JP2001094149A - P-type group iii nitride semiconductor and manufacturing method therefor - Google Patents

P-type group iii nitride semiconductor and manufacturing method therefor

Info

Publication number
JP2001094149A
JP2001094149A JP26636199A JP26636199A JP2001094149A JP 2001094149 A JP2001094149 A JP 2001094149A JP 26636199 A JP26636199 A JP 26636199A JP 26636199 A JP26636199 A JP 26636199A JP 2001094149 A JP2001094149 A JP 2001094149A
Authority
JP
Japan
Prior art keywords
gas
temperature
gan
carrier concentration
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26636199A
Other languages
Japanese (ja)
Other versions
JP4009043B2 (en
Inventor
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Hideo Yamaguchi
栄雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP26636199A priority Critical patent/JP4009043B2/en
Publication of JP2001094149A publication Critical patent/JP2001094149A/en
Application granted granted Critical
Publication of JP4009043B2 publication Critical patent/JP4009043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for increasing carrier injection efficiency and for reducing a resistance, related to a p-type group III nitride semiconductor. SOLUTION: A GaN semiconductor is grown on a buffer layer provided on a substrate by an organic metal compound vapor-phase growth method using at least the gas of gallium source, a gas of nitrogen source, and a gas containing p-type impurity as a material gas. Here, a gas containing Mg is used as a gas containing p-type impurity, and a nitrogen gas is substantially used as a carrier gas for the material. For the amount of gas of indium source, the mole ratio of indium source gas is set at 0.001 to 1 of a gallium source gas, while the growth temperature is such temperature as the positive hole carrier concentration is 1×1017 cm-3 or above when it is measured at a room temperature, in a range 950-1,050 deg.C. Thus Al1-x-vGayInxN (wherein, 0<=y<1, x is a mole ratio corresponding to 1×1017 to 5×1020 cm-3, 0<x+y<=1) film, where Mg containing In by 1×1017 to 5×1020 cm-3 is doped is formed, to increase the positive hole carrier concentration without annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、青色発光ダイオー
ド、青色レーザダイオード等に用いられる窒化(インジ
ウム)ガリウム系化合物半導体を有機金属化合物気相成
長法(MOVPE)により製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing (indium) gallium nitride-based compound semiconductor used for a blue light emitting diode, a blue laser diode or the like by metal organic compound vapor deposition (MOVPE).

【0002】[0002]

【従来の技術】従来、青色発光ダイオード、青色レーザ
ダイオード等に使用される半導体材料として、GaN
系、AlGaN系、GaInN系等の化合物半導体が注
目されている。GaN単結晶薄膜は、反応炉に、例え
ば、有機金属であるトリメチルガリウム(TMG)、ト
リメチルアルミニウム(TMA)、アンモニア等を水素
ガスをキャリアガスとして供給し、サファイア基板上に
エピタキシャル成長させるMOVPE法により通常得ら
れる。このMOVPE法によりAlGaN、GaN等を
形成する際に、短波長領域に発光センタを形成するアク
セプタ不純物としてMg、Znを添加する方法も公知で
ある。
2. Description of the Related Art Conventionally, GaN has been used as a semiconductor material for blue light emitting diodes, blue laser diodes, and the like.
Attention has been focused on compound semiconductors such as AlGaN-based, GaInN-based, and the like. The GaN single crystal thin film is usually formed by MOVPE, in which, for example, an organic metal such as trimethylgallium (TMG), trimethylaluminum (TMA), or ammonia is supplied as a carrier gas using a hydrogen gas as a carrier gas and epitaxially grown on a sapphire substrate. can get. When AlGaN, GaN, or the like is formed by the MOVPE method, a method of adding Mg and Zn as acceptor impurities that form a light emission center in a short wavelength region is also known.

