JP2001097768A - Yag-based ceramic raw material and its production - Google Patents

Yag-based ceramic raw material and its production

Info

Publication number
JP2001097768A
JP2001097768A JP27659499A JP27659499A JP2001097768A JP 2001097768 A JP2001097768 A JP 2001097768A JP 27659499 A JP27659499 A JP 27659499A JP 27659499 A JP27659499 A JP 27659499A JP 2001097768 A JP2001097768 A JP 2001097768A
Authority
JP
Japan
Prior art keywords
yag
phase
raw material
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27659499A
Other languages
Japanese (ja)
Inventor
Shinichi Kakita
進一 柿田
Masanori Kawaguchi
政則 川口
Hiroshi Sugii
洋 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP27659499A priority Critical patent/JP2001097768A/en
Publication of JP2001097768A publication Critical patent/JP2001097768A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a YAG-based ceramic raw material from which a highly compacted YAG-based ceramic product can efficiently be produced. SOLUTION: This YAG-based ceramic raw material has the following characteristics. (1) The total content of Al2O3 and Y2O3 is >=99.6 wt.%. (2) The content ratio of Al2O3 and Y2O3 is respectively 37.4 to 47.4 wt.% and 62.6 to 52.6 wt.%. (3) The average primary particle diameter is 0.03 to 1.5 μm, and the average secondary particle diameter is 0.2 to 10 μm. (4) BET specific surface area is 0.5 to 20 m2/g. (5) The crystal phase substantially comprises YAG phase signal phase or YAG phase and at least one of YalO3 phase, Y4Al2O9 phase and Al2O3 phase. A method for producing the YAG-based ceramic raw material is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、YAG(イットリ
ウム・アルミニウム・ガーネット)系セラミックス原料
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a YAG (yttrium aluminum garnet) ceramic material and a method for producing the same.

【0002】[0002]

【従来技術】近年、YAG系セラミックスは、さまざま
な用途への試みが数多くなされている。例えば、半導体
製造装置用耐プラズマ部材、レーザー発振子、フォトル
ミネッセンス蛍光体、サファイヤ代替窓材、高周波用回
路基板、マイクロ波用誘電体、生体インプラント、記録
媒体用ディスク、単結晶用原料、透光性材料、高圧ナト
リウムランプ用セラミックスチューブ、ボンディングキ
ャピラリー等の幅広い用途への実用化が期待されてい
る。
2. Description of the Related Art In recent years, many attempts have been made for YAG ceramics for various uses. For example, plasma-resistant materials for semiconductor manufacturing equipment, laser oscillators, photoluminescence phosphors, sapphire alternative window materials, high-frequency circuit boards, microwave dielectrics, biological implants, recording medium disks, single crystal materials, light transmission It is expected to be applied to a wide range of applications such as conductive materials, ceramic tubes for high-pressure sodium lamps, and bonding capillaries.

【0003】これらの用途の中でYAG系セラミックス
に要求される主な性能としては、耐イオン衝撃性、耐食
性及び耐熱衝撃性が挙げられる。とりわけ、半導体製造
装置用耐プラズマ部材にあっては、これらの性能をすべ
て備えているのが理想的である。換言すれば、これらの
性能をすべて有するYAG系セラミックスが提供できれ
ばさらなる用途の拡大を図ることが可能である。
[0003] Among these uses, the main performance required for YAG ceramics is ionic impact resistance, corrosion resistance and thermal shock resistance. In particular, it is ideal for a plasma-resistant member for a semiconductor manufacturing apparatus to have all of these properties. In other words, if a YAG-based ceramic having all of these properties can be provided, it is possible to further expand the applications.

【0004】従来、YAG系セラミックス粉末の製法と
して、例えば、水酸化アルミニウム粉末とイットリウム
化合物溶液を混合し、中和して沈殿物を生成した後、得
られた沈殿物を仮焼し、粉砕する工程からなる方法が知
られている(特開平8−183613号等)。この原料
によれば、透光性に優れたYAG系焼結体が得られると
されている。
Conventionally, as a method for producing a YAG-based ceramic powder, for example, an aluminum hydroxide powder and a yttrium compound solution are mixed and neutralized to form a precipitate, and the obtained precipitate is calcined and pulverized. A method consisting of steps is known (JP-A-8-183613 and the like). According to this raw material, a YAG-based sintered body having excellent translucency can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
原料による焼結体は、耐イオン衝撃性、耐食性及び耐熱
衝撃性のいずれかが不十分であり、これらの特性が要求
される用途には使用し難い。この問題を解消するために
は、少なくとも緻密な焼結体を製造する必要があり、そ
れに適した原料を開発しなければならない。
However, a sintered body made of such a raw material is insufficient in any of ionic impact resistance, corrosion resistance and thermal shock resistance, and is used in applications where these properties are required. hard. In order to solve this problem, it is necessary to produce at least a dense sintered body, and a raw material suitable for it must be developed.

【0006】従って、本発明は、特に、より緻密なYA
G系セラミックスを効率良く製造できるYAG系セラミ
ックス原料を提供することを主な目的とする。
[0006] Accordingly, the present invention provides, in particular, a more precise YA
It is a main object to provide a YAG-based ceramic raw material capable of efficiently producing a G-based ceramic.

【0007】[0007]

【課題を解決するための手段】本発明者は、従来技術の
問題点を解決するために鋭意研究を重ねた結果、特定構
成を有する原料が上記目的を達成できることを見出し、
本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the problems of the prior art, and as a result, found that a raw material having a specific structure can achieve the above object.
The present invention has been completed.

【0008】すなわち、本発明は、下記のYAG系セラ
ミックス原料及びその製造方法に係るものである。
That is, the present invention relates to the following YAG-based ceramic raw materials and a method for producing the same.

【0009】1.YAG系セラミックス原料であって、
(1)Al23及びY23の含有量合計が99.6重量
%以上であり、(2)Al23及びY23の含有比率が
37.4〜47.4重量%及び62.6〜52.6重量
%であって、(3)平均一次粒径0.03〜1.5μ
m、平均二次粒径0.2〜10μmであり、(4)BE
T比表面積が0.5〜20m2/gであり、(5)結晶
相がYAG相単相又はYAG相とYAlO3相、Y4Al
29相及びAl23相の少なくとも1種とを含む混合相
から実質的に構成されることを特徴とする原料。
1. YAG ceramic raw material,
(1) total content of Al 2 O 3 and Y 2 O 3 is 99.6 wt% or more, (2) content ratio of Al 2 O 3 and Y 2 O 3 is from 37.4 to 47.4 wt % And 62.6 to 52.6% by weight, and (3) an average primary particle size of 0.03 to 1.5 μm.
m, average secondary particle size is 0.2 to 10 μm, and (4) BE
The T specific surface area is 0.5 to 20 m 2 / g, and (5) the crystal phase is a single phase of YAG phase or YAG phase and YAlO 3 phase, Y 4 Al
A raw material substantially composed of a mixed phase containing at least one of a 2 O 9 phase and an Al 2 O 3 phase.

【0010】2.Al23及びY23の含有比率が3
7.4〜47.4重量%及び62.6〜52.6重量%
となるように水酸化アルミニウム粉末とイットリウム化
合物を含む水溶液とを混合し、次いで該混合液にアルカ
リを接触させた後、得られた沈殿物を700〜1300
℃で焼成することを特徴とするYAG系セラミックス原
料の製造方法。
[0010] 2. When the content ratio of Al 2 O 3 and Y 2 O 3 is 3
7.4-47.4% by weight and 62.6-52.6% by weight
The aluminum hydroxide powder and the aqueous solution containing the yttrium compound are mixed so as to obtain a mixture, and then the mixture is brought into contact with an alkali.
A method for producing a YAG-based ceramics raw material, wherein the method is sintering at ℃.

