WO2021002339A1 - Composite film, component, and production method - Google Patents

Composite film, component, and production method Download PDF

Info

Publication number
WO2021002339A1
WO2021002339A1 PCT/JP2020/025595 JP2020025595W WO2021002339A1 WO 2021002339 A1 WO2021002339 A1 WO 2021002339A1 JP 2020025595 W JP2020025595 W JP 2020025595W WO 2021002339 A1 WO2021002339 A1 WO 2021002339A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite film
sample
exposure test
raw material
heated
Prior art date
Application number
PCT/JP2020/025595
Other languages
French (fr)
Japanese (ja)
Inventor
時田 修二
晋也 市村
Original Assignee
時田シーブイディーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 時田シーブイディーシステムズ株式会社 filed Critical 時田シーブイディーシステムズ株式会社
Priority to JP2021530026A priority Critical patent/JP7005082B2/en
Priority to TW109122540A priority patent/TW202116702A/en
Publication of WO2021002339A1 publication Critical patent/WO2021002339A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention relates to a composite membrane having yttrium aluminate, a component having the composite membrane, and a method for manufacturing the composite membrane.
  • Processes such as a semiconductor manufacturing process and an FPD (Flat Panel Display) manufacturing process include a step of introducing a corrosive gas into a chamber in a high temperature environment. Therefore, in general, the inside of the chamber is coated with a corrosion-resistant and erosion-resistant coating by thermal spraying. At that time, yttrium oxide and zirconium oxide are used as the coating material. In addition, since some parts arranged in the chamber have complicated shapes such as nozzles and fastening parts, the base material for parts is coated with a coating material by the CVD (Chemical Vapor Deposition) method. There is.
  • CVD Chemical Vapor Deposition
  • the cleaning process of F (fluorine) corrosive gas may be frequently performed in a high temperature environment of 300 ° C to 400 ° C or higher.
  • F-based corrosive gas When exposed to F-based corrosive gas, yttrium oxide is easily fluorinated to yttrium fluoride. At this time, the influence of the F-based corrosive gas extends not only to yttrium oxide but also to the underlying base material.
  • Amorphous aluminum oxide produced by the CVD method is fluorinated to aluminum fluoride when exposed to an F-based corrosive gas.
  • aluminum oxide crystallizes at 400 ° C. or higher, crystal particles grow, and the denseness is impaired.
  • the base material, sapphire glass is represented by the chemical formula Al 2 O 3 , and when exposed to F-based corrosive gas, it is easily fluorinated to aluminum fluoride, and the surface of the sapphire glass is scraped. ..
  • the present invention provides a composite film that is not easily affected by corrosion even when exposed to a corrosive gas in a high temperature environment, a component having the same, and a method for manufacturing the composite film. The purpose.
  • Another aspect of the present invention is a component having a base material and the composite film provided on the base material.
  • Another aspect of the present invention is to vaporize each of the yttrium oxide and aluminum oxide raw materials in a state where the base material is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower, and use a carrier gas to vaporize the raw materials.
  • This is a method for producing a composite film, which is sprayed onto the substrate.
  • a composite film that is not easily affected by corrosion even when exposed to a corrosive gas in a high temperature environment, a component having the composite film, and a method for manufacturing the composite film.
  • FIG. 1 is a block diagram of a manufacturing apparatus for manufacturing a composite film according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a form of a crucible in the vaporizer of FIG.
  • FIG. 2B is a diagram showing another form of the crucible in the vaporizer of FIG.
  • FIG. 3 is a configuration diagram of a manufacturing apparatus different from that of FIG.
  • FIG. 4 is a block diagram of the system used in the exposure test.
  • FIG. 5A is a diagram showing XRD (X-ray Diffraction) measurement results of the sample prepared in Example 1 and the heat-treated sample.
  • FIG. 5B is an XRD (X-ray Diffraction) measurement result of a sample in which an exposure test was performed on the composite membrane prepared in Example 1.
  • FIG. 5A is a diagram showing XRD (X-ray Diffraction) measurement results of the sample prepared in Example 1 and the heat-treated sample.
  • FIG. 5B is an XRD (X-ray D
  • FIG. 6A is a diagram showing the measurement results of XPS (X-ray Photoelectron Spectroscopy) when the sample was etched for 600 seconds with respect to the sample subjected to the exposure test on the composite film prepared in Example 1.
  • FIG. 6B is a diagram showing the measurement results of XPS (X-ray Photoelectron Spectroscopy) when the sample was etched for 1200 seconds with respect to the sample subjected to the exposure test on the composite film prepared in Example 1.
  • FIG. 7 is an XRD (X-ray Diffraction) measurement result of a sample subjected to an exposure test on the composite membrane prepared in Example 2.
  • FIG. 8 summarizes the evaluation of the ClF 3 exposure test.
  • FIG. 8 summarizes the evaluation of the ClF 3 exposure test.
  • FIG. 15 is a microscopic image of a sample of Al 2 O 3 after an exposure test.
  • Figure 16 is a micrograph after exposure tests on samples of Y 2 O 3.
  • the composite membrane is a compound represented by the above chemical formula.
  • the composite film preferably has a thickness of 10 nm or more and 10 ⁇ m or less. More preferably, the composite film has a thickness of 100 nm or more and 1 ⁇ m or less. This is because when the composite film has a relatively flat shape, the composite film sufficiently functions as a corrosion-resistant coating film when the composite film has a thickness of at least 10 nm.
  • the composite film has irregularities rather than a relatively flat shape, if it has an average thickness of at least 100 nm, the composite film sufficiently functions as a corrosion-resistant coating film even if an extremely thin portion is generated. This is because if the film is thick, it takes time to form a film, and if it exceeds 1 ⁇ m depending on the film forming conditions, cracks may occur in the composite film, resulting in poor productivity.
  • the composite membrane may inevitably contain elements other than the above chemical formulas, for example, an element of a carrier gas during production, carbon, and the like.
  • the composite film has a property of being able to crystallize when heated to 900 ° C. or higher. Although it depends on the composition formula of the composite film, it has a crystallinity represented by any one of YAG (Y 3 Al 5 O 12 ), YAP (YAlO 3 ), and YAM (Y 4 Al 2 O 9 ).
  • the composite film has corrosion resistance to corrosive gases containing halogen. Since the composite film has corrosion resistance, it has erosion resistance.
  • the corrosive gas may contain halogen, and examples thereof include F 2 , NF 3 , and ClF 3 .
  • the corrosive gas may be turned into plasma.
  • a base material that is, a base material having various shapes such as a base material for fastening parts of bolts, nuts and washers, a nozzle, and a composite film having the above composition formula coated on the base material.
  • the base material may be formed by applying various surface treatments, or may be made of a plurality of materials different in the thickness direction.
  • the base material is placed in the chamber.
  • the base material is not limited to a flat plate shape, and may be a base material of parts having various shapes such as bolts, nuts, washer fastening parts, and nozzles. Further, the base material does not depend on the material as long as it can withstand the heating temperature during manufacturing.
  • each raw material of yttrium oxide and aluminum oxide is placed in the vaporizer.
  • the raw material is not particularly limited as long as it can vaporize yttrium and aluminum. Further, the number of raw materials does not have to be two, and may be three or more.
  • an acetylacetonate metal complex such as trisacetylacetonatoittrium
  • a metal complex of a di-piparoylmethane metal complex such as tris (di-piparoylmethanate) yttrium, and the like are preferably used.
  • Examples of the raw material of aluminum oxide include an acetylacetonate metal complex such as trisacetylacetonate aluminum, a metal complex of a di-piparoylmethane metal complex such as tris (di-pipaloylmethanate) aluminum, and the like.
  • the vaporization is selected from one or more of current heating, heater heating, electron beam, laser heating.
  • vaporization includes the meaning of sublimation.
  • the substrate is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower. If it is heated to at least 250 ° C., a film can be formed on the substrate. Heating at a temperature lower than this temperature makes the deposition rate extremely slow, which is not preferable from the viewpoint of productivity. Further, in low temperature heating, elements other than oxygen, yttrium, and aluminum constituting the above-mentioned composition formula are unavoidably contained in the composite film, which impairs corrosion resistance, and therefore, from the viewpoint of functionality. Not preferable. On the other hand, if the temperature exceeds 600 ° C., the particles tend to grow in the gas phase and the density of the composite film deteriorates, which is not preferable. If the temperature exceeds 600 ° C., fine particles may be generated depending on the raw material.
  • the method for heating the base material is selected from various methods such as heater heating, lamp heating, and laser heating.
  • the heating temperature of the raw materials may be any temperature as long as each raw material vaporizes.
  • the heating may be performed for each raw material, or a plurality of raw materials may be collectively performed. By performing this for each raw material, the amount of vapor of the raw material can be adjusted and a composite film having a predetermined composition can be obtained.
  • it is preferable to provide openings having different sizes for each raw material so that the amount of ejection for each raw material can be controlled.
  • the yttrium oxide and aluminum oxide raw materials are vaporized in a state where the base material is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower, and the vaporized raw materials are injected onto the base material by the carrier gas. I do.
  • a composite film having a composition represented by the above-mentioned composition formula can be obtained.
  • the composite film thus obtained can be heated at a temperature higher than the temperature at the time of film formation to make the state of the film more appropriate.
  • the treatment temperature at this time needs to be lower than the temperature at which the composite film crystallizes.
  • FIG. 1 is a block diagram of a manufacturing apparatus for manufacturing a composite film according to an embodiment of the present invention.
  • a sample table 12 on which the base material 11 is placed is arranged in the chamber 13.
  • a heater is built in the sample base 12.
  • the vaporizer 14 is arranged inside the chamber 13 and the carrier gas supply source 15 is arranged outside the chamber 13.
  • the carrier gas may be a gas that does not react with the raw material, and is selected from a rare gas such as argon gas and a nitrogen gas.
  • the carrier gas supply source 15 and the vaporizer 14 are connected to each other via a pipe 17a, a flow meter 16, and a pipe 17b, and the carrier gas is supplied to the vaporizer 14 at a predetermined flow rate.
  • the vaporizer 14 is configured so that a board or a crucible for accommodating the raw material is arranged so that the raw material can be heated and sublimated to generate steam.
  • a heating method various methods such as resistance heating, heater heating, and laser heating are adopted.
  • the pipe 18 from the vaporizer 14 is provided with its tip facing the sample base 12, and a nozzle 19 is attached to the outlet of the pipe 18.
  • a slit 19a is provided in the nozzle 19, and a medium supplied by the pipe 18, a mixed medium of the carrier gas and the raw material vapor, is injected from the slit 19a into the base material 11.
  • a protective cover is used for the chamber 13 to distinguish the carrier gas and the raw material vapor from the installation area of the manufacturing apparatus 10.
  • an opening 13a is provided.
  • Such a device is called an atmospheric pressure CVD device.
  • FIG. 2A is a diagram showing a form of a crucible in the vaporizer 14 of FIG.
  • a plate 22 having a plurality of openings 21a and 21b is arranged above the crucible 21.
  • the first raw material 1 is housed below the first opening 21a
  • the second raw material 2 is housed below the second opening 21b
  • both the first raw material 1 and the second raw material 2 are substantially at the same time. It is heated to the same temperature. Since at least one or both of the shapes and sizes of the first opening 21a are different from either or both of the shapes and sizes of the second opening 21b, the supply amount of the first raw material is the supply of the second raw material. Different from the amount. When three or more kinds of raw materials are used, more slits such as a third opening may be provided.
  • FIG. 2B is a diagram showing another form of the crucible in the vaporizer 14 of FIG.
  • a plurality of crucibles 26 and 27 are provided, and the respective crucibles 26 and 27 are provided with plates 26b and 27b that shield a part of the openings 26a and 27a as needed.
  • the first crucible 26 accommodates the first raw material 1.
  • the second crucible 27 accommodates the second raw material 2. It is easy to control the heating temperature of the first raw material 1 to be different from the heating temperature of the second raw material 2, and the supply amount of the first raw material 1 is different from the supply amount of the second raw material 2.
  • a third crucible or the like may be provided.
  • FIG. 3 is a configuration diagram of a manufacturing apparatus different from that of FIG.
  • a sample table 32 on which the base material 31 is placed is arranged in the chamber 33.
  • a heater is built in the sample base 32.
  • the manufacturing apparatus 30 shown in FIG. 3 is provided with a plurality of vaporizers, unlike the form shown in FIG.
  • the first vaporizer 34a and the second vaporizer 34b are arranged inside the chamber 33, and the carrier gas supply source 35 is arranged outside the chamber 33.
  • the carrier gas may be a gas that does not react with the raw material, and is selected from a rare gas such as argon gas and a nitrogen gas.
  • the carrier gas supply source 35 and the first vaporizer 34a are connected via a pipe 37, a flow rate controller 36a (may include a flow meter), and a pipe 37a, and the carrier gas is predetermined. It is supplied to the first vaporizer 34a at a flow rate.
  • the carrier gas supply source 35 and the second vaporizer 34b are connected via a pipe 37, a flow rate controller 36b (which may include a flow meter) and a pipe 37b, and the carrier gas is the first. Is supplied to the second vaporizer 34b at a predetermined flow rate that is the same as or different from the amount supplied to the vaporizer 34a.
  • the first vaporizer 34a and the second vaporizer 34b are respectively configured so that a board or a crucible for accommodating the raw materials is arranged so that each raw material can be heated and sublimated to generate steam. ing.
  • a heating method various methods such as resistance heating, heater heating, and laser heating are adopted.
  • the first vaporizer 34a is easily controlled so that the heating temperature is the same as or different from that of the second vaporizer 34b.
  • the pipe 38a from the first vaporizer 34a and the pipe 38b from the second vaporizer 34b are connected to the mixer 40. Since the gas path inside the mixer 40 is configured to be zigzag, the medium from the first vaporizer 34a and the medium from the second vaporizer 34b can be sufficiently mixed. it can.
  • the tip of the pipe 41 from the mixer 40 is provided toward the sample base 32, and the nozzle 39 is attached to the outlet of the pipe 41.
  • the nozzle 39 is provided with a slit 39a, and a medium supplied to the nozzle 39 by a pipe 41, in which a mixed medium of a carrier gas and a raw material vapor, is injected from the slit 39a onto the base material 31.
  • a protective cover is used for the chamber 33 to distinguish the carrier gas and the raw material vapor from the installation area of the manufacturing apparatus 30.
  • an opening 33a is provided in the case of a protective cover.
  • the first crucible is arranged in the first vaporizer 34a
  • the second crucible is housed in the second vaporizer 34b.
  • a plate for controlling the size of the opening may be provided in each of the first crucible and the second crucible.
  • the supply amounts of the first raw material steam and the second raw material steam can be precisely adjusted.
  • the supply amounts of the first raw material steam and the second raw material steam are adjusted by either the pressure, the flow rate of the carrier gas supplied to the second vaporizer 34b, the gas pressure, or a combination thereof.
  • FIG. 4 is a schematic configuration diagram of the system 50 used in the exposure test.
  • ClF 3 gas is supplied into the quartz reaction tube 53 via the flow meter 52 from ClF 3 gas supply source 51.
  • the sample table 54 is arranged in the quartz reaction tube 53.
  • the sample 55 is placed on the sample table 54.
  • a temperature sensor 56 is attached to the sample table 54, and the temperature of the sample 55 can be monitored.
  • the lamp heater 57 is installed outside the quartz reaction tube 53, and indirectly heats the sample base 54 and the sample 55.
  • An exhaust device 59 is attached to the quartz reaction tube 53 via an exclusion device 58. ClF 3 gas is removed by the exclusion device 58 and exhausted to the outside.
  • Example 1 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
  • composition formula of the produced composite film was Y 0.43 Al 0.57 O 1.5 .
  • FIG. 5A is a diagram showing XRD (X-ray Diffraction) measurement results of the sample prepared in Example 1 and the heat-treated sample.
  • Each of the uppermost to fourth stages of FIG. 5A shows a sample heat-treated at 900 ° C., a sample heat-treated at 800 ° C., a sample heat-treated at 700 ° C., and a sample not heat-treated, and the lowermost stage. Shows the spectrum of crystal YAG (Y 3 Al 5 O 12 ).
  • the horizontal axis is the diffraction angle 2 ⁇ (deg.), And the vertical axis is the diffraction intensity (cps). Note that ⁇ is the angle of incidence of X-rays on the atomic plane. From FIG. 5A, the sample not heat-treated, the sample heat-treated at 700 ° C, and the sample heat-treated at 800 ° C are all in an amorphous state, but when heated to 900 ° C and fired, YAG (Y 3 Al 5 O 12) ).
  • FIG. 5B is a diagram showing XRD (X-ray Diffraction) measurement results of a sample subjected to an exposure test on the composite membrane prepared in Example 1.
  • XRD X-ray Diffraction
  • FIG. 5B shows the measurement results of the exposure test on the sample heat-treated at 900 ° C., the sample heat-treated at 700 ° C., and the sample not heat-treated.
  • the lower part shows the spectrum of crystal AlF 3 .
  • the horizontal axis is the diffraction angle 2 ⁇ (deg.), And the vertical axis is the diffraction intensity (cps). Note that ⁇ is the angle of incidence of X-rays on the atomic plane. From Figure 5B, the post-exposure test was also detected strong crystal peak of AlF 3 in any of the samples.
  • FIG. 6A and 6B are the measurement results of XPS (X-ray Photoelectron Spectroscopy) of the sample subjected to the exposure test on the composite film prepared in Example 1, and FIG. 6A shows the results of etching the sample for 600 seconds.
  • FIG. 6B is a diagram showing each spectrum when etching for 1200 seconds.
  • the etching depth of Ar ions for 1200 seconds corresponds to about 160 nm.
  • the horizontal axis is the binding energy (eV), and the vertical axis is the intensity (cps). Comparing FIG. 6A and FIG.
  • the spectral intensity of F1s / the spectral intensity of O1s is lower in the depth direction of the sample, and the depth of the composite film is high. It was found that it was difficult for fluorine to enter in the vertical direction. Furthermore, from the spectrum of Y3d, it is inferred that it is an oxide of yttrium.
  • Example 2 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
  • the samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.7 Al 0.3 O 1.5 .
  • the produced composite film was amorphous in both the sample without heat treatment and the sample heated to 700 ° C and 800 ° C, respectively, but when heated to 900 ° C and fired, it became crystalline YAM (Y 4 Al 2 O 9 ). It was confirmed by the measurement of XRD.
  • FIG. 7 is an XRD (X-ray Diffraction) measurement result of a sample subjected to an exposure test on the composite membrane prepared in Example 2.
  • the horizontal axis is the diffraction angle 2 ⁇ (deg.), And the vertical axis is the diffraction intensity (cps). Note that ⁇ is the angle of incidence of X-rays on the atomic plane.
  • Each of the uppermost to third stages of FIG. 7 shows the measurement results of the exposure test on the sample heat-treated at 900 ° C., the sample heat-treated at 700 ° C., and the sample not heat-treated.
  • the lower part shows the spectrum of crystal YF 3 . From FIG. 7, after the exposure test, the crystal peak of YF 3 was strongly detected in all the samples.
  • Comparative Example 1 The raw material of yttrium oxide was put into a crucible, heated and vaporized, and supplied to the sapphire substrate together with the carrier gas N 2 . The substrate was heated to 500 ° C. to form an yttrium oxide film on a sapphire substrate.
  • Produced yttrium oxide film was the XRD measurement, it was found to consist of crystals of Y 2 O 3.
  • the membrane 700 °C, 800 °C, even if a heat treatment by heating 60 min each at 900 ° C., it was confirmed that the crystals of Y 2 O 3.
  • the area around the outer circumference of the base material was cloudy by visual confirmation.
  • Comparative Example 2 The raw material of aluminum oxide was put into a crucible, heated and vaporized, and supplied to the sapphire substrate together with the carrier gas N 2 . The substrate was heated to 500 ° C. to form an aluminum oxide film on the sapphire substrate.
  • the amorphous aluminum oxide film was exposed to ClF 3 for 10 minutes using the system 50 shown in FIG.
  • the temperature measured by the temperature sensor 56 was 600 ° C.
  • Example 3 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
  • composition formula of the produced composite film was Y 0.24 Al 0.76 O 1.5 .
  • the produced composite film was amorphous, and maintained an amorphous state even when heated to 700 ° C.
  • a weak peak of YF 3 was detected from the XRD (X-ray Diffraction) measurement results of the sample subjected to the exposure test to the composite membrane prepared in Example 3. From the results of the optical microscope image, no damage to the sapphire substrate was confirmed in either the sample not heat-treated or the sample heat-treated at 700 ° C.
  • Example 4 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
  • composition formula of the produced composite film was Y 0.47 Al 0.53 O 1.5 .
  • the produced composite film was found to be amorphous by XRD analysis. Even when the produced composite film was heated to 700 ° C., it maintained an amorphous state.
  • Example 5 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a quartz substrate together with a carrier gas N 2 . The quartz substrate was heated to 500 ° C. to form a composite film on the quartz substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
  • the samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.82 Al 0.18 O 1.5 .
  • the produced composite film was found to be amorphous by XRD analysis. Even when the produced composite film was heated to 700 ° C., it maintained an amorphous state.
  • the crystal peak of YF 3 was detected from the XRD (X-ray Diffraction) measurement results of the sample in which the exposure test was performed on the composite film prepared in Example 5.
  • Example 6 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
  • composition formula of the produced composite film was Y 0.76 Al 0.24 O 1.5 .
  • the produced composite film was amorphous.
  • Example 7 Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 .
  • the sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate.
  • each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
  • composition formula of the produced composite film was Y 0.79 Al 0.21 O 1.5 .
  • the produced composite film was amorphous.
  • FIG. 8 summarizes the evaluation of the ClF 3 exposure test.
  • the horizontal axis of FIG. 8 is x / (x + y), and the vertical axis is the film formation temperature or the heat treatment temperature.
  • the double circle plot ( ⁇ ) indicates good and there is no significant change in the membrane surface
  • the circle plot ( ⁇ ) indicates good and there is a slight change in the membrane surface
  • the cross plot (x) indicates that the substrate is damaged and most of the film is peeled off.
  • the amorphous composite film represented by such a chemical formula is crystallized by heat treatment at 900 ° C. or higher for 1 hour or longer.
  • FIG. 15 is a microscopic image of a sample of Al 2 O 3 after an exposure test. From this image, it can be seen that there is no corrosion resistance.
  • Figure 16 is a micrograph after exposure tests on samples of Y 2 O 3. From this image, it can be seen that there is no corrosion resistance.
  • the element ratios used in Examples and Comparative Examples are the ZAF correction method using an energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (SEM) (model number: JSM-IT500) manufactured by JEOL Ltd. Obtained by.
  • the ZAF correction method is a ZAF effect (Z (atomic number effect), A (absorption effect), F (fluorescence), in addition to the relative intensity K of the characteristic X-rays emitted from the sample and the characteristic X-rays measured from the standard sample. This is a method of obtaining the concentration by theoretically correcting it in consideration of the excitation effect)).
  • First raw material 2 Second raw material 10, 30: Manufacturing equipment 11, 31: Base material 12, 32: Sample stand 13, 33: Chamber 14, 34a, 34b: Vaporizer 15, 35: Carrier gas supply Sources 19, 39: Nozzle 50: System for exposure testing