【0003】ただ、基板のサファイアとGaNは、格子
定数不整および熱膨張係数差が大きく、サファイア基板
上に直接GaN膜の成長を行うと、成長膜のピット、成
長膜と基板界面でのクラック等のマクロな欠陥はもとよ
り、結晶方位の空間的微小揺らぎ等の問題があるため、
表面が平坦で良質なGaN単結晶薄膜を作成することは
容易ではない。
However, sapphire and GaN of the substrate have a large lattice constant mismatch and a large difference in thermal expansion coefficient, and when a GaN film is grown directly on the sapphire substrate, pits in the grown film, cracks at the interface between the grown film and the substrate, and the like. In addition to the macro defects described above, there are problems such as spatial micro fluctuations in the crystal orientation.
It is not easy to produce a high quality GaN single crystal thin film with a flat surface.

【0004】本発明者らは、先に、基板温度850〜1
030℃でのGaN膜の成長直前に600℃程度の低温
でAlNをサファイア基板上に堆積し、これをバッファ
層とすることで上記問題を解決できることを見出した。
この方法によれば、AlNバッファ層を用いない場合と
比べて自由電子濃度が室温で1017cm-3程度と2桁程
度低く、かつ室温でのホール電子移動度は、350〜4
50cm2 /V・sと一桁程度大きい。また、この方法
をさらに発展させ、アクセプタ不純物であるMgをドー
プして成長させた膜は、そのままでは高抵抗であるが、
低加速電子線照射処理を施すことによりp型となり、低
抵抗化(数Ωcm)し、発光特性も向上することを報告
した(「Japanese Journal OF Applied Physics 」Vol.
28,L2112,1989 )。
[0004] The present inventors have previously proposed a substrate temperature of 850-1.
It has been found that the above problem can be solved by depositing AlN on a sapphire substrate at a low temperature of about 600 ° C. immediately before the growth of the GaN film at 030 ° C. and using this as a buffer layer.
According to this method, the free electron concentration at room temperature is as low as about 10 17 cm −3, which is about two orders of magnitude lower than when no AlN buffer layer is used, and the hole electron mobility at room temperature is 350 to 4
50 cm 2 / V · s, which is about an order of magnitude larger. Further, by further developing this method, a film grown by doping with Mg which is an acceptor impurity has high resistance as it is,
It has been reported that the low-acceleration electron beam irradiation treatment results in a p-type, low resistance (several Ωcm), and improved light emission characteristics ("Japanese Journal OF Applied Physics" Vol.
28, L2112, 1989).

【0005】バッファ層としてはGaNを用いることも
知られており、また、電子線の照射の他に、窒素雰囲気
で400℃以上に加熱してアニールすることにより低抵
抗のp型窒化ガリウムを作成する方法(特開平5−18
3189号公報)も知られている。
It is also known that GaN is used as a buffer layer. In addition to electron beam irradiation, low-resistance p-type gallium nitride is formed by heating at 400 ° C. or more in a nitrogen atmosphere and annealing. (Japanese Unexamined Patent Publication No. 5-18)
No. 3189) is also known.

【0006】上記のような結晶成長後の付加的な工程に
より、低抵抗なp型GaN系半導体とするのではなく、
MOVPE法そのものにより低抵抗なp型GaN系半導
体とするために、一般式Inx Ga1-x-y N(0<x<
1,0≦y<1)で表される半導体を成長させた後、そ
の上にMgを1×1017cm-3〜3×1020cm-3の範
囲でドープしたGaNを成長させる方法(特開平6−2
32451号公報)や、MgやZn等のp型不純物をド
ープしたGaN系化合物半導体を1000℃で結晶成長
した後の冷却時に600℃以上の温度域においてアンモ
ニアの供給を停止して、水素または窒素雰囲気において
水素パッシベーションを起こさずに熱処理せずに低抵抗
なp型GaN系化合物半導体を得る方法(特開平8−1
15880号公報)、Cp2 Mg、TMG、TMAのキ
ャリアガスとしては水素を用いるものの、p型伝導層の
成長過程においては主キャリアガスとして窒素を用いて
Mgの不活性化を防止して成長後の熱処理を不要とする
方法(特開平10−135575号公報)等が知られて
いる。
[0006] By the additional steps after the crystal growth as described above, a low-resistance p-type GaN-based semiconductor can be obtained.
In order to obtain a low-resistance p-type GaN-based semiconductor by the MOVPE method itself, the general formula In x Ga 1-xy N (0 <x <
After growing a semiconductor represented by 1,0 ≦ y <1), a method of growing GaN doped with Mg in a range of 1 × 10 17 cm −3 to 3 × 10 20 cm −3 ( JP-A-6-2
No. 32451), or when a GaN-based compound semiconductor doped with a p-type impurity such as Mg or Zn is crystal-grown at 1000 ° C. and cooled, the supply of ammonia is stopped in a temperature range of 600 ° C. or higher, and hydrogen or nitrogen is stopped. Method of obtaining a low-resistance p-type GaN-based compound semiconductor without heat treatment without causing hydrogen passivation in an atmosphere (Japanese Patent Laid-Open No. 8-1)
No. 15880), although hydrogen is used as a carrier gas for Cp 2 Mg, TMG and TMA, in the growth process of the p-type conductive layer, nitrogen is used as a main carrier gas to prevent inactivation of Mg and to prevent growth after the growth. (Japanese Unexamined Patent Publication No. 10-135575) and the like are known.