【0011】[0011]

【発明の実施の形態】本発明のYAG系セラミックス原
料は、(1)Al23及びY23の含有量合計が99.
6重量%以上であり、(2)Al23及びY23の含有
比率が37.4〜47.4重量%及び62.6〜52.
6重量%であって、(3)平均一次粒径0.03〜1.
5μm、平均二次粒径0.2〜10μmであり、(4)
BET比表面積が0.5〜20m2/gであり、(5)
結晶相がYAG相単相又はYAG相とYAlO3相、Y4
Al29相及びAl23相の少なくとも1種とを含む混
合相から実質的に構成されることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The YAG ceramic raw material of the present invention has the following features: (1) the total content of Al 2 O 3 and Y 2 O 3 is 99.
6 is a% by weight or more, (2) Al 2 O 3 and Y 2 O 3 containing ratio from 37.4 to 47.4 wt% and 62.6 to 52.
(3) average primary particle size of 0.03 to 1.
5 μm, average secondary particle size 0.2 to 10 μm, (4)
(5) a BET specific surface area of 0.5 to 20 m 2 / g;
Crystal phase is YAG single phase or YAG phase and YAlO 3 phase, Y 4
It is characterized by being substantially composed of a mixed phase containing at least one of an Al 2 O 9 phase and an Al 2 O 3 phase.

【0012】Al23及びY23の含有量合計(以下
「純度」ともいう)は、通常99.6重量%以上、好ま
しくは99.8重量%以上とする。従って、純度が上記
範囲内であれば、他の成分が含まれていても差し支えな
い。
The total content of Al 2 O 3 and Y 2 O 3 (hereinafter also referred to as “purity”) is usually at least 99.6% by weight, preferably at least 99.8% by weight. Therefore, other components may be contained as long as the purity is within the above range.

【0013】本発明の原料では、Al23及びY23
ほかにも、本発明の効果を妨げない範囲内で不可避不純
物等の他の成分が含まれていても良い。
The raw material of the present invention may contain, in addition to Al 2 O 3 and Y 2 O 3 , other components such as unavoidable impurities as long as the effects of the present invention are not impaired.

【0014】特に、本発明では一定量のSiO2を含む
ことが好ましい。SiO2の含有量は、通常3000重
量ppm以下、特に100〜3000重量ppm、最も
好ましくは300〜2900重量ppmとすれば良い。
かかる範囲内でSiO2を存在させることにより高密度
化等を促進でき、焼結体の耐プラズマ性の向上を図るこ
とができる。
In particular, in the present invention, it is preferable to contain a certain amount of SiO 2 . The content of SiO 2 may be usually 3000 ppm by weight or less, particularly 100 to 3000 ppm by weight, and most preferably 300 to 2900 ppm by weight.
The presence of SiO 2 in such a range can promote high density and the like, and can improve the plasma resistance of the sintered body.

【0015】本発明原料は、SiO2が前記所定量(3
000重量ppm以下)含まれていても良いし、前記所
定量含まれていなくても良い。原料中に前記所定量のS
iO 2が含まれていない場合は、成形及び焼結に先立っ
てSiO2等のケイ素化合物を添加することができる。
また、ケイ素化合物の添加時期は、原料の調製時又は調
製後のいずれであっても良い。添加できるケイ素化合物
としては、例えばSiO 2粉末、コロイダルシリカ等の
ほか、テトラエチルオルトシリケート(TEOS)等の
ようなSiO2を供給し得るケイ素化合物も使用するこ
とができる。
The raw material of the present invention is SiOTwoIs the predetermined amount (3
000 ppm by weight or less)
It does not need to be quantitatively included. The predetermined amount of S in the raw material
iO TwoIf not included, prior to forming and sintering
T SiOTwoAnd the like can be added.
The addition time of the silicon compound may be determined during the preparation of the raw material or during the preparation.
It may be any one after production. Silicon compounds that can be added
As, for example, SiO TwoPowder, colloidal silica, etc.
Others, such as tetraethylorthosilicate (TEOS)
Like SiOTwoAlso use a silicon compound that can supply
Can be.

【0016】Al23及びY23の含有比率は、通常3
7.4〜47.4重量%(Al23)及び62.6〜5
2.6重量%(Y23)とし、好ましくは39.4〜4
5.4重量%(Al23)及び60.6〜54.6重量
%(Y23)とする。この範囲内において、緻密な焼結
体をより確実に得ることができる。
The content ratio of Al 2 O 3 and Y 2 O 3 is usually 3
7.4-47.4% by weight (Al 2 O 3 ) and 62.6-5
2.6 wt% and (Y 2 O 3), preferably 39.4 to 4
5.4 wt% and (Al 2 O 3) and from 60.6 to 54.6 wt% (Y 2 O 3). Within this range, a dense sintered body can be obtained more reliably.

【0017】原料の平均一次粒径は通常0.03〜1.
5μm程度(好ましくは0.03〜0.3μm)、平均
二次粒径は通常0.2〜10μm程度(好ましくは0.
2〜3μm)である。また、BET比表面積は通常1〜
20m2/g程度(好ましくは5〜20m2/g)であ
る。これらの粒径等に調節することによって、緻密なY
AG系焼結体を効率的に製造することができる。
The average primary particle size of the raw material is usually from 0.03 to 1.
About 5 μm (preferably 0.03 to 0.3 μm), and the average secondary particle size is usually about 0.2 to 10 μm (preferably 0.1 to 0.3 μm).
2-3 μm). The BET specific surface area is usually 1 to
20m 2 / g approximately (preferably, 5~20m 2 / g) a. By adjusting the particle size and the like, a dense Y
An AG-based sintered body can be manufactured efficiently.

【0018】本発明原料の調製方法は、特に制限され
ず、例えば溶液法(共沈法)、酸化物混合法、ゾルゲル
法等の公知の粉末合成法(液相法、固相法、気相法)に
従って実施することができる。
The method for preparing the raw material of the present invention is not particularly limited. For example, known powder synthesis methods such as a solution method (coprecipitation method), an oxide mixing method and a sol-gel method (liquid phase method, solid phase method, gas phase method) Act).

【0019】本発明では、特に、Al23及びY23
含有比率が37.4〜47.4重量%及び62.6〜5
2.6重量%となるように水酸化アルミニウム粉末とイ
ットリウム化合物を含む水溶液とを混合し、次いで該混
合液にアルカリを添加した後、得られた沈殿物を700
〜1300℃で焼成(仮焼)する方法が好ましい。
In the present invention, in particular, the content ratio of Al 2 O 3 and Y 2 O 3 is 37.4-47.4% by weight and 62.6-5%.
An aluminum hydroxide powder and an aqueous solution containing a yttrium compound were mixed at a concentration of 2.6% by weight, and then an alkali was added to the mixed solution.
A method of firing (calcining) at 11300 ° C. is preferred.

【0020】水酸化アルミニウム粉末は、公知の製法で
得られたもの又は市販品をそのまま使用することができ
る。水酸化アルミニウムの純度は特に制限されないが、
通常99重量%以上、特に99.5重量%以上であるこ
とが好ましい。
As the aluminum hydroxide powder, a powder obtained by a known production method or a commercially available product can be used as it is. The purity of aluminum hydroxide is not particularly limited,
Usually, it is preferably at least 99% by weight, particularly preferably at least 99.5% by weight.

【0021】また、水酸化アルミニウムは、不純物であ
るNa2O含有量が通常7000重量ppm以下、特に
3000重量ppm以下であることが好ましい。Na2
O含有量が7000重量ppm以下の水酸化アルミニウ
ムを用いることにより、いっそう優れた耐プラズマ性を
もつ焼結体を得ることができる。
The aluminum hydroxide preferably has an Na 2 O impurity content of usually 7000 ppm by weight or less, especially 3000 ppm by weight or less. Na 2
By using aluminum hydroxide having an O content of 7000 ppm by weight or less, a sintered body having more excellent plasma resistance can be obtained.

【0022】さらに、本発明で用いる水酸化アルミニウ
ム粉末の平均粒径は特に制限されないが、通常0.5〜
10μm程度、特に1〜5μmであることが好ましい。
かかる粒径範囲の水酸化アルミニウムを用いることによ
り、より一層効率良くかつ確実に原料を製造することが
できる。
The average particle size of the aluminum hydroxide powder used in the present invention is not particularly limited, but is usually 0.5 to
It is preferably about 10 μm, particularly preferably 1 to 5 μm.
By using aluminum hydroxide having such a particle size range, a raw material can be more efficiently and reliably produced.