Abstract

Provided are: a composite film that is not susceptible to corrosion, even when exposed to corrosive gas in a high-temperature environment; a component that includes the composite film; and a production method for the composite film. According to the present invention, a carrier gas is used to spray vaporized yttrium oxide and aluminum oxide onto a base material that has been heated to a prescribed temperature that is in the range of 250°C–600°C. The result is a composite film that includes amorphous YxAlyOz (0.24≤x/(x+y)≤0.82, z/(x+y)=1.5) and is not easily affected by corrosive gas, even when exposed thereto in a high-temperature environment.

Description

複合膜、部品及び製造方法Composite membranes, parts and manufacturing methods
 本発明は、イットリウムアルミネートを有する複合膜、それを有する部品及び複合膜の製造方法に関する。 The present invention relates to a composite membrane having yttrium aluminate, a component having the composite membrane, and a method for manufacturing the composite membrane.
 半導体製造プロセス、FPD(Flat Panel Display)製造プロセスなどのプロセスには、高温環境のチャンバー内に腐食性ガスを導入する工程が含まれる。そのため、一般的に、チャンバー内は、溶射により、耐腐食性かつ耐侵食性コーティングが施されている。その際、コーティング材には酸化イットリウム、酸化ジルコニウムが使用されている。また、チャンバー内に配置される部品には、ノズル、締結部品など、複雑な形状を有しているものもあるため、CVD(Chemical Vapor Deposition)法により部品用基材にコーティング材がコーティングされている。 Processes such as a semiconductor manufacturing process and an FPD (Flat Panel Display) manufacturing process include a step of introducing a corrosive gas into a chamber in a high temperature environment. Therefore, in general, the inside of the chamber is coated with a corrosion-resistant and erosion-resistant coating by thermal spraying. At that time, yttrium oxide and zirconium oxide are used as the coating material. In addition, since some parts arranged in the chamber have complicated shapes such as nozzles and fastening parts, the base material for parts is coated with a coating material by the CVD (Chemical Vapor Deposition) method. There is.
 半導体製造プロセス、FPD製造プロセスなどのプロセスにおいては、300℃~400℃以上の高温環境で、F(フッ素)系腐食性ガスのクリーニング工程が頻繁に行われることがある。酸化イットリウムは、F系腐食性ガスに曝露されると、容易にフッ化され、フッ化イットリウムになる。このとき、F系腐食性ガスの影響は、酸化イットリウムだけでなくその下地の基材にも及ぶ。 In processes such as semiconductor manufacturing process and FPD manufacturing process, the cleaning process of F (fluorine) corrosive gas may be frequently performed in a high temperature environment of 300 ° C to 400 ° C or higher. When exposed to F-based corrosive gas, yttrium oxide is easily fluorinated to yttrium fluoride. At this time, the influence of the F-based corrosive gas extends not only to yttrium oxide but also to the underlying base material.
 CVD法で作製されたアモルファス酸化アルミニウムは、F系腐食性ガスに曝露されると、フッ化され、フッ化アルミニウムになる。なお、酸化アルミニウムは、400℃以上で結晶化し、結晶粒子が成長し、緻密性が損なわれる。基材となるサファイヤガラスは、化学式Alで示され、F系腐食性ガスに曝露されると、容易にフッ化され、フッ化アルミニウムになり、サファイヤガラスの表面が削られることになる。 Amorphous aluminum oxide produced by the CVD method is fluorinated to aluminum fluoride when exposed to an F-based corrosive gas. In addition, aluminum oxide crystallizes at 400 ° C. or higher, crystal particles grow, and the denseness is impaired. The base material, sapphire glass, is represented by the chemical formula Al 2 O 3 , and when exposed to F-based corrosive gas, it is easily fluorinated to aluminum fluoride, and the surface of the sapphire glass is scraped. ..
 本発明は、このような課題を解決するために、高温環境下で腐食性ガスに曝露しても腐食の影響を受け難い複合膜、それを有する部品及び複合膜の製造方法を提供することを目的とする。 In order to solve such a problem, the present invention provides a composite film that is not easily affected by corrosion even when exposed to a corrosive gas in a high temperature environment, a component having the same, and a method for manufacturing the composite film. The purpose.
 本発明の一つの観点は、アモルファスYAl(ただし、0.24≦x/(x+y)≦0.82,z/(x+y)=1.5)を有する複合膜である。 One aspect of the present invention is a composite film having an amorphous Y x Al y Oz (where 0.24 ≦ x / (x + y) ≦ 0.82, z / (x + y) = 1.5).
 本発明の別の観点は、基材と、前記基材上に設けられた前記複合膜と、を有する部品である。 Another aspect of the present invention is a component having a base material and the composite film provided on the base material.
 本発明の更なる別の観点は、250℃以上600℃以下の範囲の所定の温度に基材を加熱した状態で、酸化イットリウム、酸化アルミニウムの各原料をそれぞれ気化し、キャリアガスにより気化原料を前記基材へ噴射する、複合膜の製造方法である。 Another aspect of the present invention is to vaporize each of the yttrium oxide and aluminum oxide raw materials in a state where the base material is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower, and use a carrier gas to vaporize the raw materials. This is a method for producing a composite film, which is sprayed onto the substrate.
 本発明によれば、高温環境下で腐食性ガスに曝露しても腐食の影響を受け難い複合膜、それを有する部品及び複合膜の製造方法が提供される。 According to the present invention, there is provided a composite film that is not easily affected by corrosion even when exposed to a corrosive gas in a high temperature environment, a component having the composite film, and a method for manufacturing the composite film.
図1は、本発明の実施形態に係る複合膜を製造するための製造装置の構成図である。FIG. 1 is a block diagram of a manufacturing apparatus for manufacturing a composite film according to an embodiment of the present invention. 図2Aは、図1の気化器内の坩堝の一形態を示す図である。FIG. 2A is a diagram showing a form of a crucible in the vaporizer of FIG. 図2Bは、図1の気化器内の坩堝の別の一形態を示す図である。FIG. 2B is a diagram showing another form of the crucible in the vaporizer of FIG. 図3は、図1とは異なる製造装置の構成図である。FIG. 3 is a configuration diagram of a manufacturing apparatus different from that of FIG. 図4は、曝露テストで使用したシステムの構成図である。FIG. 4 is a block diagram of the system used in the exposure test. 図5Aは、実施例1で作製したサンプル及び熱処理をしたサンプルのXRD(X-ray Diffraction)測定結果を示す図である。FIG. 5A is a diagram showing XRD (X-ray Diffraction) measurement results of the sample prepared in Example 1 and the heat-treated sample. 図5Bは、実施例1において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果である。FIG. 5B is an XRD (X-ray Diffraction) measurement result of a sample in which an exposure test was performed on the composite membrane prepared in Example 1. 図6Aは、実施例1において作製した複合膜に対して曝露テストを行ったサンプルについて、サンプルを600秒エッチングしたときのXPS(X-ray Photoelectron Spectroscopy)の測定結果を示す図である。FIG. 6A is a diagram showing the measurement results of XPS (X-ray Photoelectron Spectroscopy) when the sample was etched for 600 seconds with respect to the sample subjected to the exposure test on the composite film prepared in Example 1. 図6Bは、実施例1において作製した複合膜に対して曝露テストを行ったサンプルについて、サンプルを1200秒エッチングしたときのXPS(X-ray Photoelectron Spectroscopy)の測定結果を示す図である。FIG. 6B is a diagram showing the measurement results of XPS (X-ray Photoelectron Spectroscopy) when the sample was etched for 1200 seconds with respect to the sample subjected to the exposure test on the composite film prepared in Example 1. 図7は、実施例2において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果である。FIG. 7 is an XRD (X-ray Diffraction) measurement result of a sample subjected to an exposure test on the composite membrane prepared in Example 2. 図8は、ClFの曝露テストの評価をまとめたものである。FIG. 8 summarizes the evaluation of the ClF 3 exposure test. 図9は、x/(x+y)=0.24のサンプルを700℃で熱処理して曝露テストした後の顕微鏡像である。FIG. 9 is a microscopic image of a sample of x / (x + y) = 0.24 after heat treatment at 700 ° C. and an exposure test. 図10は、x/(x+y)=0.43のサンプルについて曝露テストした後の顕微鏡像である。FIG. 10 is a microscopic image of a sample of x / (x + y) = 0.43 after an exposure test. 図11は、x/(x+y)=0.70のサンプルについて曝露テストした後の顕微鏡像である。FIG. 11 is a microscopic image of a sample of x / (x + y) = 0.70 after an exposure test. 図12は、x/(x+y)=0.76のサンプルについて曝露テストした後の顕微鏡像である。FIG. 12 is a microscopic image of a sample of x / (x + y) = 0.76 after an exposure test. 図13は、x/(x+y)=0.79のサンプルについて曝露テストした後の顕微鏡像である。FIG. 13 is a microscopic image of a sample of x / (x + y) = 0.79 after an exposure test. 図14は、x/(x+y)=0.82のサンプルを700℃で熱処理して曝露テストした後の顕微鏡像である。FIG. 14 is a microscope image of a sample of x / (x + y) = 0.82 after heat treatment at 700 ° C. and an exposure test. 図15は、Alのサンプルについて曝露テストした後の顕微鏡像である。FIG. 15 is a microscopic image of a sample of Al 2 O 3 after an exposure test. 図16は、Yのサンプルについて曝露テストした後の顕微鏡像である。Figure 16 is a micrograph after exposure tests on samples of Y 2 O 3.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
1 複合膜と部品
 本発明の実施形態に係る複合膜は、アモルファスYAl(ただし、0.24≦x/(x+y)≦0.82,z/(x+y)=1.5)で構成される。複合膜は、上記化学式で示される化合物である。ここで、複合膜は、10nm以上10μm以下の厚みを有することが好ましい。より好ましくは、複合膜は100nm以上1μm以下の厚みを有するとよい。複合膜が比較的平坦な形状を有する場合には、複合膜が少なくとも10nmの厚みを有すると、複合膜が耐腐食性コーティング膜として十分機能するからである。複合膜が比較的平坦な形状ではなく凹凸を有する場合には、少なくとも100nmの平均厚みを有すると、極端に薄い部分が生じても複合膜が耐腐食性コーティング膜として十分機能するからである。膜が厚いと成膜に時間を要するだけでなく、成膜条件により1μmを超えると複合膜にクラックが発生することがあり、生産性が悪くなるからである。複合膜は、不可避的に上記化学式以外の他の元素、例えば、製造の際のキャリアガスの元素、カーボンなどを含むことがある。
1 composite film according to an embodiment of the composite film and the component present invention, amorphous Y x Al y O z (however, 0.24 ≦ x / (x + y) ≦ 0.82, z / (x + y) = 1.5) Consists of. The composite membrane is a compound represented by the above chemical formula. Here, the composite film preferably has a thickness of 10 nm or more and 10 μm or less. More preferably, the composite film has a thickness of 100 nm or more and 1 μm or less. This is because when the composite film has a relatively flat shape, the composite film sufficiently functions as a corrosion-resistant coating film when the composite film has a thickness of at least 10 nm. This is because when the composite film has irregularities rather than a relatively flat shape, if it has an average thickness of at least 100 nm, the composite film sufficiently functions as a corrosion-resistant coating film even if an extremely thin portion is generated. This is because if the film is thick, it takes time to form a film, and if it exceeds 1 μm depending on the film forming conditions, cracks may occur in the composite film, resulting in poor productivity. The composite membrane may inevitably contain elements other than the above chemical formulas, for example, an element of a carrier gas during production, carbon, and the like.