【0007】GaInN系半導体は、光効率が高く、青
色及び緑色を発光色とする材料であり、特にInNを混
晶比で10%以上含むものは、InN混晶比に応じて可
視領域での発光波長を調整できるので表示用途に重要な
ものとして注目されているが、MOVPE法によりGa
InNを成長させる場合は、成長温度は500〜800
℃に制約されるためにGaNに比べて結晶性が劣る。こ
れは、GaNの融点が約1000℃であるのに対し、I
nNは、約500℃であるため、600℃以上の高温で
GaInNを成長させるとGaInNがほとんど分解し
てしまい、800℃を超えるとIn原子が蒸発するため
である。
A GaInN-based semiconductor is a material having a high light efficiency and emitting blue and green light. In particular, a material containing 10% or more of InN in a mixed crystal ratio in a visible region depends on the InN mixed crystal ratio. Since the emission wavelength can be adjusted, it is attracting attention as being important for display applications.
When growing InN, the growth temperature is 500-800.
The crystallinity is inferior to GaN because it is restricted by ° C. This is because while the melting point of GaN is about 1000 ° C.,
Since nN is about 500 ° C., when GaInN is grown at a high temperature of 600 ° C. or higher, GaInN is almost decomposed, and when it exceeds 800 ° C., In atoms evaporate.

【0008】そこで、発光素子の輝度等の特性の低下や
生産性が低いという問題があるものの、Inを含まない
層を成長させた後一旦成長を中断し、基板の温度を70
0〜900℃に下げた後Inを含む層の成長を再開する
方法や、原料ガス中のInのモル比を大きくして、70
0〜900℃の成長温度とする方法(特開平6−209
121号公報)が採用されている。
Therefore, although there is a problem in that the characteristics such as the luminance of the light emitting element are lowered and the productivity is low, the growth is suspended once after the layer containing no In is grown, and the temperature of the substrate is reduced by 70%.
After the temperature is reduced to 0 to 900 ° C., the growth of the layer containing In is restarted, or the molar ratio of In in the source gas is increased, and
Method of setting the growth temperature to 0 to 900 ° C. (Japanese Patent Laid-Open No. 6-209)
121 publication).

【0009】[0009]

【発明が解決しようとする課題】高密度記録媒体および
フルカラーデバイスを可能にする材料として、III 族窒
化物が有望視されているが、このデバイスを電流で駆動
させるために、pn接合の形を取ることが不可欠であ
る。短波長レーザダイオードを構成している各層の中の
p型GaN層の作製に用いられるMOVPE法では、例
えば、GaNの原料として、トリメチルガリウム、アン
モニアを使用し、p型伝導度制御材料の不純物原料とし
て、ビスシクロペンタジエニルマグネシウム(Cp2
g)を使用している。また、キャリアガスとして水素を
用い、膜成長温度は、1000℃前後であり、MgがG
aN中にドーピングされた膜をその後に熱処理すること
によりp型低抵抗の膜が得られる。
As a material that enables high-density recording media and full-color devices, Group III nitrides are promising. However, in order to drive this device with electric current, a pn junction must be formed. It is essential to take. In the MOVPE method used for producing a p-type GaN layer in each layer constituting a short-wavelength laser diode, for example, trimethylgallium and ammonia are used as GaN raw materials, and an impurity raw material of a p-type conductivity control material is used. As biscyclopentadienyl magnesium (Cp 2 M
g) is used. Hydrogen is used as a carrier gas, the film growth temperature is around 1000 ° C., and Mg is G
By subsequently heat-treating the film doped in aN, a p-type low-resistance film is obtained.