【0023】イットリウム化合物は、水可溶性のもので
あれば特に制限されない。例えば、塩化イットリウム、
ヨウ化イットリウム、臭化イットリウム等の塩化物、硝
酸イットリウム、硫酸イットリウム等の無機酸塩、酢酸
イットリウム等の有機酸塩等が使用できる。イットリウ
ム化合物の純度は特に制限されないが、通常98重量%
以上、特に99.5重量%以上であることが好ましい。
上記水溶液の濃度は、用いるイットリウム化合物の種類
等に応じて適宜設定すれば良いが、通常0.1〜2モル
/リットル程度とすれば良い。
The yttrium compound is not particularly limited as long as it is water-soluble. For example, yttrium chloride,
Chloride such as yttrium iodide and yttrium bromide, inorganic acid salts such as yttrium nitrate and yttrium sulfate, and organic acid salts such as yttrium acetate can be used. The purity of the yttrium compound is not particularly limited, but is usually 98% by weight.
It is preferably at least 99.5% by weight.
The concentration of the aqueous solution may be appropriately set according to the type of the yttrium compound to be used and the like, but may be usually about 0.1 to 2 mol / l.

【0024】次いで、本発明セラミックスの前記組成
(Y23/Al23)となるように水酸化アルミニウム
粉末及びイットリウム化合物の水溶液とを混合する。混
合に際しては、例えばイットリウム化合物を含む水溶液
に水酸化アルミニウム粉末を混合した後、混合液を通常
20〜60分間程度攪拌すれば良い。
Next, aluminum hydroxide powder and an aqueous solution of an yttrium compound are mixed so as to have the above-mentioned composition (Y 2 O 3 / Al 2 O 3 ) of the ceramic of the present invention. At the time of mixing, for example, the aluminum hydroxide powder is mixed with an aqueous solution containing a yttrium compound, and then the mixture is usually stirred for about 20 to 60 minutes.

【0025】次に、得られた混合液にアルカリを添加す
る。ここで使用するアルカリは、混合液を中和できる限
りは特に制限されない。例えば、水酸化ナトリウム、水
酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、
炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウ
ム、アンモニア、炭酸水素アンモニウム等が挙げられ
る。特に、本発明では、水酸化アンモニウム、炭酸水素
アンモニウム等の金属成分を含まないアンモニウム塩又
はアンモニアを用いることが好ましい。
Next, an alkali is added to the obtained mixture. The alkali used here is not particularly limited as long as the mixture can be neutralized. For example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate,
Potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonia, ammonium bicarbonate and the like can be mentioned. Particularly, in the present invention, it is preferable to use an ammonium salt or ammonia containing no metal component such as ammonium hydroxide and ammonium hydrogen carbonate.

【0026】アルカリ添加は、所定の沈殿物が得られる
限り特にその条件は限定されず、例えば溶液温度10〜
35℃程度でpH6.5〜9付近(好ましくは7〜8)
となるように行えば良い。このような条件で添加するこ
とにより、焼結性に特に優れた原料を得ることができ
る。
The conditions for the addition of the alkali are not particularly limited as long as a predetermined precipitate is obtained.
At about 35 ° C, pH 6.5 to around 9 (preferably 7 to 8)
What should be done is as follows. By adding under such conditions, a raw material having particularly excellent sinterability can be obtained.

【0027】生成した沈殿物は、フィルタープレス等の
公知の方法で固液分離し、必要に応じて水洗・濾過を1
回又はそれ以上行う。その後、大気中又は酸化性雰囲気
下で通常700〜1300℃程度、好ましくは950〜
1250℃にて焼成(仮焼)する。得られた仮焼体は、
必要に応じて、ボールミル、振動ミル等の公知の粉砕機
で粉砕しても良い。
The precipitate formed is separated into solid and liquid by a known method such as a filter press, and if necessary, washed and filtered for 1 hour.
Perform one or more times. After that, the temperature is generally about 700 to 1300 ° C., preferably 950 to 1300 ° C. in the air or in an oxidizing atmosphere.
Baking (calcination) at 1250 ° C. The calcined body obtained is
If necessary, it may be pulverized by a known pulverizer such as a ball mill and a vibration mill.

【0028】本発明原料を用い、公知の成形法、焼成方
法等に従って成形、焼成等を行うことによりYAG系焼
結体を得ることができる。例えば、原料を成形し、得ら
れた成形体を通常1500〜1850℃程度で焼結すれ
ば良い。
The YAG-based sintered body can be obtained by subjecting the raw material of the present invention to molding, firing and the like according to known molding methods and firing methods. For example, a raw material may be formed, and the obtained formed body may be generally sintered at about 1500 to 1850 ° C.

【0029】成形体は、原料をそのまま成形したり、あ
るいは必要に応じてバインダー、分散剤、焼結助剤等の
添加剤をポットミル等で混合した上で、公知の成形法
(プレス成形法、HIP法、CIP法、鋳込み成形法、
ドクターブレード法等)に従って製造することができ
る。例えば、上記原料にバインダー等を混合してスラリ
ーとし、このスラリーをスプレードライヤーで噴霧乾燥
して顆粒を得た後、この顆粒を用いてCIP法で成形す
れば成形体を得ることができる。
The molded body may be formed by molding the raw material as it is, or by mixing additives such as a binder, a dispersant, and a sintering aid with a pot mill or the like, if necessary, using a known molding method (press molding method, press molding method). HIP method, CIP method, cast molding method,
Doctor blade method). For example, a compact can be obtained by mixing a binder or the like with the above-mentioned raw materials to form a slurry, spray-drying the slurry with a spray drier to obtain granules, and then molding the granules by the CIP method.

【0030】得られた成形体は、必要に応じて脱脂した
後、上記温度で焼結すれば良い。また、ホットプレス法
で成形と焼結を同時に行っても良い。焼結雰囲気は、特
に制限されず、例えば大気中、酸素中、水素中、真空中
等のいずれであっても良い。焼結時間は、焼結温度、そ
の他の条件に応じて適宜設定すれば良い。
The obtained compact may be degreased if necessary, and then sintered at the above temperature. The molding and sintering may be performed simultaneously by a hot press method. The sintering atmosphere is not particularly limited, and may be, for example, any of air, oxygen, hydrogen, and vacuum. The sintering time may be appropriately set according to the sintering temperature and other conditions.

【0031】本発明原料から得られるYAG系焼結体
は、好ましくは(1)Al23及びY 23の含有量合計
が99.6重量%以上であって、(2)SiO2を30
00重量ppm以下含有し、(3)Al23及びY23
の含有比率が37.4〜47.4重量%及び62.6〜
52.6重量%であって、(4)気孔率が2%以下であ
る。
YAG-based sintered body obtained from the raw material of the present invention
Is preferably (1) AlTwoOThreeAnd Y TwoOThreeTotal content of
Is not less than 99.6% by weight, and (2) SiOTwo30
(3) AlTwoOThreeAnd YTwoOThree
Is 37.4-47.4% by weight and 62.6-
52.6% by weight, and (4) the porosity is 2% or less.
You.

【0032】焼結体中におけるAl23及びY23の含
有量合計(以下「純度」ともいう)は、通常99.6重
量%以上、好ましくは99.8重量%以上である。従っ
て、純度が上記範囲であれば、他の成分が含まれていて
も差し支えない。他の成分としては、前記SiO2のほ
か、原料中に含まれる不可避不純物等が挙げられる。
The total content of Al 2 O 3 and Y 2 O 3 (hereinafter also referred to as “purity”) in the sintered body is usually at least 99.6% by weight, preferably at least 99.8% by weight. Therefore, other components may be contained as long as the purity is within the above range. Other components include unavoidable impurities and the like contained in the raw material, in addition to the above-mentioned SiO 2 .

【0033】焼結体中におけるSiO2の含有量は、通
常3000重量ppm以下、好ましくは100〜300
0重量ppm、最も好ましくは300〜2900重量p
pmとする。SiO2含有量が3000重量%ppmを
超えると、焼結体を構成するYAG粒子間に顕著な粒界
相を形成し、耐食性、耐イオン衝撃性等に悪影響を与え
るおそれがある。
The content of SiO 2 in the sintered body is usually 3000 ppm by weight or less, preferably 100 to 300 ppm.
0 weight ppm, most preferably 300-2900 weight p
pm. If the SiO 2 content exceeds 3000% by weight, a remarkable grain boundary phase is formed between the YAG particles constituting the sintered body, which may adversely affect corrosion resistance, ion impact resistance, and the like.