 複合膜は、900℃以上に加熱すると結晶化し得る性質を有する。複合膜の組成式にも依存するが、YAG(YAl12),YAP(YAlO),YAM(YAl)の何れかの化学式で表される結晶性を有する。 The composite film has a property of being able to crystallize when heated to 900 ° C. or higher. Although it depends on the composition formula of the composite film, it has a crystallinity represented by any one of YAG (Y 3 Al 5 O 12 ), YAP (YAlO 3 ), and YAM (Y 4 Al 2 O 9 ).
 複合膜は、ハロゲンを含有する腐食性ガスに対して耐腐食性を有する。複合膜は、耐腐食性を有することから、耐侵食性を有する。腐食性ガスは、ハロゲンを含有していればよく、例えば、F、NF、ClFなどが挙げられる。腐食性ガスは、プラズマ化されていてもよい。 The composite film has corrosion resistance to corrosive gases containing halogen. Since the composite film has corrosion resistance, it has erosion resistance. The corrosive gas may contain halogen, and examples thereof include F 2 , NF 3 , and ClF 3 . The corrosive gas may be turned into plasma.
 基材、即ち、ボルト、ナット、ワッシャの締結部品の基材、ノズルなどの各種形状を有する基材と、基材上にコーティングされた上記組成式を有する複合膜により、加工部品が提供される。ここで、基材は、各種の表面処理を施して構成されていてもよく、又は、厚み方向に異なる複数の材質で構成されていてもよい。 Processed parts are provided by a base material, that is, a base material having various shapes such as a base material for fastening parts of bolts, nuts and washers, a nozzle, and a composite film having the above composition formula coated on the base material. .. Here, the base material may be formed by applying various surface treatments, or may be made of a plurality of materials different in the thickness direction.
2 製造方法
 本発明の実施形態に係る複合膜の製造方法は次の通りである。
2 Manufacturing method The manufacturing method of the composite film according to the embodiment of the present invention is as follows.
 先ず、基材をチャンバー内に配置する。基材は、平板状のものに限ることなく、ボルト、ナット、ワッシャの締結部品、ノズルなどの各種形状を有する部品の基材であってもよい。また、基材は、製造時の加熱温度に耐えるものであれば材質に依存しない。 First, the base material is placed in the chamber. The base material is not limited to a flat plate shape, and may be a base material of parts having various shapes such as bolts, nuts, washer fastening parts, and nozzles. Further, the base material does not depend on the material as long as it can withstand the heating temperature during manufacturing.
 次に、酸化イットリウム、酸化アルミニウムの各原料を気化器内に配置する。イットリウム、アルミニウムをそれぞれ含むものを気化することができれば、原料には特に限定されない。また、原料の数も二種類である必要はなく、三種類以上でもよい。酸化イットリウムの原料としては、例えばトリスアセチルアセトナートイットリウムのようなアセチルアセトナート金属錯体、トリス(ジ―ピパロイルメタナート)イットリウムのようなジ―ピパロイルメタン金属錯体の金属錯体等が好適に用いられる。酸化アルミニウムの原料としては、例えばトリスアセチルアセトナートアルミニウムのようなアセチルアセトナート金属錯体、トリス(ジ―ピパロイルメタナート)アルミニウムのようなジ―ピパロイルメタン金属錯体の金属錯体等が挙げられる。気化は、電流加熱、ヒーター加熱、電子線、レーザー加熱の何れか又は複数から選択される。ここで、気化は昇華という意味を含む。 Next, each raw material of yttrium oxide and aluminum oxide is placed in the vaporizer. The raw material is not particularly limited as long as it can vaporize yttrium and aluminum. Further, the number of raw materials does not have to be two, and may be three or more. As the raw material of yttrium oxide, for example, an acetylacetonate metal complex such as trisacetylacetonatoittrium, a metal complex of a di-piparoylmethane metal complex such as tris (di-piparoylmethanate) yttrium, and the like are preferably used. Examples of the raw material of aluminum oxide include an acetylacetonate metal complex such as trisacetylacetonate aluminum, a metal complex of a di-piparoylmethane metal complex such as tris (di-pipaloylmethanate) aluminum, and the like. The vaporization is selected from one or more of current heating, heater heating, electron beam, laser heating. Here, vaporization includes the meaning of sublimation.
 次に、基材を250℃以上600℃以下の範囲の所定の温度に加熱する。少なくとも250℃に加熱しておけば、基材上に成膜することができる。この温度よりも低温の加熱では堆積速度が極端に遅くなり、生産性の観点から好ましくない。また、低温の加熱では、複合膜中に、前述の組成式を構成する酸素、イットリウム、アルミニウム以外の他の元素が不可避的に含まれ易くそれにより耐腐食性を損なうため、機能性の観点から好ましくない。逆に、600℃を超えると、気相中で粒子が成長し易くなり、複合膜の緻密性が悪くなるので好ましくない。600℃を超えると原料によっては、微粒子が発生することがある。基材の加熱方法は、ヒーター加熱、ランプ加熱、レーザー加熱などの各種の方法から選択される。 Next, the substrate is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower. If it is heated to at least 250 ° C., a film can be formed on the substrate. Heating at a temperature lower than this temperature makes the deposition rate extremely slow, which is not preferable from the viewpoint of productivity. Further, in low temperature heating, elements other than oxygen, yttrium, and aluminum constituting the above-mentioned composition formula are unavoidably contained in the composite film, which impairs corrosion resistance, and therefore, from the viewpoint of functionality. Not preferable. On the other hand, if the temperature exceeds 600 ° C., the particles tend to grow in the gas phase and the density of the composite film deteriorates, which is not preferable. If the temperature exceeds 600 ° C., fine particles may be generated depending on the raw material. The method for heating the base material is selected from various methods such as heater heating, lamp heating, and laser heating.
 そして、キャリアガスを気化器に導入しながら、原料を加熱し、気化器から噴出する原料の蒸気をキャリアガスのフローに沿って、基材上に導入する。ここで、各原料が気化する温度であれば、原料の加熱温度はいかなる温度でもよい。加熱は、原料毎に行われても、複数の原料を纏めて行われてもよい。原料毎に行うことにより、原料の蒸気量を調整し、所定の組成の複合膜を得ることができる。複数の原料を纏めて加熱する場合には、原料毎に噴出する量がコントロールできるように、原料毎に異なる大きさの開口を設けることが好ましい。 Then, while introducing the carrier gas into the vaporizer, the raw material is heated, and the vapor of the raw material ejected from the vaporizer is introduced onto the base material along the flow of the carrier gas. Here, the heating temperature of the raw materials may be any temperature as long as each raw material vaporizes. The heating may be performed for each raw material, or a plurality of raw materials may be collectively performed. By performing this for each raw material, the amount of vapor of the raw material can be adjusted and a composite film having a predetermined composition can be obtained. When a plurality of raw materials are heated together, it is preferable to provide openings having different sizes for each raw material so that the amount of ejection for each raw material can be controlled.
 以上の手順により、250℃以上600℃以下の範囲の所定の温度に基材を加熱した状態で、酸化イットリウム、酸化アルミニウムの各原料をそれぞれ気化し、キャリアガスにより気化原料の基材への噴射を行う。これにより、前述の組成式で表される組成を有する複合膜を得ることができる。 According to the above procedure, the yttrium oxide and aluminum oxide raw materials are vaporized in a state where the base material is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower, and the vaporized raw materials are injected onto the base material by the carrier gas. I do. As a result, a composite film having a composition represented by the above-mentioned composition formula can be obtained.
 このようにして得られる複合膜に対して成膜時の温度よりも高い温度で加熱して、膜の状態をさらに適切な状態とすることができる。このときの処理温度は、複合膜が結晶化する温度よりも低い温度である必要がある。 The composite film thus obtained can be heated at a temperature higher than the temperature at the time of film formation to make the state of the film more appropriate. The treatment temperature at this time needs to be lower than the temperature at which the composite film crystallizes.
3 製造装置
 本発明の実施形態に係る製造装置について説明する。図1は、本発明の実施形態に係る複合膜を製造するための製造装置の構成図である。本発明の実施形態に係る製造装置10において、図1に示すように、基材11を載置するサンプル台12がチャンバー13内に配置されている。サンプル台12には例えばヒーターが内蔵されている。気化器14がチャンバー13内に配置され、キャリアガス供給源15がチャンバー13外に配置されている。キャリアガスは、原料と反応しないガスであればよく、例えばアルゴンガスなどの希ガス、窒素ガスから選択される。キャリアガス供給源15と気化器14との間は、配管17a、流量計16及び配管17bを経由して接続されており、キャリアガスが所定の流量で気化器14に供給される。
3 Manufacturing device The manufacturing device according to the embodiment of the present invention will be described. FIG. 1 is a block diagram of a manufacturing apparatus for manufacturing a composite film according to an embodiment of the present invention. In the manufacturing apparatus 10 according to the embodiment of the present invention, as shown in FIG. 1, a sample table 12 on which the base material 11 is placed is arranged in the chamber 13. For example, a heater is built in the sample base 12. The vaporizer 14 is arranged inside the chamber 13 and the carrier gas supply source 15 is arranged outside the chamber 13. The carrier gas may be a gas that does not react with the raw material, and is selected from a rare gas such as argon gas and a nitrogen gas. The carrier gas supply source 15 and the vaporizer 14 are connected to each other via a pipe 17a, a flow meter 16, and a pipe 17b, and the carrier gas is supplied to the vaporizer 14 at a predetermined flow rate.
 気化器14は、原料を収容するためのボード又は坩堝が配置され、原料を加熱して昇華させて蒸気を発生することができるように構成されている。加熱の方法は、抵抗加熱、ヒーター加熱、レーザー加熱など各種の方法が採用される。気化器14からの配管18がその先端をサンプル台12に向けて設けられており、配管18の出口にはノズル19が装着されている。ノズル19にはスリット19aが設けられ、配管18により供給された媒体、ここではキャリアガスと原料蒸気との混合媒体が、スリット19aから基材11に噴射される。 The vaporizer 14 is configured so that a board or a crucible for accommodating the raw material is arranged so that the raw material can be heated and sublimated to generate steam. As a heating method, various methods such as resistance heating, heater heating, and laser heating are adopted. The pipe 18 from the vaporizer 14 is provided with its tip facing the sample base 12, and a nozzle 19 is attached to the outlet of the pipe 18. A slit 19a is provided in the nozzle 19, and a medium supplied by the pipe 18, a mixed medium of the carrier gas and the raw material vapor, is injected from the slit 19a into the base material 11.
 チャンバー13は、キャリアガス及び原料蒸気を、製造装置10の設置領域と区別するための防護カバーが用いられる。防護カバーの場合には、開放口13aが設けられる。このような装置は、大気圧CVD装置と呼ばれる。 A protective cover is used for the chamber 13 to distinguish the carrier gas and the raw material vapor from the installation area of the manufacturing apparatus 10. In the case of a protective cover, an opening 13a is provided. Such a device is called an atmospheric pressure CVD device.
 図2Aは、図1の気化器14内の坩堝の一形態を示す図である。坩堝21の上方には、複数の開口21a,21bを有する板22が配置される。第一の開口21aの下方には第一の原料1が収容され、第二の開口21bの下方には第二の原料2が収容され、第一の原料1、第二の原料2とも同時にほぼ同一の温度に加熱される。第一の開口21aの形状、大きさの少なくとも何れか又は双方が第二の開口21bの形状、大きさの何れか又は双方と異なるため、第一の原料の供給量が第二の原料の供給量と異なる。なお、三種類以上の原料を用いる場合には、第三の開口などそれ以上のスリットを設ければよい。 FIG. 2A is a diagram showing a form of a crucible in the vaporizer 14 of FIG. A plate 22 having a plurality of openings 21a and 21b is arranged above the crucible 21. The first raw material 1 is housed below the first opening 21a, the second raw material 2 is housed below the second opening 21b, and both the first raw material 1 and the second raw material 2 are substantially at the same time. It is heated to the same temperature. Since at least one or both of the shapes and sizes of the first opening 21a are different from either or both of the shapes and sizes of the second opening 21b, the supply amount of the first raw material is the supply of the second raw material. Different from the amount. When three or more kinds of raw materials are used, more slits such as a third opening may be provided.