【0010】しかし、従来のMOVPE法では、GaN
の場合、p型キャリア濃度はせいぜい2×1018cm-3
という値であり、GaInNの場合、5×1017cm-3
程度であり、キャリア注入の高効率化および抵抗の低減
化という点で十分とは言えない。そこで、現在、p型G
aN層の正孔キャリア濃度の増大によるそれらの特性の
改善が特に望まれている。
However, in the conventional MOVPE method, GaN
, The p-type carrier concentration is at most 2 × 10 18 cm −3
In the case of GaInN, 5 × 10 17 cm −3
This is not sufficient in terms of increasing the efficiency of carrier injection and reducing the resistance. Therefore, now p-type G
It is particularly desirable to improve their properties by increasing the hole carrier concentration in the aN layer.

【0011】[0011]

【課題を解決するための手段】本発明者は、キャリア濃
度を増大させる方法として、新たな手法に関する発明を
なし、先に特許出願した。すなわち、その発明は、基板
上に設けたバッファ層上に有機金属化合物気相成長法に
より原料ガスとして少なくともガリウム源のガスと窒素
源のガスとp型不純物を含むガスを用いてGaN系半導
体を成長させる方法において、p型不純物を含むガスと
してMgを含むガスを用い、これらの原料のキャリアガ
スとして実質的に窒素ガスを用いるとともにインジウム
源のガスを加えて成長温度を800〜1100℃の範囲
として、Mgが不活性化した高抵抗のAlx Ga1-x-y
Iny N(ただし、0≦x≦1,0<y<0.3,x+
y<3)膜を形成し、この膜をアニールすることにより
正孔キャリア濃度を増大させることを特徴とするp型II
I 族窒化物半導体の製造方法である。
The present inventors have made an invention relating to a new method as a method for increasing the carrier concentration, and have previously filed a patent application. That is, the present invention provides a method for forming a GaN-based semiconductor on a buffer layer provided on a substrate by using a gas containing at least a gallium source gas, a nitrogen source gas, and a p-type impurity as a source gas by metalorganic compound vapor deposition. In the growth method, a gas containing Mg is used as a gas containing a p-type impurity, a nitrogen gas is used substantially as a carrier gas for these raw materials, and a gas of an indium source is added, and the growth temperature is in the range of 800 to 1100 ° C. As a high-resistance Al x Ga 1-xy in which Mg is inactivated
In y N (where 0 ≦ x ≦ 1, 0 <y <0.3, x +
y <3) p-type II, characterized in that a film is formed and the hole carrier concentration is increased by annealing the film.
This is a method for producing a group I nitride semiconductor.

【0012】本発明者は、さらに研究開発を進めたとこ
ろ、Alx Ga1-x-y Iny N膜の成長条件をある特定
の条件にすることにより、アニール工程をとること無し
に正孔キャリア濃度を増大させることができることを見
出した。すなわち、本発明は、1×1017〜5×1020
cm-3のInを含むMgをドープしたAl1-x-y Gay
Inx N(ただし、0≦y<1、xは1×1017〜5×
1020cm-3に相当するモル分率、0<x+y≦1)膜
であって、アニールされていないで室温で測定した正孔
キャリア濃度が1×1017cm-3以上であることを特徴
とするp型III 族窒化物半導体である。
The present inventor further researched and developed that the Al x Ga 1 -xy In y N film was grown under a specific growth condition so that the hole carrier concentration could be increased without taking an annealing step. Can be increased. That is, the present invention provides 1 × 10 17 to 5 × 10 20
Al doped with Mg containing In of cm -3 1-xy Ga y
In x N (where 0 ≦ y <1, x is 1 × 10 17 to 5 ×
0 <x + y ≦ 1) film having a mole fraction corresponding to 10 20 cm −3 , wherein the hole carrier concentration measured at room temperature without annealing is 1 × 10 17 cm −3 or more. Is a p-type group III nitride semiconductor.