【0034】上記Al23及びY23の含有比率は、通
常37.4〜47.4重量%(Al 23)及び62.6
〜52.6重量%(Y23)とし、好ましくは39.4
〜45.4重量%(Al23)及び60.6〜54.6
重量%(Y23)とする。この範囲外となる場合は、優
れた耐食性及び耐イオン衝撃性が得られないばかりでな
く、優れた耐熱衝撃性が得られなくなることがある。
The above AlTwoOThreeAnd YTwoOThreeContent ratio
37.4-47.4% by weight (Al TwoOThree) And 62.6.
~ 52.6% by weight (YTwoOThree), Preferably 39.4
~ 45.4% by weight (AlTwoOThree) And 60.6-54.6.
% By weight (YTwoOThree). If it is out of this range,
Not only cannot achieve excellent corrosion resistance and ion impact resistance.
In some cases, excellent thermal shock resistance cannot be obtained.

【0035】焼結体の気孔率は、通常2%以下、好まし
くは1.5%以下とする。気孔率が2%を超える場合
は、所望の耐食性、耐イオン衝撃性等が得られなくなる
おそれがある。なお、上限は、理論密度となるようにす
れば良い。
The porosity of the sintered body is usually 2% or less, preferably 1.5% or less. If the porosity exceeds 2%, desired corrosion resistance and ion impact resistance may not be obtained. Note that the upper limit may be set to be the theoretical density.

【0036】また、焼結体の平均結晶粒径は、その組
成、最終製品の用途等に応じて適宜設定すれば良いが、
通常5μm以上、特に10μm以上であることが好まし
い。このような平均結晶粒径に制御することによって、
より優れた耐イオン衝撃性を付与することができる。な
お、平均結晶粒径の上限は特に限定されないが、通常は
40μm程度とすれば良い。
The average crystal grain size of the sintered body may be appropriately set according to the composition, the use of the final product, and the like.
Usually, it is preferably at least 5 μm, particularly preferably at least 10 μm. By controlling to such an average crystal grain size,
More excellent ion impact resistance can be imparted. Note that the upper limit of the average crystal grain size is not particularly limited, but may be generally about 40 μm.

【0037】焼結体における結晶相としては、一般に
は、ガーネット鉱物相(YAG相=Y 3Al512相)の
単相又はYAG相とYAlO3相、Y4Al29相及びA
23相の少なくとも1種とを含む混合相から実質的に
構成される。すなわち、本発明では、YAG相だけでな
く、YAG相の生成過程で生じる中間相、あるいは未反
応相も含まれていても良い。これらの結晶相の割合は、
特に制限されず、最終製品の用途等に応じて適宜決定す
ることができる。
The crystal phase of the sintered body is generally
Is the garnet mineral phase (YAG phase = Y ThreeAlFiveO12Phase)
Single phase or YAG phase and YAlOThreePhase, YFourAlTwoO9Phase and A
lTwoOThreeSubstantially from a mixed phase comprising at least one of the phases
Be composed. That is, in the present invention, only the YAG phase is used.
The intermediate phase generated during the formation of the YAG phase,
Corresponding phases may also be included. The proportion of these crystalline phases is
There is no particular limitation, and it is appropriately determined according to the use of the final product, etc.
Can be

【0038】[0038]

【作用】図1〜図5に、YAG系焼結体の組織を制御し
た場合と組織制御しない場合の微構造及び侵食パターン
の違いを示す。
FIGS. 1 to 5 show the difference between the microstructure and the erosion pattern when the structure of the YAG-based sintered body is controlled and when the structure is not controlled.

【0039】まず、組織制御しないセラミックスで不純
物(特にSiO2)を規制しない場合(図1)は、焼結
体を構成するYAG粒子間の粒界にSiO2を主成分と
する不純物相が粒界相(SiO2系粒界相)として形成
される。SiO2のΔG(ギプスの自由エネルギー)は
約−190kcal/モルで比較的安定な酸化物であ
る。ところが、SiF4が生成するときのΔGも約−1
90kcal/モルとSiO2のそれと同程度なので、
フッ素ガスとの直接反応でも比較的容易にSiF4が生
成し、殊にプラズマ中ではSiF4生成が促進される。
この反応で生成するSiF4はガス成分であり、YAG
系焼結体の粒界に析出したSiO2系粒界相が優先的に
かつ激しく攻撃される。このとき、YAG系焼結体表面
に形成されるフッ化物膜は不連続に形成されるため(す
なわち粒界部で分断されて形成されるため)、保護膜と
して十分に機能しない。このため、YAG系焼結体は粒
界部が著しく侵食され、プラズマとの反応界面付近とな
るYAG粒子間の結合力が弱くなるので、イオン衝撃に
より焼結体からYAG粒子の脱落が起こり、エッチング
速度はきわめて速くなる。このようにして、焼結体の耐
食性及び耐イオン衝撃性の低下が起こり、しかもダスト
発生による半導体性能の低下も引き起こすことになる。
First, in the case where impurities (especially SiO 2 ) are not regulated by ceramics whose structure is not controlled (FIG. 1), an impurity phase mainly composed of SiO 2 is formed at the grain boundaries between YAG particles constituting the sintered body. It is formed as an interphase (SiO 2 -based grain boundary phase). SiO 2 has a ΔG (cast free energy) of about −190 kcal / mol and is a relatively stable oxide. However, ΔG when SiF 4 is generated is also about −1.
90 kcal / mol, which is about the same as that of SiO 2 ,
SiF 4 is relatively easily generated even by direct reaction with fluorine gas, and SiF 4 generation is promoted particularly in plasma.
SiF 4 generated by this reaction is a gas component,
The SiO 2 -based grain boundary phase precipitated at the grain boundaries of the sintered body is preferentially and violently attacked. At this time, since the fluoride film formed on the surface of the YAG-based sintered body is formed discontinuously (that is, formed by being divided at the grain boundary portion), it does not function sufficiently as a protective film. For this reason, the grain boundary portion of the YAG-based sintered body is significantly eroded, and the bonding force between the YAG particles near the reaction interface with the plasma is weakened. The etching rate becomes extremely high. Thus, the corrosion resistance and the ion impact resistance of the sintered body are reduced, and the semiconductor performance is also reduced due to dust generation.

【0040】図2には、焼結性の悪い湿式合成粉末でY
AG系焼結体を作製した場合のように気孔が多い微構造
と侵食パターンを示す。この場合、残存した気孔部から
著しく腐食しはじめ、しかも焼結体表面の保護膜は気孔
部から分断されてしまうので、結果的には図1で示した
場合と同様に侵食速度がきわめて速くなる。また、残存
した気孔は粒界に沿って存在するので、わずかな不純物
相が存在していても粒界腐食が副次的に発生して組織の
結合が緩み、ひいては脱落したYAG粒子によるパーテ
ィクル発生の問題も引き起こす。
FIG. 2 shows a wet synthetic powder having a poor sintering property, Y
It shows a microstructure and erosion pattern with many pores as in the case of producing an AG-based sintered body. In this case, significant corrosion starts from the remaining pores, and the protective film on the surface of the sintered body is separated from the pores. As a result, the erosion rate becomes extremely high as in the case shown in FIG. . In addition, since the remaining pores exist along the grain boundaries, even if a slight impurity phase is present, grain boundary corrosion occurs as a secondary effect, loosening the bonding of the microstructure, and thus particle generation due to the dropped YAG particles. Also cause problems.