 図2Bは、図1の気化器14内の坩堝の別の一形態を示す図である。複数の坩堝26,27が備えられ、それぞれの坩堝26,27には必要に応じて開口26a,27aの一部を遮蔽する板26b,27bが設けられる。第一の坩堝26は、第一の原料1を収容するものである。第二の坩堝27は、第二の原料2を収容するものである。第一の原料1の加熱温度が第二の原料2の加熱温度と異なるように制御し易く、第一の原料1の供給量が第二の原料2の供給量と異なる。なお、三種類以上の原料を用いる場合には、第三の坩堝などを設ければよい。 FIG. 2B is a diagram showing another form of the crucible in the vaporizer 14 of FIG. A plurality of crucibles 26 and 27 are provided, and the respective crucibles 26 and 27 are provided with plates 26b and 27b that shield a part of the openings 26a and 27a as needed. The first crucible 26 accommodates the first raw material 1. The second crucible 27 accommodates the second raw material 2. It is easy to control the heating temperature of the first raw material 1 to be different from the heating temperature of the second raw material 2, and the supply amount of the first raw material 1 is different from the supply amount of the second raw material 2. When three or more kinds of raw materials are used, a third crucible or the like may be provided.
 図3は、図1とは異なる製造装置の構成図である。本発明の実施形態に係る製造装置30において、図3に示すように、基材31を載置するサンプル台32がチャンバー33内に配置されている。サンプル台32には例えばヒーターが内蔵されている。図3に示す製造装置30は、図1に示す形態と異なり、複数の気化器が設けられている。第一の気化器34aと第二の気化器34bがチャンバー33内に配置され、キャリアガス供給源35がチャンバー33外に配置されている。キャリアガスは、原料と反応しないガスであればよく、例えばアルゴンガスなどの希ガス、窒素ガスから選択される。キャリアガス供給源35と第一の気化器34aとの間は、配管37、流量制御器36a(流量計を含んでもよい。)及び配管37aを経由して接続されており、キャリアガスが所定の流量で第一の気化器34aに供給される。キャリアガス供給源35と第二の気化器34bとの間は、配管37、流量制御器36b(流量計を含んでもよい。)及び配管37bを経由して接続されており、キャリアガスが第一の気化器34aへの供給量と同一又は異なる所定の流量で第二の気化器34bに供給される。 FIG. 3 is a configuration diagram of a manufacturing apparatus different from that of FIG. In the manufacturing apparatus 30 according to the embodiment of the present invention, as shown in FIG. 3, a sample table 32 on which the base material 31 is placed is arranged in the chamber 33. For example, a heater is built in the sample base 32. The manufacturing apparatus 30 shown in FIG. 3 is provided with a plurality of vaporizers, unlike the form shown in FIG. The first vaporizer 34a and the second vaporizer 34b are arranged inside the chamber 33, and the carrier gas supply source 35 is arranged outside the chamber 33. The carrier gas may be a gas that does not react with the raw material, and is selected from a rare gas such as argon gas and a nitrogen gas. The carrier gas supply source 35 and the first vaporizer 34a are connected via a pipe 37, a flow rate controller 36a (may include a flow meter), and a pipe 37a, and the carrier gas is predetermined. It is supplied to the first vaporizer 34a at a flow rate. The carrier gas supply source 35 and the second vaporizer 34b are connected via a pipe 37, a flow rate controller 36b (which may include a flow meter) and a pipe 37b, and the carrier gas is the first. Is supplied to the second vaporizer 34b at a predetermined flow rate that is the same as or different from the amount supplied to the vaporizer 34a.
 第一の気化器34a,第二の気化器34bは、それぞれ、原料を収容するためのボード又は坩堝が配置され、各原料を加熱して昇華させて蒸気を発生することができるように構成されている。加熱の方法は、抵抗加熱、ヒーター加熱、レーザー加熱など各種の方法が採用される。図1に示す製造装置10と異なり、図3に示す製造装置30では、第一の気化器34aは、第二の気化器34bと加熱温度が同一又は異なるように容易に制御される。 The first vaporizer 34a and the second vaporizer 34b are respectively configured so that a board or a crucible for accommodating the raw materials is arranged so that each raw material can be heated and sublimated to generate steam. ing. As a heating method, various methods such as resistance heating, heater heating, and laser heating are adopted. Unlike the manufacturing apparatus 10 shown in FIG. 1, in the manufacturing apparatus 30 shown in FIG. 3, the first vaporizer 34a is easily controlled so that the heating temperature is the same as or different from that of the second vaporizer 34b.
 第一の気化器34aからの配管38a、第二の気化器34bからの配管38bが混合器40に接続されている。混合器40は、その内部のガス経路がジグザグとなるように構成されていることにより、第一の気化器34aからの媒体と第二の気化器34bからの媒体とが十分に混合することができる。混合器40からの配管41は、その先端をサンプル台32に向けて設けられており、配管41の出口にはノズル39が装着されている。ノズル39にはスリット39aが設けられ、配管41によりノズル39に供給された媒体、ここではキャリアガスと原料蒸気との混合媒体が、スリット39aから基材31に噴射される。 The pipe 38a from the first vaporizer 34a and the pipe 38b from the second vaporizer 34b are connected to the mixer 40. Since the gas path inside the mixer 40 is configured to be zigzag, the medium from the first vaporizer 34a and the medium from the second vaporizer 34b can be sufficiently mixed. it can. The tip of the pipe 41 from the mixer 40 is provided toward the sample base 32, and the nozzle 39 is attached to the outlet of the pipe 41. The nozzle 39 is provided with a slit 39a, and a medium supplied to the nozzle 39 by a pipe 41, in which a mixed medium of a carrier gas and a raw material vapor, is injected from the slit 39a onto the base material 31.
 チャンバー33は、キャリアガス及び原料蒸気を、製造装置30の設置領域と区別するための防護カバーが用いられる。防護カバーの場合には、開放口33aが設けられる。 A protective cover is used for the chamber 33 to distinguish the carrier gas and the raw material vapor from the installation area of the manufacturing apparatus 30. In the case of a protective cover, an opening 33a is provided.
 ここで、第一の気化器34aには第一の坩堝が配置され、第二の気化器34bには第二の坩堝が収容される。第一の坩堝、第二の坩堝には、それぞれ、開口の大きさを制御するための板が設けられてもよい。図3に示す製造装置30では、第一の原料蒸気と第二の原料蒸気の各供給量を精密に調整することができる。第一の坩堝、第二の坩堝の加熱温度、第一の坩堝での開口、第二の坩堝での開口の形状、大きさ、第一の気化器34aに供給されるキャリアガスの流量・ガス圧、第二の気化器34bに供給されるキャリアガスの流量・ガス圧の何れか又はこれらの組み合わせにより、第一の原料蒸気、第二の原料蒸気の各供給量が調整される。 Here, the first crucible is arranged in the first vaporizer 34a, and the second crucible is housed in the second vaporizer 34b. A plate for controlling the size of the opening may be provided in each of the first crucible and the second crucible. In the manufacturing apparatus 30 shown in FIG. 3, the supply amounts of the first raw material steam and the second raw material steam can be precisely adjusted. The heating temperature of the first 坩 堝, the second 坩 堝, the opening in the first 坩 堝, the shape and size of the opening in the second 坩, the flow rate and gas of the carrier gas supplied to the first vaporizer 34a. The supply amounts of the first raw material steam and the second raw material steam are adjusted by either the pressure, the flow rate of the carrier gas supplied to the second vaporizer 34b, the gas pressure, or a combination thereof.
 以下、実施例を詳細に説明する。なお、実施例は、本発明の範囲を限定するものではない。 Hereinafter, examples will be described in detail. The examples do not limit the scope of the present invention.
 実施例及び比較例での各膜の耐腐食性を確認するために、ClFガスによる曝露テストを行った。図4は、曝露テストで使用したシステム50の概略構成図である。ClFガス供給源51から流量計52を経由して石英反応管53にClFガスが供給される。サンプル台54が石英反応管53内に配置されている。サンプル55がサンプル台54に配置される。サンプル台54には温度センサ56が取り付けられており、サンプル55の温度がモニタリングされ得る。ランプヒーター57が石英反応管53外に設置されており、サンプル台54及びサンプル55を間接的に加熱している。石英反応管53には除外装置58を経由して排気装置59が取り付けられている。除外装置58によりClFガスを取り除き、外部に排気している。 To confirm the corrosion resistance of the films in Examples and Comparative Examples were subjected to exposure test by ClF 3 gas. FIG. 4 is a schematic configuration diagram of the system 50 used in the exposure test. ClF 3 gas is supplied into the quartz reaction tube 53 via the flow meter 52 from ClF 3 gas supply source 51. The sample table 54 is arranged in the quartz reaction tube 53. The sample 55 is placed on the sample table 54. A temperature sensor 56 is attached to the sample table 54, and the temperature of the sample 55 can be monitored. The lamp heater 57 is installed outside the quartz reaction tube 53, and indirectly heats the sample base 54 and the sample 55. An exhaust device 59 is attached to the quartz reaction tube 53 via an exclusion device 58. ClF 3 gas is removed by the exclusion device 58 and exhausted to the outside.
実施例1
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜においてイットリウム(Y)よりもアルミニウム(Al)が多くなるように調整した。
Example 1
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.43Al0.571.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.43 Al 0.57 O 1.5 .
 作製した複合膜を大気雰囲気中で700℃、800℃、900℃に加熱して熱処理をした。図5Aは、実施例1で作製したサンプル及び熱処理をしたサンプルのXRD(X-ray Diffraction)測定結果を示す図である。図5Aの最上段から第四段目までのそれぞれは、900℃の熱処理をしたサンプル、800℃の熱処理をしたサンプル、700℃の熱処理をしたサンプル、熱処理をしないサンプルを示しており、最下段には結晶YAG(YAl12)のスペクトルを示している。横軸は回折角度2θ(deg.)であり、縦軸は回折強度(cps)である。なお、θはX線の原子面への入射角度である。図5Aから、熱処理をしないサンプル、700℃熱処理をしたサンプル、800℃の熱処理をしたサンプルの何れもアモルファスの状態であるが、900℃に加熱して焼成すると、YAG(YAlO12)となることが分かった。 The produced composite membrane was heated to 700 ° C., 800 ° C., and 900 ° C. in an air atmosphere for heat treatment. FIG. 5A is a diagram showing XRD (X-ray Diffraction) measurement results of the sample prepared in Example 1 and the heat-treated sample. Each of the uppermost to fourth stages of FIG. 5A shows a sample heat-treated at 900 ° C., a sample heat-treated at 800 ° C., a sample heat-treated at 700 ° C., and a sample not heat-treated, and the lowermost stage. Shows the spectrum of crystal YAG (Y 3 Al 5 O 12 ). The horizontal axis is the diffraction angle 2θ (deg.), And the vertical axis is the diffraction intensity (cps). Note that θ is the angle of incidence of X-rays on the atomic plane. From FIG. 5A, the sample not heat-treated, the sample heat-treated at 700 ° C, and the sample heat-treated at 800 ° C are all in an amorphous state, but when heated to 900 ° C and fired, YAG (Y 3 Al 5 O 12) ).
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストの後、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. There was also no change in the sapphire substrate after the exposure test.