【0013】また、本発明は、基板上に設けたバッファ
層上に有機金属化合物気相成長法により原料ガスとして
少なくともガリウム源のガスと窒素源のガスとp型不純
物を含むガスを用いてGaN系半導体を成長させる方法
において、p型不純物を含むガスとしてMgを含むガス
を用い、これらの原料のキャリアガスとして実質的に窒
素ガスを用いるとともに、インジウム源のガスをインジ
ウム源ガスのモル比がガリウム源ガス1に対して0.0
01以上で1以下となる量とし、成長温度を950〜1
050℃の範囲において室温で測定した正孔キャリア濃
度1×1017cm-3以上が得られる温度とすることによ
りアニールの工程をとること無しで正孔キャリア濃度を
増大させることを特徴とする上記のp型III 族窒化物半
導体の製造方法である。
Further, according to the present invention, a GaN layer is formed on a buffer layer provided on a substrate by using a gas containing at least a gallium source gas, a nitrogen source gas, and a gas containing a p-type impurity as a source gas by metalorganic compound vapor phase epitaxy. In the method of growing a system-based semiconductor, a gas containing Mg is used as a gas containing a p-type impurity, a substantially nitrogen gas is used as a carrier gas for these raw materials, and the molar ratio of the indium source gas to the indium source gas is 0.0 for gallium source gas 1
And the growth temperature is set to 950 to 1
The hole carrier concentration is increased without taking an annealing step by setting the temperature to obtain a hole carrier concentration of 1 × 10 17 cm −3 or more at room temperature in the range of 050 ° C. This is a method for producing a p-type group III nitride semiconductor.

【0014】本発明によれば、室温で測定した正孔キャ
リア濃度が1.0×1017cm-3以上、より好ましくは
約5.0×1017cm-3以上に達する高い正孔キャリア
濃度が得られ、発光ダイオードの高効率化、レーザダイ
オードの低しきい値化を示す特性を実現することができ
た。
According to the present invention, a high hole carrier concentration measured at room temperature of not less than 1.0 × 10 17 cm -3 , more preferably not less than about 5.0 × 10 17 cm -3. Was obtained, and the characteristics of increasing the efficiency of the light emitting diode and lowering the threshold value of the laser diode were realized.

【0015】ドープされるMgは1×1019cm-3程度
以上が必要であり、Mg濃度はMgを含むガスの一定の
流量範囲ではその流量に比例するので、該ガスの流量を
適切な範囲に調整する。
The Mg to be doped needs to be about 1 × 10 19 cm −3 or more, and the Mg concentration is proportional to the flow rate of the gas containing Mg in a certain flow rate range. Adjust to

【0016】Inの原料として添加されるトリメチルイ
ンジウムまたはトリエチルインジウム等は、蒸気圧が高
く、通常、成長温度を800℃以下の低温としなけれ
ば、混晶を形成するほどにInがGaNに取り込まれな
いので、通常では800℃以下の成長温度でなければG
aInNの混晶相は現れない。
Trimethyl indium or triethyl indium added as a raw material of In has a high vapor pressure. Generally, unless the growth temperature is set to a low temperature of 800 ° C. or less, In is incorporated into GaN to such an extent that a mixed crystal is formed. In general, the growth temperature must be 800 ° C. or lower unless G
No mixed crystal phase of aInN appears.