【0041】これに対し、本発明原料によるセラミック
スは、図3〜5に示す機能の少なくとも1つが発揮され
ることによって優れた耐食性、耐イオン衝撃性等を発現
できる。図3に示すように、本発明原料によるセラミッ
クスでは、SiO2量を規制した場合、特に高密度でか
つ粒界相の少ない微構造を得ることができる。一般に、
高純度のYAG系焼結体を高密度化することは困難であ
るが、本発明で使用する原料の焼結性をより高める意味
においても所定量のSiO2の存在は非常に有効であ
る。所定量のSiO2は原料が焼結する際に粒界部に液
相成分として存在し、緻密化のパラメータとして重要な
物質移動又は粒成長を促進させる。また、焼結途中まで
YAG系焼結体の粒界部に液相として存在していたSi
2のほとんどが焼結末期段階にYAG粒子中に固溶
し、粒界相としての析出したとしてもその析出は一部だ
けにとどまる。従って、SiO2による効果によって、
図3に示すように残留気孔が少なく、比較的粒径が大き
くかつ粒子サイズの揃ったYAG系焼結体が得られる。
このような微構造を有するYAG系焼結体では優先腐食
を生じる場が少ないので、焼結体表面が一様なフッ化反
応を起こし、焼結体表面全体にわたって均一かつ連続的
なフッ化物保護膜が形成され、これにより焼結体内部へ
のフッ化反応の進行が抑制される。このような機構によ
って、YAG系焼結体の耐食性、耐イオン衝撃性等が飛
躍的に向上する。
On the other hand, the ceramics of the raw material of the present invention can exhibit excellent corrosion resistance, ion impact resistance, etc. by exhibiting at least one of the functions shown in FIGS. As shown in FIG. 3, in the ceramics of the raw material of the present invention, when the amount of SiO 2 is regulated, a fine structure having a particularly high density and a small grain boundary phase can be obtained. In general,
Although it is difficult to increase the density of a high-purity YAG-based sintered body, the presence of a predetermined amount of SiO 2 is very effective in further improving the sinterability of the raw materials used in the present invention. A predetermined amount of SiO 2 is present as a liquid phase component at the grain boundary when the raw material is sintered, and promotes mass transfer or grain growth, which is important as a parameter for densification. In addition, Si which was present as a liquid phase at the grain boundaries of the YAG-based
Most of O 2 forms a solid solution in the YAG particles at the final stage of sintering, and even if it precipitates as a grain boundary phase, only a part of the precipitation occurs. Therefore, due to the effect of SiO 2 ,
As shown in FIG. 3, a YAG-based sintered body having few residual pores, relatively large particle size and uniform particle size can be obtained.
In a YAG-based sintered body having such a microstructure, there are few places where preferential corrosion occurs, so that the surface of the sintered body causes a uniform fluorination reaction, and uniform and continuous fluoride protection over the entire surface of the sintered body. A film is formed, whereby the progress of the fluorination reaction inside the sintered body is suppressed. By such a mechanism, the corrosion resistance, ion impact resistance, and the like of the YAG-based sintered body are dramatically improved.

【0042】また、図4は、YAG系焼結体の組成をY
AG−YAlO3系(すなわち、YAGの化学量論組成
(Y3Al512)よりもY23リッチ)にした場合の組
織図と侵食パターンを示す。特に化学量論組成からY2
3側に組成変動させた場合、YAG以外にY23リッ
チ相であるYAlO3(YAP、ペロブスカイト相)が
焼結体中にスポット状に析出する。また、YAlO
3は、YAG粒子の粒子間、すなわちYAG系焼結体の
粒界に沿って点在する構造をとる。YAG系焼結体の焼
結助剤としてSiO2が有効であることは前述した通り
であるが、その量が3000重量ppmを超えると粒界
相としてきわめて顕著に存在するようになる。このよう
な微構造をとるYAG系焼結体は、図1のような粒界腐
食を顕著に受け、耐食性は急激に低下する。しかし、点
在するYAlO3相はYAGに比べてその結晶内部への
SiO2固溶量が大きいので、高密度YAG系焼結体に
仕上げるために添加されたSiO2(粒界部)を吸着
し、不純物成分が粒界相として析出するのを防止又は抑
制する働きをもつ。このため、積極的にYAG系焼結体
中にYAlO3を析出させることによってフッ素系ガス
による粒界侵食を防止することもできる。YAlO
3は、SiO2が1500重量ppm以下の領域において
もSiO2の不均一性に伴う局所的粒界相の析出に対し
ても効果的である。YAG系焼結体中のSiO2を多量
に固溶したYAlO3の耐食性は純粋なYAlO3、YA
Gに比べると劣ると考えられるが、粒界相として析出す
る場合と異なり、不連続的(スポット状)にしか存在し
ないので、たとえ侵食速度が大きくなったとしても焼結
体全体の反応速度を支配するには至らない。実際の侵食
試験においても、比較的多くのSiO2を添加し、か
つ、YAlO3を析出させたYAG系焼結体の侵食速度
はYAlO3を析出させないYAG系焼結体に比べて圧
倒的に小さいことが確認されている。但し、YAlO3
の熱伝導率はYAGより劣るのでY23含有量はYAG
の化学量論組成から前後5重量%の範囲までにしなけれ
ば焼結体が熱破壊されるおそれがある。
FIG. 4 shows the composition of the YAG-based sintered body as Y
The histological diagram and the erosion pattern in the case of the AG-YAlO 3 system (namely, Y 2 O 3 richer than the stoichiometric composition of YAG (Y 3 Al 5 O 12 )) are shown. Especially from the stoichiometric composition Y 2
When the composition is changed to the O 3 side, YAlO 3 (YAP, perovskite phase), which is a Y 2 O 3 rich phase, precipitates in the sintered body in spots in addition to YAG. Also, YAlO
3 has a structure interspersed between YAG particles, that is, along the grain boundaries of the YAG-based sintered body. As described above, SiO 2 is effective as a sintering aid for a YAG-based sintered body, but if its amount exceeds 3,000 ppm by weight, it will be extremely remarkable as a grain boundary phase. The YAG-based sintered body having such a microstructure is significantly affected by intergranular corrosion as shown in FIG. 1, and the corrosion resistance is rapidly reduced. However, since the interspersed YAlO 3 phase has a larger amount of SiO 2 dissolved in the crystal than YAG, it absorbs SiO 2 (grain boundary part) added for finishing into a high-density YAG-based sintered body. And has the function of preventing or suppressing the precipitation of the impurity component as a grain boundary phase. For this reason, grain boundary erosion by the fluorine-based gas can be prevented by positively depositing YAlO 3 in the YAG-based sintered body. YAlO
No. 3 is effective for the precipitation of a local grain boundary phase accompanying the non-uniformity of SiO 2 even in a region where SiO 2 is 1500 ppm by weight or less. The corrosion resistance of YAlO 3 containing a large amount of SiO 2 as a solid solution in a YAG-based sintered body is pure YAlO 3 , YA
Although it is considered to be inferior to G, unlike the case where it precipitates as a grain boundary phase, it exists only in a discontinuous (spot-like) manner, so that even if the erosion rate increases, the reaction rate of the entire sintered body is reduced. I can't rule. In an actual erosion test, the erosion rate of a YAG-based sintered body in which a relatively large amount of SiO 2 was added and YAlO 3 was precipitated was overwhelmingly higher than that of a YAG-based sintered body in which YAlO 3 was not precipitated. It has been confirmed that it is small. However, YAlO 3
Has a lower thermal conductivity than YAG, so the Y 2 O 3 content is lower than that of YAG.
If the stoichiometric composition is not set within the range of 5% by weight before and after, the sintered body may be thermally broken.

【0043】図5は、YAG系焼結体の組成をYAG−
Al23系(すなわち、YAGの化学量論組成よりもA
23リッチ)にした場合の組織図と侵食パターンを示
す。化学量論組成からAl23側に組成変動させた場
合、YAG以外にAl23が焼結体中に析出する。析出
する態様は、例えばYAG粒子中に析出したり、あるい
はYAG粒子間の間隙にフィルム状に析出する。粒状又
はフィルム状に析出したAl23相はYAGに比べてそ
の結晶内部へのSiO2の固溶量が大きいので高密度Y
AG系焼結体を製造するために添加されたSiO2(粒
界相成分)を吸着し、不純物成分が粒界相として析出す
るのを防止又は抑制する効果がある。このため、積極的
にYAG系焼結体中にAl23を析出させることによっ
てもフッ素系ガスによる粒界腐食を防止することができ
る。YAG系焼結体中のSiO2を多く固溶したAl2
3の耐食性は、純粋なAl23又はYAGに比べて劣る
ものと考えられるが、たとえ上記部分の侵食速度が大き
くなったとしても焼結体全体の反応速度を支配すること
はない。実際の侵食試験においても、比較的多くのSi
2を添加し、かつ、Al23を析出させたYAG系焼
結体の侵食速度はAl23を析出させないYAG系焼結
体に比べて圧倒的に小さいことが確認されている。ま
た、Al23の熱伝導率は、YAGのそれよりも高いの
で添加量の増加に伴って増大していくはずであるが、A
23量が所定範囲を超えるとYAG系焼結体の緻密化
が阻害され、これにより熱伝導率の低下を招き、またA
23富化に伴う耐イオン衝撃性又は耐熱衝撃性の低下
を引き起こす。
FIG. 5 shows the composition of the YAG-based sintered body as YAG-
Al 2 O 3 -based (ie, more A than the stoichiometric composition of YAG)
1 shows a histological diagram and an erosion pattern in the case of (L 2 O 3 rich). When the composition is changed from the stoichiometric composition to the Al 2 O 3 side, Al 2 O 3 other than YAG precipitates in the sintered body. As for the mode of precipitation, for example, precipitation occurs in YAG particles or in the form of a film in gaps between YAG particles. The Al 2 O 3 phase precipitated in the form of particles or a film has a higher solid solution amount of SiO 2 in the crystal than YAG, so
It has an effect of adsorbing SiO 2 (grain boundary phase component) added for producing an AG-based sintered body and preventing or suppressing the precipitation of impurity components as a grain boundary phase. Therefore, intergranular corrosion due to the fluorine-based gas can be prevented by positively depositing Al 2 O 3 in the YAG-based sintered body. Al 2 O containing a large amount of SiO 2 in YAG-based sintered body
Although the corrosion resistance of No. 3 is considered to be inferior to that of pure Al 2 O 3 or YAG, even if the erosion rate of the above-mentioned portion increases, it does not control the reaction rate of the whole sintered body. Even in actual erosion tests, relatively large amounts of Si
It has been confirmed that the erosion rate of a YAG-based sintered body in which O 2 is added and Al 2 O 3 is precipitated is overwhelmingly smaller than that of a YAG-based sintered body in which Al 2 O 3 is not precipitated. . Also, since the thermal conductivity of Al 2 O 3 is higher than that of YAG, it should increase with the addition amount.
When the amount of l 2 O 3 exceeds the predetermined range, the densification of the YAG-based sintered body is hindered, which leads to a decrease in the thermal conductivity.
l 2 O 3 causes a decrease in resistance to ion bombardment or thermal shock resistance due to enrichment.

