2005-10-04 2007-04-19 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007258090A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Plasma generation electrode, plasma reactor, and exhaust gas clarification device
JP2010234260A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
US20120031168A1 (en) * 2010-08-06 2012-02-09 Denso Corporation Sensor controller and exhaust gas treatment system using the same
JP2012072665A (en) * 2010-09-27 2012-04-12 Toyota Motor Corp Vehicle control apparatus
JP2012193698A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012193700A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012219679A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Particulate-matter processing device
JP2012219770A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Particulate-matter processing device
JP2012219677A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Particulate-matter processing device
CN103127810A (en) * 2013-02-26 2013-06-05 中维环保科技有限公司 Inhomogeneous field strength plasma waste gas processing apparatus and processing system thereof
CN103987932A (en) * 2011-12-20 2014-08-13 丰田自动车株式会社 Failure detection device for electrically heated catalyst
US20150218995A1 (en) * 2012-10-23 2015-08-06 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
JP2020165316A (en) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 Engine system
JP2021110302A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581130B2 (en) * 2005-08-19 2010-11-17 いすゞ自動車株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
JP2007051608A (en) * 2005-08-19 2007-03-01 Isuzu Motors Ltd Emission treatment method and device
JP2007100578A (en) * 2005-10-04 2007-04-19 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007258090A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Plasma generation electrode, plasma reactor, and exhaust gas clarification device
JP2010234260A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
US9021868B2 (en) * 2010-08-06 2015-05-05 Denso Corporation Sensor controller and exhaust gas treatment system using the same
US20120031168A1 (en) * 2010-08-06 2012-02-09 Denso Corporation Sensor controller and exhaust gas treatment system using the same
JP2012072665A (en) * 2010-09-27 2012-04-12 Toyota Motor Corp Vehicle control apparatus
JP2012193698A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012193700A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Particulate-matter processing device
JP2012219679A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Particulate-matter processing device
JP2012219677A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Particulate-matter processing device
JP2012219770A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Particulate-matter processing device
CN103987932A (en) * 2011-12-20 2014-08-13 丰田自动车株式会社 Failure detection device for electrically heated catalyst
EP2796683A4 (en) * 2011-12-20 2015-05-20 Toyota Motor Co Ltd Failure detection apparatus for an electrically heated catalyst
US20150218995A1 (en) * 2012-10-23 2015-08-06 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
US9771848B2 (en) 2012-10-23 2017-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
CN103127810A (en) * 2013-02-26 2013-06-05 中维环保科技有限公司 Inhomogeneous field strength plasma waste gas processing apparatus and processing system thereof
JP2020165316A (en) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 Engine system
JP7387274B2 (en) 2019-03-28 2023-11-28 ダイハツ工業株式会社 engine system
JP2021110302A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP2001098931A (en) Exhaust emission control device for internal combustion engine
JP5786958B2 (en) Failure detection device for electrically heated catalyst
EP2657477B1 (en) Catalytic converter
JP5846163B2 (en) Control device for electrically heated catalyst
US8012440B2 (en) Method for operating a device having at least one electrically heatable honeycomb body and device for the catalytic conversion of exhaust gases
US5529759A (en) Electrically heated catalytic converter for an engine
JP2020105990A (en) Exhaust system
US20210333232A1 (en) Gas concentration detection device
WO2017099175A1 (en) Plasma reactor
JP2009128237A (en) Diagnosing system of nox sensor
JP4325054B2 (en) Gas concentration detector
JP2002256851A (en) Exhaust gas purifier of internal combustion engine
US20180038817A1 (en) Sensor
JP2010151059A (en) Particulate matter detecting device
JP2008076410A (en) Gas concentration detector
US11092099B2 (en) Control apparatus
JP2002221027A (en) Exhaust emission control device for internal combustion engine
JP2007090255A (en) Exhaust gas purifying apparatus
JP7393999B2 (en) Plasma reactor device for exhaust gas purification
JP7393998B2 (en) Plasma reactor device for exhaust gas purification
WO2020162281A1 (en) Particulate matter detection sensor
US11035283B2 (en) Control apparatus
JP2006170021A (en) Exhaust emission control device
JP7071237B2 (en) Particle detection device
KR100435341B1 (en) ozone-reduced apparatus for OBD system