 図5Bは、実施例1において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果を示す図である。図5Bの最上段から第三段目までのそれぞれは、900℃の熱処理をしたサンプル、700℃の熱処理をしたサンプル、熱処理をしないサンプルに対して曝露テストをした測定結果を示しており、最下段には結晶AlFのスペクトルを示している。横軸は、回折角度2θ(deg.)であり、縦軸は回折強度(cps)である。なお、θはX線の原子面への入射角度である。図5Bから、曝露テスト後では、何れのサンプルにおいてもAlFの結晶ピークを強く検出した。 FIG. 5B is a diagram showing XRD (X-ray Diffraction) measurement results of a sample subjected to an exposure test on the composite membrane prepared in Example 1. Each of the top to third stages of FIG. 5B shows the measurement results of the exposure test on the sample heat-treated at 900 ° C., the sample heat-treated at 700 ° C., and the sample not heat-treated. The lower part shows the spectrum of crystal AlF 3 . The horizontal axis is the diffraction angle 2θ (deg.), And the vertical axis is the diffraction intensity (cps). Note that θ is the angle of incidence of X-rays on the atomic plane. From Figure 5B, the post-exposure test was also detected strong crystal peak of AlF 3 in any of the samples.
 図6A及び図6Bは、実施例1において作製した複合膜に対して曝露テストを行ったサンプルのXPS(X-ray Photoelectron Spectroscopy)の測定結果であり、図6Aはサンプルを600秒エッチングしたとき、図6Bは1200秒エッチングしたときの各スペクトルを示す図である。1200秒のArイオンのエッチング深さは約160nmに相当する。横軸は結合エネルギー(eV)、縦軸は強度(cps)である。F1sのスペクトル強度とO1sのスペクトル強度についてバックグランドを差し引いた比率について、図6Aと図6Bと比較すると、サンプルの深さ方向に、F1sのスペクトル強度/O1sのスペクトル強度が低く、複合膜の深さ方向に対してフッ素が進入しにくくなっていることが分かった。さらに、Y3dのスペクトルから、イットリウムの酸化物であると推察される。 6A and 6B are the measurement results of XPS (X-ray Photoelectron Spectroscopy) of the sample subjected to the exposure test on the composite film prepared in Example 1, and FIG. 6A shows the results of etching the sample for 600 seconds. FIG. 6B is a diagram showing each spectrum when etching for 1200 seconds. The etching depth of Ar ions for 1200 seconds corresponds to about 160 nm. The horizontal axis is the binding energy (eV), and the vertical axis is the intensity (cps). Comparing FIG. 6A and FIG. 6B with respect to the ratio of the spectral intensity of F1s and the spectral intensity of O1s minus the background, the spectral intensity of F1s / the spectral intensity of O1s is lower in the depth direction of the sample, and the depth of the composite film is high. It was found that it was difficult for fluorine to enter in the vertical direction. Furthermore, from the spectrum of Y3d, it is inferred that it is an oxide of yttrium.
 図5A及び図5BのXRD、図6A及び図6BのXPSの各測定結果から、実施例1で作製した複合膜ではアルミニウム(Al)はフッ化され易くなっているが、イットリウム(Y)はフッ化され難くイットリウムの酸化物が残存しており、実施例1で作製した複合膜は、熱処理の有無を問わず、ClFガスに対する耐腐食性があることが分かった。 From the measurement results of XRD of FIGS. 5A and 5B and XPS of FIGS. 6A and 6B, aluminum (Al) is easily fluorinated in the composite film produced in Example 1, but yttrium (Y) is corroded. It was found that the yttrium oxide was hard to be formed and the oxide of yttrium remained, and the composite film produced in Example 1 had corrosion resistance to ClF 3 gas regardless of the presence or absence of heat treatment.
実施例2
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜においてアルミニウム(Al)よりもイットリウム(Y)が多くなるように調整した。
Example 2
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.7Al0.31.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.7 Al 0.3 O 1.5 .
 作製した複合膜は、加熱処理なしのサンプル、700℃、800℃にそれぞれ加熱したサンプルの何れもアモルファスであったが、900℃に加熱して焼成すると結晶YAM(YAl)となることを、XRDの測定により確認した。 The produced composite film was amorphous in both the sample without heat treatment and the sample heated to 700 ° C and 800 ° C, respectively, but when heated to 900 ° C and fired, it became crystalline YAM (Y 4 Al 2 O 9 ). It was confirmed by the measurement of XRD.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストを行っても、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. In addition, the exposure test did not change the sapphire substrate.
 図7は、実施例2において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果である。横軸は、回折角度2θ(deg.)であり、縦軸は回折強度(cps)である。なお、θはX線の原子面への入射角度である。図7の最上段から第三段目までのそれぞれは、900℃の熱処理をしたサンプル、700℃の熱処理をしたサンプル、熱処理をしないサンプルに対して曝露テストをした測定結果を示しており、最下段には結晶YFのスペクトルを示している。図7から、暴露テスト後では、何れのサンプルにおいてもYFの結晶ピークを強く検出した。 FIG. 7 is an XRD (X-ray Diffraction) measurement result of a sample subjected to an exposure test on the composite membrane prepared in Example 2. The horizontal axis is the diffraction angle 2θ (deg.), And the vertical axis is the diffraction intensity (cps). Note that θ is the angle of incidence of X-rays on the atomic plane. Each of the uppermost to third stages of FIG. 7 shows the measurement results of the exposure test on the sample heat-treated at 900 ° C., the sample heat-treated at 700 ° C., and the sample not heat-treated. The lower part shows the spectrum of crystal YF 3 . From FIG. 7, after the exposure test, the crystal peak of YF 3 was strongly detected in all the samples.
 実施例2において作製したサンプル、700℃及び900℃の熱処理を行ったサンプルの何れに対しても曝露テストを行った。700℃の熱処理を行ったサンプルに対して暴露試験後のFE-SEM、EDS分析をした結果、酸化物が残っていることを確認した。 An exposure test was performed on both the sample prepared in Example 2 and the sample heat-treated at 700 ° C. and 900 ° C. As a result of FE-SEM and EDS analysis after the exposure test on the sample heat-treated at 700 ° C., it was confirmed that oxide remained.
比較例1
 酸化イットリウムの原料を坩堝に入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。基板は500℃に加熱し、酸化イットリウム膜をサファイヤ基板上に作製した。
Comparative Example 1
The raw material of yttrium oxide was put into a crucible, heated and vaporized, and supplied to the sapphire substrate together with the carrier gas N 2 . The substrate was heated to 500 ° C. to form an yttrium oxide film on a sapphire substrate.
 作製した酸化イットリウム膜は、XRD測定をしたところ、Yの結晶からなることが分った。この膜を、700℃、800℃、900℃でそれぞれ60分加熱して熱処理をしても、Yの結晶であることを確認した。 Produced yttrium oxide film, was the XRD measurement, it was found to consist of crystals of Y 2 O 3. The membrane, 700 ℃, 800 ℃, even if a heat treatment by heating 60 min each at 900 ° C., it was confirmed that the crystals of Y 2 O 3.
 作製した酸化イットリウム膜について図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。 It was exposed test ClF 3 10 minutes by the system 50 shown in FIG. 4 for manufacturing the yttrium oxide film. The temperature measured by the temperature sensor 56 was 600 ° C.
 曝露テストの前後において、目視による確認では基材外周付近が白濁していた。 Before and after the exposure test, the area around the outer circumference of the base material was cloudy by visual confirmation.
 曝露テストを施したサンプルでは、XRDによる測定によれば、酸化イットリウムの酸素がフッ素により置換され、フッ化イットリウム(YF)に変化していることを確認した。光学顕微鏡像からサファイヤ基板が損傷していたことから、フッ化が酸化イットリウム膜を通過してサファイヤ基板に達していることが確認された。以上のことから、酸化イットリウム膜は耐腐食性を有さないことが分かった。 In the sample subjected to the exposure test, it was confirmed that the oxygen of yttrium oxide was replaced by fluorine and changed to yttrium fluoride (YF 3 ) by the measurement by XRD. Since the sapphire substrate was damaged from the optical microscope image, it was confirmed that the fluorine passed through the yttrium oxide film and reached the sapphire substrate. From the above, it was found that the yttrium oxide film does not have corrosion resistance.
比較例2
 酸化アルミニウムの原料を坩堝に入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。基板は500℃に加熱し、酸化アルミニウム膜をサファイヤ基板上に作製した。
Comparative Example 2
The raw material of aluminum oxide was put into a crucible, heated and vaporized, and supplied to the sapphire substrate together with the carrier gas N 2 . The substrate was heated to 500 ° C. to form an aluminum oxide film on the sapphire substrate.
 作製した酸化アルミニウム膜は、XRD測定をしたところ、Alのアモルファスからなることが分った。この膜を、700℃、800℃でそれぞれ60分加熱して熱処理しても、Alのアモルファスであることを確認した。900℃に60分加熱すると、Alの結晶と断定できるまでは至らなかった。 When the produced aluminum oxide film was subjected to XRD measurement, it was found to be made of Al 2 O 3 amorphous. It was confirmed that this film was amorphous of Al 2 O 3 even when it was heated at 700 ° C. and 800 ° C. for 60 minutes and heat-treated. When heated to 900 ° C. for 60 minutes, it was not possible to conclude that it was a crystal of Al 2 O 3 .
 アモルファス酸化アルミニウム膜について図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は、600℃であった。 The amorphous aluminum oxide film was exposed to ClF 3 for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C.
 曝露テスト後、サファイヤ基板から膜が剥離していることを確認した。また、多数の腐食箇所があった。 After the exposure test, it was confirmed that the film had peeled off from the sapphire substrate. In addition, there were many corroded parts.
 曝露テストを施したサンプルでは、XRDによる測定によれば、アモルファス酸化アルミニウムの酸素がフッ素により置換され、フッ化アルミニウム(AlF)に変化していることを確認した。また、サファイヤ基板が損傷していることを顕微鏡像により確認した。これらのことから、アモルファス酸化アルミニウムは耐腐食性を有さないことが分かった。 In the sample subjected to the exposure test, it was confirmed that the oxygen of the amorphous aluminum oxide was replaced by fluorine and changed to aluminum fluoride (AlF 3 ) by the measurement by XRD. In addition, it was confirmed by a microscope image that the sapphire substrate was damaged. From these facts, it was found that amorphous aluminum oxide does not have corrosion resistance.
 実施例1及び2は、比較例1及び2と比較することにより、アモルファスYAl(0<x,y,z<1)の複合膜が、600℃という高温環境下でも、フッ素を含む腐食性ガスの影響を受け難く下地となる基板を保護することが分った。 Examples 1 and 2, by comparison with Comparative Example 1 and 2, the amorphous Y x Al y O z composite membrane (0 <x, y, z <1) is, even under a high temperature environment of 600 ° C., fluorine It was found that it is not easily affected by corrosive gas containing, and protects the underlying substrate.
 さらに、次のように詳細に調べた。 Furthermore, we investigated in detail as follows.
実施例3
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜において、イットリウム(Y)よりもアルミニウム(Al)が多くなるように調整した。
Example 3
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.24Al0.761.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.24 Al 0.76 O 1.5 .
 作製した複合膜はアモルファスであり、さらに700℃に加熱してもアモルファスの状態を維持していた。 The produced composite film was amorphous, and maintained an amorphous state even when heated to 700 ° C.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストの後、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. There was also no change in the sapphire substrate after the exposure test.
 実施例3において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果から、YFの弱いピークを検出した。光学顕微鏡像の結果から、熱処理をしていないサンプル、700℃の熱処理をしたサンプルの何れも、サファイヤ基板の損傷は確認されなかった。 A weak peak of YF 3 was detected from the XRD (X-ray Diffraction) measurement results of the sample subjected to the exposure test to the composite membrane prepared in Example 3. From the results of the optical microscope image, no damage to the sapphire substrate was confirmed in either the sample not heat-treated or the sample heat-treated at 700 ° C.
実施例4