【0044】[0044]

【発明の効果】本発明原料は、特にその焼結性に優れて
おり、高圧焼結を行わなくても高密度のYAG系焼結体
を得ることができるので、経済的に有利であり、工業的
規模での生産に適している。
The raw material of the present invention is particularly excellent in its sinterability, and can provide a high-density YAG-based sintered body without performing high-pressure sintering, which is economically advantageous. Suitable for industrial scale production.

【0045】また、本発明原料から得られるYAG系焼
結体は、緻密であることから、耐プラズマ性、耐熱衝撃
性、耐食性等が要求される用途への幅広い利用が期待で
きる。
Since the YAG-based sintered body obtained from the raw material of the present invention is dense, it can be expected to be widely used for applications requiring plasma resistance, thermal shock resistance, corrosion resistance, and the like.

【0046】すなわち、上記YAG系焼結体は特定構造
を有するから構成されているので、優れた耐食性と耐イ
オン衝撃性とを同時に達成することができる。また同時
に、耐熱衝撃性にも優れており、急激な温度変化が起こ
っても熱破壊されにくい。従って、かかる焼結体は、耐
プラズマ用(特にフッ素系プラズマエッチング用)の材
料として好適に用いることができる。従って、例えば半
導体製造装置の内壁材、透過窓材等の各構成部材にも好
適に用いることができる。
That is, since the YAG-based sintered body has a specific structure, excellent corrosion resistance and ion impact resistance can be achieved at the same time. At the same time, it has excellent thermal shock resistance and is not easily damaged by heat even if a sudden temperature change occurs. Therefore, such a sintered body can be suitably used as a material for plasma resistance (particularly for fluorine-based plasma etching). Therefore, it can be suitably used for each component such as an inner wall material and a transmission window material of a semiconductor manufacturing apparatus.

【0047】[0047]

【実施例】以下に実施例及び比較例を示し、本発明の特
徴を一層明確にする。なお、各表中、YAPはYAlO
3、AはAl23を示す。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention. In each table, YAP is YAlO
3 , A represents Al 2 O 3 .

【0048】実施例1〜10及比較例1〜12 原料を調製し、得られる焼結体の相対密度を調べた。Examples 1 to 10 and Comparative Examples 1 to 12 Raw materials were prepared, and the relative densities of the obtained sintered bodies were examined.

【0049】純度99.8重量%の水酸化アルミニウム
粉末(平均粒径3μm)を0.3モル/リットルの硝酸
イットリウム水溶液に混合した。このとき、Y23:A
23=57.6:42.4(重量比)となるように混
合した。次に、混合溶液(30℃)にpH7.2となる
まで炭酸水素アンモニウムを添加して沈殿物を調製し
た。これを遠心式脱水機にて濾過し、イオン交換水にて
3回洗浄し、吸引濾過して固形分を取り出した。次い
で、固形分を取り出して100℃で乾燥して付着水分を
取り除いた後、表1に示す温度で仮焼して粉末を得た。
この仮焼粉末を振動ミル中で粉砕し、平均一次粒子、平
均二次粒子及びBET比表面積が表1に示す範囲内にな
るように調整して原料をそれぞれ得た。
An aluminum hydroxide powder (average particle size: 3 μm) having a purity of 99.8% by weight was mixed with a 0.3 mol / liter yttrium nitrate aqueous solution. At this time, Y 2 O 3 : A
They were mixed so that l 2 O 3 = 57.6: 42.4 (weight ratio). Next, ammonium bicarbonate was added to the mixed solution (30 ° C.) until the pH reached 7.2 to prepare a precipitate. This was filtered with a centrifugal dehydrator, washed three times with ion-exchanged water, and suction-filtered to take out a solid content. Next, the solid content was taken out, dried at 100 ° C. to remove adhering moisture, and calcined at the temperature shown in Table 1 to obtain a powder.
The calcined powder was pulverized in a vibration mill, and adjusted so that the average primary particles, average secondary particles, and BET specific surface area were within the ranges shown in Table 1, to obtain raw materials, respectively.

【0050】いずれの原料も、コロイダルシリカの添加
によりSiO2含有量を350重量ppmに調節した。
また、その他の不純物成分としては、比較例11を除
き、Na2O=0.04重量%、K2O=0.02重量
%、Fe23=0.03重量%であった。なお、比較例
11は、純度98.0重量%(Na2O含有量が750
0重量ppm)の水酸化アルミニウム粉末を用いたほか
は実施例と同様にして原料を調製した。
[0050] In each of the raw materials, the content of SiO 2 was adjusted to 350 ppm by weight by adding colloidal silica.
As other impurity components, Na 2 O = 0.04 wt%, K 2 O = 0.02 wt%, and Fe 2 O 3 = 0.03 wt% except for Comparative Example 11. In Comparative Example 11, the purity was 98.0% by weight (the Na 2 O content was 750%).
Raw materials were prepared in the same manner as in Example except that aluminum hydroxide powder (0 ppm by weight) was used.

【0051】各原料を用いて196MPaの圧力でCI
P成形してタブレット(直径30mm×高さ10mm)
を作製した。次いで、成形体を酸素気流中で1600℃
で3時間焼結した。この焼結体の相対密度を測定した。
その結果を表1及び表2に示す。
Using each raw material at a pressure of 196 MPa, CI
P molded and tablet (diameter 30mm x height 10mm)
Was prepared. Then, the molded body is heated at 1600 ° C.
For 3 hours. The relative density of this sintered body was measured.
The results are shown in Tables 1 and 2.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】なお、表1及び表2で示す各物性は以下の
ようにして測定した。 (1)原料におけるY23とAl23の組成比率は、蛍
光X線分析により測定した。 (2)原料の純度は、プラズマ発光分光分析(ICP)
及び原子吸光分析により測定した。 (3)原料における結晶相は、X線回折分析により確認
した。 (4)原料の平均一次粒径は、X線回折分析(特に回折
ピークの半価幅)及び走査型電子顕微鏡により測定し
た。また、原料の平均二次粒径は、遠心沈降法及びレー
ザー散乱法により測定した。 (5)原料の比表面積は、BET法により測定した。
The physical properties shown in Tables 1 and 2 were measured as follows. (1) The composition ratio of Y 2 O 3 and Al 2 O 3 in the raw material was measured by X-ray fluorescence analysis. (2) Raw material purity is determined by plasma emission spectroscopy (ICP)
And by atomic absorption analysis. (3) The crystal phase in the raw material was confirmed by X-ray diffraction analysis. (4) The average primary particle size of the raw material was measured by X-ray diffraction analysis (particularly the half width of the diffraction peak) and a scanning electron microscope. The average secondary particle size of the raw material was measured by a centrifugal sedimentation method and a laser scattering method. (5) The specific surface area of the raw material was measured by the BET method.