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜において、イットリウム(Y)よりもアルミニウム(Al)が多くなるように調整した。
Example 4
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of aluminum (Al) in the composite film was larger than that of yttrium (Y).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.47Al0.531.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.47 Al 0.53 O 1.5 .
 作製した複合膜は、XRD分析からアモルファスであることが分かった。作製した複合膜を700℃に加熱してもアモルファスの状態を維持していた。 The produced composite film was found to be amorphous by XRD analysis. Even when the produced composite film was heated to 700 ° C., it maintained an amorphous state.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストの後、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. There was also no change in the sapphire substrate after the exposure test.
 実施例4において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果から、AlF結晶の強いピークとYF結晶の比較的弱いピークを検出した。光学顕微鏡像の結果から、熱処理をしていないサンプル、700℃の熱処理をしたサンプルの何れも、サファイヤ基板の損傷は確認されなかった。 From the XRD (X-ray Diffraction) measurement results of the sample in which the exposure test was performed on the composite film prepared in Example 4, a strong peak of the AlF 3 crystal and a relatively weak peak of the YF 3 crystal were detected. From the results of the optical microscope image, no damage to the sapphire substrate was confirmed in either the sample not heat-treated or the sample heat-treated at 700 ° C.
実施例5
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともに石英基板に供給した。石英基板は500℃に加熱し、複合膜を石英基板上に作製した。ここで、坩堝に入れる各原料は、複合膜において、アルミニウム(Al)よりもイットリウム(Y)が多くなるように調整した。
Example 5
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a quartz substrate together with a carrier gas N 2 . The quartz substrate was heated to 500 ° C. to form a composite film on the quartz substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.82Al0.181.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.82 Al 0.18 O 1.5 .
 作製した複合膜は、XRD分析からアモルファスであることが分かった。
 作製した複合膜を700℃に加熱してもアモルファスの状態を維持していた。
The produced composite film was found to be amorphous by XRD analysis.
Even when the produced composite film was heated to 700 ° C., it maintained an amorphous state.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの後、極一部の腐食が確認された。また、700℃に加熱した複合膜においては、曝露テストの後、多数の腐食箇所を確認した。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. After the exposure test, the composite membrane was confirmed to be partially corroded. In addition, in the composite membrane heated to 700 ° C., many corroded parts were confirmed after the exposure test.
 実施例5において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定結果から、YFの結晶ピークを検出した。 The crystal peak of YF 3 was detected from the XRD (X-ray Diffraction) measurement results of the sample in which the exposure test was performed on the composite film prepared in Example 5.
実施例6
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜においてアルミニウム(Al)よりもイットリウム(Y)が多くなるように調整した。
Example 6
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.76Al0.241.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.76 Al 0.24 O 1.5 .
 作製した複合膜は、アモルファスであった。 The produced composite film was amorphous.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストを行っても、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. In addition, the exposure test did not change the sapphire substrate.
 実施例6において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定をした結果、YFの結晶ピークとAlFの結晶ピークを弱く検出した。 As a result of XRD (X-ray Diffraction) measurement of the sample subjected to the exposure test to the composite film prepared in Example 6, the crystal peak of YF 3 and the crystal peak of AlF 3 were weakly detected.
実施例7
 酸化アルミニウムと酸化イットリウムの各原料を、坩堝に所定量ずつ入れて加熱して気化し、キャリアガスNとともにサファイヤ基板に供給した。サファイヤ基板は500℃に加熱し、複合膜をサファイヤ基板上に作製した。ここで、坩堝に入れる各原料は、複合膜においてアルミニウム(Al)よりもイットリウム(Y)が多くなるように調整した。
Example 7
Each raw material of aluminum oxide and yttrium oxide was put into a crucible in a predetermined amount, heated and vaporized, and supplied to a sapphire substrate together with carrier gas N 2 . The sapphire substrate was heated to 500 ° C. to form a composite film on the sapphire substrate. Here, each raw material to be put into the crucible was adjusted so that the amount of yttrium (Y) in the composite film was larger than that in aluminum (Al).
 サンプルをエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry、EDX、EDS)した。その結果、作製した複合膜の組成式は、Y0.79Al0.211.5であった。 The samples were subjected to energy dispersive X-ray analysis (Energy Dispersive X-ray Spectrometery, EDX, EDS). As a result, the composition formula of the produced composite film was Y 0.79 Al 0.21 O 1.5 .
 作製した複合膜は、アモルファスであった。 The produced composite film was amorphous.
 図4に示すシステム50によりClFの曝露テストを10分間行った。温度センサ56による測定温度は600℃であった。複合膜は、曝露テストの前後において、見た目の変化はなかった。また、曝露テストを行っても、サファイヤ基板にも変化はなかった。 An exposure test for ClF 3 was performed for 10 minutes using the system 50 shown in FIG. The temperature measured by the temperature sensor 56 was 600 ° C. The composite membrane did not change in appearance before and after the exposure test. In addition, the exposure test did not change the sapphire substrate.
 実施例7において作製した複合膜に対して曝露テストを行ったサンプルのXRD(X-ray Diffraction)測定をした結果、YFの結晶ピークを弱く検出した。 As a result of XRD (X-ray Diffraction) measurement of the sample subjected to the exposure test to the composite film prepared in Example 7, the crystal peak of YF 3 was weakly detected.
 実施例1乃至7及び比較例1、2をまとめると表1のようになる。また、図8は、ClFの曝露テストの評価をまとめたものである。図8の横軸はx/(x+y)であり、縦軸は成膜温度又は熱処理温度である。二重丸のプロット(◎)は良好であり膜の表面に大きな変化がないことを示し、丸プロット(〇)は良好であり膜表面に僅かな変化があることを示し、三角プロット(△)は概ね良好であるが、基材に損傷があることを示し、バツプロット(×)は基材が損傷しており膜の大部分が剥離していることを示している。 Table 1 summarizes Examples 1 to 7 and Comparative Examples 1 and 2. In addition, FIG. 8 summarizes the evaluation of the ClF 3 exposure test. The horizontal axis of FIG. 8 is x / (x + y), and the vertical axis is the film formation temperature or the heat treatment temperature. The double circle plot (◎) indicates good and there is no significant change in the membrane surface, the circle plot (○) indicates good and there is a slight change in the membrane surface, and the triangular plot (△). Is generally good, but the substrate is damaged, and the cross plot (x) indicates that the substrate is damaged and most of the film is peeled off.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 アモルファスの複合膜の化学式をYAlと示す場合、0.24≦x/(x+y)<0.82,z/(x+y)=1.5であれば、アモルファス複合膜は耐腐食性を有していることが分かった。基材に複合膜を形成し、その後、700℃、800℃で熱処理しても耐腐食性を維持することができる。このような化学式で表されるアモルファスの複合膜は、900℃以上で1時間以上熱処理することにより、結晶化する。 When showing the chemical formula of the composite film of amorphous and Y x Al y O z, 0.24 ≦ x / (x + y) <0.82, if z / (x + y) = 1.5, the amorphous composite film is corrosion It turned out to have sex. Corrosion resistance can be maintained even when a composite film is formed on the base material and then heat-treated at 700 ° C. and 800 ° C. The amorphous composite film represented by such a chemical formula is crystallized by heat treatment at 900 ° C. or higher for 1 hour or longer.
 図9は、x/(x+y)=0.24のサンプルを700℃で熱処理して曝露テストした後の顕微鏡像である。この像から、曝露テストによる影響がないことが分かる。 FIG. 9 is a microscope image of a sample of x / (x + y) = 0.24 after heat treatment at 700 ° C. and an exposure test. This image shows that there is no effect from the exposure test.
 図10は、x/(x+y)=0.43のサンプルについて曝露テストした後の顕微鏡像である。この像から、曝露テストによる影響がないことが分かる。 FIG. 10 is a microscopic image after an exposure test on a sample of x / (x + y) = 0.43. This image shows that there is no effect from the exposure test.
 図11は、x/(x+y)=0.70のサンプルについて曝露テストした後の顕微鏡像である。この像から、曝露テストによる影響がないことが分かる。 FIG. 11 is a microscopic image after an exposure test on a sample of x / (x + y) = 0.70. This image shows that there is no effect from the exposure test.
 図12は、x/(x+y)=0.76のサンプルについて曝露テストした後の顕微鏡像である。この像から、曝露テストによる影響がないことが分かる。 FIG. 12 is a microscopic image after an exposure test on a sample of x / (x + y) = 0.76. This image shows that there is no effect from the exposure test.
 図13は、x/(x+y)=0.79のサンプルについて曝露テストした後の顕微鏡像である。この像から、曝露テストによる影響がないことが分かる。 FIG. 13 is a microscopic image after an exposure test on a sample of x / (x + y) = 0.79. This image shows that there is no effect from the exposure test.
 図14は、x/(x+y)=0.82のサンプルを700℃で熱処理して曝露テストした後の顕微鏡像である。この像から、耐腐食性がないことが分かる。 FIG. 14 is a microscope image of a sample of x / (x + y) = 0.82 after heat treatment at 700 ° C. and an exposure test. From this image, it can be seen that there is no corrosion resistance.
 図15は、Alのサンプルについて曝露テストした後の顕微鏡像である。この像から、耐腐食性がないことが分かる。 FIG. 15 is a microscopic image of a sample of Al 2 O 3 after an exposure test. From this image, it can be seen that there is no corrosion resistance.
 図16は、Yのサンプルについて曝露テストした後の顕微鏡像である。この像から、耐腐食性がないことが分かる。 Figure 16 is a micrograph after exposure tests on samples of Y 2 O 3. From this image, it can be seen that there is no corrosion resistance.
 なお、実施例及び比較例で使用した元素比率は、日本電子製 走査型電子顕微鏡(SEM)(型番:JSM-IT500)に付属するエネルギー分散型X線分光器(EDS)を用いてZAF補正法により求めた。ZAF補正法とは、サンプルから放出された特性X線強度と標準試料から測定された特性X線の相対強度Kに、ZAF効果(Z(原子番号効果)、A(吸収効果)、F(蛍光励起効果))を考慮して理論補正して濃度を求める方法である。 The element ratios used in Examples and Comparative Examples are the ZAF correction method using an energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (SEM) (model number: JSM-IT500) manufactured by JEOL Ltd. Obtained by. The ZAF correction method is a ZAF effect (Z (atomic number effect), A (absorption effect), F (fluorescence), in addition to the relative intensity K of the characteristic X-rays emitted from the sample and the characteristic X-rays measured from the standard sample. This is a method of obtaining the concentration by theoretically correcting it in consideration of the excitation effect)).
1:第一の原料
2:第二の原料
10,30:製造装置
11,31:基材
12,32:サンプル台
13,33:チャンバー
14,34a,34b:気化器
15,35:キャリアガス供給源
19,39:ノズル
50:曝露テスト用のシステム
1: First raw material 2: Second raw material 10, 30: Manufacturing equipment 11, 31: Base material 12, 32: Sample stand 13, 33: Chamber 14, 34a, 34b: Vaporizer 15, 35: Carrier gas supply Sources 19, 39: Nozzle 50: System for exposure testing

Claims (6)

  1.  アモルファスYAl(ただし、0.24≦x/(x+y)≦0.82,z/(x+y)=1.5)を有する、複合膜。 A composite film having an amorphous Y x Al y Oz (where 0.24 ≦ x / (x + y) ≦ 0.82, z / (x + y) = 1.5).
  2.  900℃以上に加熱して焼成すると結晶性を有する、請求項1に記載の複合膜。 The composite film according to claim 1, which has crystallinity when heated to 900 ° C. or higher and fired.
  3.  ハロゲンを含有するガスに対する耐腐食性を有する、請求項1に記載の複合膜。 The composite film according to claim 1, which has corrosion resistance to a gas containing halogen.
  4.  基材と、
     前記基材上に設けられた請求項1乃至3の何れか1項に記載の複合膜と、
    を有する部品。
    With the base material
    The composite film according to any one of claims 1 to 3 provided on the base material and
    Parts with.
  5.  250℃以上600℃以下の範囲の所定の温度に基材を加熱した状態で、酸化イットリウム、酸化アルミニウムの各原料をそれぞれ気化し、キャリアガスにより気化原料を前記基材へ噴射する、複合膜の製造方法。 A composite membrane in which the yttrium oxide and aluminum oxide raw materials are vaporized and the vaporized raw materials are sprayed onto the base material by a carrier gas while the base material is heated to a predetermined temperature in the range of 250 ° C. or higher and 600 ° C. or lower. Production method.
  6.  さらに、前記気化原料の前記基材への噴射の際の前記基材の加熱温度よりも昇温して熱処理する、請求項5に記載の複合膜の製造方法。 The method for producing a composite film according to claim 5, wherein the heat treatment is performed by raising the temperature of the vaporization raw material to a temperature higher than the heating temperature of the base material when the vaporization raw material is sprayed onto the base material.
PCT/JP2020/025595 2019-07-03 2020-06-29 Composite film, component, and production method WO2021002339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021530026A JP7005082B2 (en) 2019-07-03 2020-06-29 Composite membranes, parts and manufacturing methods
TW109122540A TW202116702A (en) 2019-07-03 2020-07-03 Composite film, component, and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124678 2019-07-03
JP2019124678 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002339A1 true WO2021002339A1 (en) 2021-01-07