【0055】表1及び表2の結果からも明らかなよう
に、本発明の原料によれば、相対密度99%以上という
高い密度を有する焼結体が得られる。
As is clear from the results shown in Tables 1 and 2, according to the raw material of the present invention, a sintered body having a high relative density of 99% or more can be obtained.

【0056】参考例 本発明原料を調製し、さらに組成、SiO2含有量、密
度等を制御してYAG系焼結体を製造し、その耐プラズ
マ性及び耐熱衝撃性を調べた。
Reference Example A raw material of the present invention was prepared, and a YAG-based sintered body was manufactured by controlling the composition, the content of SiO 2 , the density, etc., and the plasma resistance and thermal shock resistance were examined.

【0057】純度99.8重量%の水酸化アルミニウム
粉末(平均粒径3μm)を0.3モル/リットルの塩化
イットリウム水溶液に混合した。このとき、表3〜5に
示すような組成となるように混合した。次に、混合溶液
(30℃)にpH7.2となるまでアンモニアを添加し
て沈殿物を調製した。これを遠心式脱水機にて濾過し、
イオン交換水にて3回洗浄し、吸引濾過して固形分を取
り出した。次いで、固形分を取り出して100℃で乾燥
して付着水分を取り除いた後、1000℃で仮焼して粉
末を得た。この仮焼粉末を一次粒子径0.08μm、二
次粒子径0.7μm及びBET比表面積11.2m2
gとなるまで振動ミル中で粉砕し、原料を得た。
Aluminum hydroxide powder (average particle size: 3 μm) having a purity of 99.8% by weight was mixed with a 0.3 mol / liter yttrium chloride aqueous solution. At this time, the components were mixed so as to have the compositions shown in Tables 3 to 5. Next, ammonia was added to the mixed solution (30 ° C.) until the pH reached 7.2 to prepare a precipitate. This is filtered with a centrifugal dehydrator,
The solid was washed three times with ion-exchanged water and filtered by suction to remove a solid content. Next, the solid content was taken out, dried at 100 ° C. to remove adhering moisture, and calcined at 1000 ° C. to obtain a powder. This calcined powder was prepared by adding a primary particle diameter of 0.08 μm, a secondary particle diameter of 0.7 μm and a BET specific surface area of 11.2 m 2 /
The raw material was obtained by pulverizing in a vibration mill until the weight of the raw material became g.

【0058】原料にコロイダルシリカ(SiO2)、市
販アクリル系バインダー、市販アミン系分散剤及び溶媒
(純水)を適量添加し、ポットミル中で混合してスラリ
ーとし、これをスプレードライヤーで噴霧乾燥すること
により約70μmの顆粒を得た。次に、得られた顆粒を
用いて円盤状(直径50mm×高さ15mm)に金型成
形し、196MPaの圧力にてCIP成形した。この成
形体を600℃で仮焼した後、さらに酸素気流中160
0〜1700℃で5時間焼結した。得られた焼結体の特
性を表3〜5に示す。
An appropriate amount of colloidal silica (SiO 2 ), a commercially available acrylic binder, a commercially available amine dispersant and a solvent (pure water) are added to the raw materials, mixed in a pot mill to form a slurry, and spray-dried with a spray drier. Thereby, granules of about 70 μm were obtained. Next, the obtained granules were molded into a disk shape (diameter 50 mm × height 15 mm) and CIP-molded at a pressure of 196 MPa. After calcining the molded body at 600 ° C.,
Sintered at 0 to 1700 ° C for 5 hours. Tables 3 to 5 show the characteristics of the obtained sintered body.

【0059】表中、耐プラズマ性の「試験1」は、CF
6+O2混合ガス雰囲気中190℃でマイクロ波出力65
0Wの条件下で焼結体をプラズマ照射したときのエッチ
ングレート(単位nm/h)を示す。また、「試験2」
は、SF6+Ar混合ガス雰囲気中200℃でマイクロ
波出力700Wの条件下で焼結体をプラズマ照射したと
きのエッチングレート(単位nm/h)を示す。
In the table, “Test 1” for plasma resistance is CF
6 + O 2 mixed gas atmosphere at 190 ° C and microwave output 65
The etching rate (unit: nm / h) when the sintered body is irradiated with plasma under the condition of 0 W is shown. "Test 2"
Indicates an etching rate (unit: nm / h) when the sintered body is irradiated with plasma at 200 ° C. and a microwave output of 700 W in an SF 6 + Ar mixed gas atmosphere.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【表5】 [Table 5]

【0063】なお、表3〜5中における焼結体の各物性
は以下のようにして測定した。 (1)焼結体のY23とAl23の組成比率は、蛍光X
線分析により測定した。 (2)焼結体の純度は、プラズマ発光分光分析(IC
P)及びプラズマ発光分光・質量分析(ICP−MAS
S)により測定した。 (3)焼結体の結晶相は、X線回折分析により確認し
た。 (4)焼結体中に存在するYAlO3中のSiO2の有無
は、走査型電子顕微鏡・エネルギー分散型X線分析(S
EM−EDX)及び走査型電子顕微鏡・波長分散型X線
分析(SEM−WDX)にて確認した。 (5)平均結晶粒径は、反射顕微鏡及び走査型電子顕微
鏡により観察した。これにより任意に選択した100個
の結晶粒子の算術平均値を平均結晶粒径として示す。 (6)焼結体中の粒界相の有無は、SEM−EDX、透
過型電子顕微鏡・エネルギー分散型X線分析(TEM−
EDX)及び二次イオン質量分析(SIMS)で確認し
た。 (7)焼結体の気孔率(密度)は、アルキメデス法によ
り測定した。 (8)耐熱衝撃性は、焼結体を室温と300℃との温度
間で50回の繰り返しサーマルサイクル試験(冷却は空
冷方式)を実施し、試験前及び試験後の焼結体の3点曲
げ強度(JIS R1601)を用いて下式により耐熱
衝撃性を求めた。
The physical properties of the sintered bodies in Tables 3 to 5 were measured as follows. (1) The composition ratio of Y 2 O 3 and Al 2 O 3 in the sintered body
Measured by line analysis. (2) The purity of the sintered body was determined by plasma emission spectroscopy (IC
P) and plasma emission spectroscopy and mass spectrometry (ICP-MAS)
S). (3) The crystal phase of the sintered body was confirmed by X-ray diffraction analysis. (4) The presence or absence of SiO 2 in YAlO 3 present in the sintered body was determined by scanning electron microscope / energy dispersive X-ray analysis (S
(EM-EDX) and scanning electron microscope / wavelength dispersive X-ray analysis (SEM-WDX). (5) The average crystal grain size was observed with a reflection microscope and a scanning electron microscope. The arithmetic average value of the 100 crystal grains arbitrarily selected is shown as the average crystal grain size. (6) The presence or absence of the grain boundary phase in the sintered body is determined by SEM-EDX, transmission electron microscope / energy dispersive X-ray analysis (TEM-
EDX) and secondary ion mass spectrometry (SIMS). (7) The porosity (density) of the sintered body was measured by the Archimedes method. (8) The thermal shock resistance of the sintered body was measured by repeating the thermal cycle test (cooling is air-cooled) 50 times between room temperature and 300 ° C. before and after the test. The thermal shock resistance was determined by the following equation using the bending strength (JIS R1601).

【0064】耐熱衝撃性%=(試験後の曲げ強度/試験
前の曲げ強度)×100 なお、上記曲げ強度は、n(データ数)=20のデータ
のうち最小値と最大値を除いた18データの平均値を用
いて求めた。
Thermal shock resistance% = (Bending strength after test / Bending strength before test) × 100 The above bending strength is obtained by excluding the minimum value and the maximum value from the data of n (number of data) = 20. It was determined using the average value of the data.

【0065】表1〜3の結果から明らかなように、参考
例1〜7(YAG焼結体)、参考例8〜11(YAG−
YAP焼結体)及び参考例12〜16(YAG−Al2
3焼結体)は、いずれもプラズマ侵食速度が15nm
/h以下であり、他の焼結体(参考例17〜31)より
も優れた性能を発揮することがわかる。また、これら参
考例1〜16における耐熱衝撃性は、いずれも80%を
超えており、耐プラズマ材として優れた効果を発揮する
ことがわかる。
As is apparent from the results of Tables 1 to 3, Reference Examples 1 to 7 (YAG sintered bodies) and Reference Examples 8 to 11 (YAG-
YAP sintered body) and Reference Examples 12 to 16 (YAG-Al 2
O 3 sintered body) has a plasma erosion rate of 15 nm.
/ H or less, which indicates that the sintered body exhibits superior performance to other sintered bodies (Reference Examples 17 to 31). Further, the thermal shock resistances in these Reference Examples 1 to 16 all exceed 80%, and it can be seen that excellent effects are exhibited as plasma resistant materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】組織制御しない場合のYAG系セラミックスの
微構造及び侵食パターンを示す模式図である。
FIG. 1 is a schematic diagram showing a microstructure and an erosion pattern of a YAG-based ceramic when the structure is not controlled.

【図2】組織制御しない場合のYAG系セラミックスの
微構造及び侵食パターンを示す模式図である。
FIG. 2 is a schematic diagram showing a microstructure and an erosion pattern of a YAG-based ceramic when the structure is not controlled.

【図3】組織制御した場合のYAG系セラミックスの微
構造を示す模式図である。
FIG. 3 is a schematic view showing a microstructure of a YAG-based ceramic when the structure is controlled.

【図4】組織制御した場合のYAG系セラミックス(主
としてY23リッチの場合)の微構造を示す模式図であ
る。
FIG. 4 is a schematic diagram showing a microstructure of a YAG-based ceramic (mainly in the case of Y 2 O 3 rich) when the structure is controlled.

【図5】組織制御した場合のYAG系セラミックス(主
としてAl23リッチの場合)の微構造を示す模式図で
ある。
FIG. 5 is a schematic view showing a microstructure of a YAG ceramic (mainly Al 2 O 3 rich) when the structure is controlled.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】YAG系セラミックス原料であって、
(1)Al23及びY23の含有量合計が99.6重量
%以上であり、(2)Al23及びY23の含有比率が
37.4〜47.4重量%及び62.6〜52.6重量
%であって、(3)平均一次粒径0.03〜1.5μ
m、平均二次粒径0.2〜10μmであり、(4)BE
T比表面積が0.5〜20m2/gであり、(5)結晶
相がYAG相単相又はYAG相とYAlO3相、Y4Al
29相及びAl23相の少なくとも1種とを含む混合相
から実質的に構成されることを特徴とする原料。
1. A YAG-based ceramic raw material,
(1) total content of Al 2 O 3 and Y 2 O 3 is 99.6 wt% or more, (2) content ratio of Al 2 O 3 and Y 2 O 3 is from 37.4 to 47.4 wt % And 62.6 to 52.6% by weight, and (3) an average primary particle size of 0.03 to 1.5 μm.
m, average secondary particle size is 0.2 to 10 μm, and (4) BE
The T specific surface area is 0.5 to 20 m 2 / g, and (5) the crystal phase is a single phase of YAG phase or YAG phase and YAlO 3 phase, Y 4 Al
A raw material substantially composed of a mixed phase containing at least one of a 2 O 9 phase and an Al 2 O 3 phase.
【請求項2】SiO2を3000重量ppm以下含有す
る請求項1記載のYAG系セラミックス原料。
2. The YAG-based ceramic raw material according to claim 1, which contains 3000 ppm by weight or less of SiO 2 .
【請求項3】請求項1又は2に記載の原料及び有機バイ
ンダーを含み、平均粒径20〜100μmである造粒
物。
3. A granulated product comprising the raw material according to claim 1 and an organic binder and having an average particle size of 20 to 100 μm.
【請求項4】Al23及びY23の含有比率が37.4
〜47.4重量%及び62.6〜52.6重量%となる
ように水酸化アルミニウム粉末とイットリウム化合物を
含む水溶液とを混合し、次いで該混合液にアルカリを接
触させた後、得られた沈殿物を700〜1300℃で焼
成することを特徴とするYAG系セラミックス原料の製
造方法。
4. The content ratio of Al 2 O 3 and Y 2 O 3 is 37.4.
4747.4% by weight and 62.6-52.6% by weight of aluminum hydroxide powder and an aqueous solution containing a yttrium compound, and then the alkali was brought into contact with the mixed solution. A method for producing a YAG-based ceramics raw material, comprising firing the precipitate at 700 to 1300 ° C.
JP27659499A 1999-09-29 1999-09-29 Yag-based ceramic raw material and its production Withdrawn JP2001097768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27659499A JP2001097768A (en) 1999-09-29 1999-09-29 Yag-based ceramic raw material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27659499A JP2001097768A (en) 1999-09-29 1999-09-29 Yag-based ceramic raw material and its production

Publications (1)

Publication Number Publication Date
JP2001097768A true JP2001097768A (en) 2001-04-10

Family

ID=17571632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27659499A Withdrawn JP2001097768A (en) 1999-09-29 1999-09-29 Yag-based ceramic raw material and its production

Country Status (1)

Country Link
JP (1) JP2001097768A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
JP2010500704A (en) * 2006-08-11 2010-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング LED conversion phosphor in the form of a ceramic element
JP2010126430A (en) * 2008-11-28 2010-06-10 Hidehiro Yoshida Translucent yag polycrystal body and method of manufacturing the same
CN110038663A (en) * 2019-03-05 2019-07-23 卢明鑫 Ceramic material teaching experiment tables
WO2021002339A1 (en) * 2019-07-03 2021-01-07 時田シーブイディーシステムズ株式会社 Composite film, component, and production method
WO2021141676A3 (en) * 2019-11-18 2021-10-07 Heraeus Conamic North America Llc Plasma resistant yttrium aluminum oxide body
WO2023243888A1 (en) * 2022-06-17 2023-12-21 에스케이엔펄스 주식회사 Etching-resistant ceramic part and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
JP2010500704A (en) * 2006-08-11 2010-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング LED conversion phosphor in the form of a ceramic element
JP2010126430A (en) * 2008-11-28 2010-06-10 Hidehiro Yoshida Translucent yag polycrystal body and method of manufacturing the same
CN110038663A (en) * 2019-03-05 2019-07-23 卢明鑫 Ceramic material teaching experiment tables
CN110038663B (en) * 2019-03-05 2024-03-15 卢明鑫 Ceramic material teaching experiment table
WO2021002339A1 (en) * 2019-07-03 2021-01-07 時田シーブイディーシステムズ株式会社 Composite film, component, and production method
JPWO2021002339A1 (en) * 2019-07-03 2021-12-02 時田シーブイディーシステムズ株式会社 Composite membranes, parts and manufacturing methods
WO2021141676A3 (en) * 2019-11-18 2021-10-07 Heraeus Conamic North America Llc Plasma resistant yttrium aluminum oxide body
CN114746377A (en) * 2019-11-18 2022-07-12 贺利氏科纳米北美有限责任公司 Plasma resistant yttrium aluminum oxide objects
WO2023243888A1 (en) * 2022-06-17 2023-12-21 에스케이엔펄스 주식회사 Etching-resistant ceramic part and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN108726849B (en) Refractory object comprising beta alumina
JP5159310B2 (en) Corrosion-resistant member and processing apparatus using the same
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
KR20200120537A (en) Spraying Material, Spraying Slurry, Preparing Method of Spraying Material, Forming Method of Sprayed Coating, Sprayed Coating, and Sprayed Member
WO2005009919A1 (en) Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
JP5228293B2 (en) Yttria sintered body, corrosion-resistant member, and manufacturing method thereof
US7022262B2 (en) Yttrium aluminum garnet powders and processing
JP4854420B2 (en) Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
JP2003034572A (en) Alumina ceramic sintered body, its manufacturing method and cutting tool
JP2010264574A (en) Cutting tool
JP2001097768A (en) Yag-based ceramic raw material and its production
JP4762168B2 (en) Alumina sintered body, member for processing apparatus using the same, and processing apparatus
JP2003112963A (en) Alumina sintered compact, and production method therefor
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
WO2018117161A1 (en) Oriented aln sintered body, and production method therefor
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP5137358B2 (en) Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
EP3560905B1 (en) Transparent aln sintered body and production method therefor
JP4589642B2 (en) Alumina / zirconia ceramics and process for producing the same
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JP2004315308A (en) Corrosion-resistant member
JP2006321723A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
WO2022163150A1 (en) Sintered body
JP3732966B2 (en) Corrosion resistant material
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205