Family

ID=74101302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025595 WO2021002339A1 (en) 2019-07-03 2020-06-29 Composite film, component, and production method

Country Status (3)

Country Link
JP (1) JP7005082B2 (en)
TW (1) TW202116702A (en)
WO (1) WO2021002339A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097768A (en) * 1999-09-29 2001-04-10 Daiichi Kigensokagaku Kogyo Co Ltd Yag-based ceramic raw material and its production
JP2007027329A (en) * 2005-07-14 2007-02-01 Tohoku Univ Multilayer structure and cleaning method thereof
JP2016528380A (en) * 2013-06-20 2016-09-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma corrosion resistant rare earth oxide thin film coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107923B2 (en) * 2002-09-11 2008-06-25 株式会社Adeka Method for producing yttrium-containing composite oxide thin film
US10186400B2 (en) * 2017-01-20 2019-01-22 Applied Materials, Inc. Multi-layer plasma resistant coating by atomic layer deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097768A (en) * 1999-09-29 2001-04-10 Daiichi Kigensokagaku Kogyo Co Ltd Yag-based ceramic raw material and its production
JP2007027329A (en) * 2005-07-14 2007-02-01 Tohoku Univ Multilayer structure and cleaning method thereof
JP2016528380A (en) * 2013-06-20 2016-09-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma corrosion resistant rare earth oxide thin film coating

Also Published As

Publication number Publication date
JPWO2021002339A1 (en) 2021-12-02
TW202116702A (en) 2021-05-01
JP7005082B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
CN105408987A (en) Ion assisted deposition top coat of rare-earth oxide
US10538845B2 (en) Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
CN113789503B (en) In-situ synthesis method of high-entropy silicide film with antioxidant property
US20150129087A1 (en) Method of making porous nitrogenized titanium coatings for medical devices
Ougier et al. Effects of HiPIMS discharges and annealing on Cr-Al-C thin films
KR20120138755A (en) Synthesis of metal oxides by reactive cathodic arc evaporation
WO2021002339A1 (en) Composite film, component, and production method
CN111270207A (en) Preparation method of high-entropy alloy thin film material with layered structure
KR101895769B1 (en) Coating film of a chamber for manufacturing a semiconductor and mehtod for manufacturing the same
US20210403337A1 (en) Yttrium oxide based coating and bulk compositions
WO2011009573A1 (en) Method for producing coatings with a single composite target
US6027792A (en) Coating film excellent in resistance to halogen-containing gas corrosion and halogen-containing plasma corrosion, laminated structure coated with the same, and method for producing the same
CN111247627A (en) Member for plasma etching apparatus having improved plasma resistance and method for manufacturing the same
JP2005097685A (en) Corrosion resistant member and manufacturing method therefor
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
US20210172049A1 (en) Method and apparatus for forming a plasma resistant coating, component, and plasma processing apparatus
TWI753574B (en) Corrosion Resistant Components
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
TW201334035A (en) Plasma etch resistant films, articles bearing plasma etch resistant films and related methods
JP2023521164A (en) Yttrium oxide-based coating composition
Lee et al. Investigation of the hydrophilic nature and surface energy changes of HfO2 thin films prepared by atomic layer deposition
US20240011146A1 (en) Methods for forming coating films and substrate processing apparatus including parts manufactured by such methods
KR20160013131A (en) Barrier coating for turbochargers
US20150064358A1 (en) Coating material for thermal spray coating, method for preparing the same, and method for coating with the same
Zheng et al. Influence of $ hboxO_2 $ Flow Rate on Structure and Properties of $ hboxMgO_x $ Films Prepared by Cathodic-Vacuum-Arc Ion Deposition System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834659

Country of ref document: EP

Kind code of ref document: A1