【0017】上記のとおり、p型不純物を含むガスとし
てMgを含むガスを用いてMgをp型不純物元素として
ドープする際に、キャリアガスとして実質的に窒素を使
用し、さらにインジウム化合物を同時に供給することに
よって950〜1050℃という高温下の成長温度で形
成されたGaInNは混晶とは異なり、Inが固溶した
ものであり、キャリアガスを窒素ガスとしてインジウム
化合物を同時に供給しないで形成したGaN膜、あるい
はキャリアガスを水素ガスとしてインジウム化合物を同
時に供給して形成したGaInNの混晶膜に比べて、正
孔キャリア濃度に大きな相違が見られる。
As described above, when doping Mg as a p-type impurity element using a gas containing Mg as a gas containing a p-type impurity, substantially using nitrogen as a carrier gas and simultaneously supplying an indium compound Thus, GaInN formed at a growth temperature under a high temperature of 950 to 1050 ° C. is different from mixed crystal in that In is dissolved and GaN formed without supplying an indium compound at the same time using a carrier gas as a nitrogen gas. There is a large difference in hole carrier concentration as compared with a film or a GaInN mixed crystal film formed by simultaneously supplying an indium compound using a carrier gas as a hydrogen gas.

【0018】すなわち、原料のキャリアガスを実質的に
窒素ガスとすることと、インジウム化合物を同時に供給
することのいずれか一方が欠けても高い正孔キャリア濃
度は得られない。キャリアガスは実質的に窒素ガスであ
ればよく、水素ガス等の他のガスが幾分混合されていて
もよい。
That is, a high hole carrier concentration cannot be obtained even if either the carrier gas as the raw material is substantially changed to the nitrogen gas or the indium compound is simultaneously supplied. The carrier gas may be substantially a nitrogen gas, and other gases such as a hydrogen gas may be mixed to some extent.

【0019】本発明の方法では、キャリアガスとして実
質的に窒素ガスを用いることにより、水素をキャリアガ
スとした場合には不可能であった成長温度が950℃〜
1050℃の高温で結晶性の良いIn添加のGaN層を
形成でき、高い正孔キャリア濃度が得られる。
In the method of the present invention, by substantially using nitrogen gas as the carrier gas, the growth temperature, which was impossible when hydrogen was used as the carrier gas, was 950 ° C. to 950 ° C.
At a high temperature of 1050 ° C., an In-doped GaN layer having good crystallinity can be formed, and a high hole carrier concentration can be obtained.

【0020】ただし、インジウム源のガスを、インジウ
ム源ガスのモル比がガリウム源ガス1に対して、0.0
01以上で1以下となる量とし、成長温度を950〜1
050℃の範囲において、インジウム源のガス流量が多
いほど成長温度を高くすることにより、SIMS分析の
結果、成長膜の体積に対して1017〜1020cm-3のI
nを含むGaN膜が形成され、この場合は、アズグロウ
ン(as grown)、すなわちアニール工程をとら
ないで、1.0×1017cm-3以上の正孔キャリア濃度
を得ることができる。
However, the molar ratio of the indium source gas to the gallium source gas is 0.0
And the growth temperature is set to 950 to 1
In the range of 050 ° C., by increasing the growth temperature as the gas flow rate of the indium source is increased, the result of SIMS analysis shows that the I 10 of 10 17 to 10 20 cm −3 with respect to the volume of the grown film.
A GaN film containing n is formed. In this case, a hole carrier concentration of 1.0 × 10 17 cm −3 or more can be obtained without as-grown, ie, without performing an annealing step.

【0021】また、前記特開平8−115880号公報
には、窒素源としてアンモニアを用いた場合に、成長終
了後にアンモニアから供給される原子状水素の供給を回
避するために冷却雰囲気をアンモニアから水素又は窒素
の混合雰囲気に切り換えることが水素パッシベーション
を起こさずに低抵抗なp型GaN化合物半導体を得るた
めに不可欠とされているが、本発明の方法によれば、成
長終了後にアンモニア供給を停止する必要なしに実現可
能である。
Japanese Patent Application Laid-Open No. 8-115880 discloses that when ammonia is used as a nitrogen source, the cooling atmosphere is changed from ammonia to hydrogen in order to avoid the supply of atomic hydrogen supplied from ammonia after the growth is completed. Alternatively, switching to a mixed atmosphere of nitrogen is indispensable for obtaining a low-resistance p-type GaN compound semiconductor without causing hydrogen passivation. However, according to the method of the present invention, the supply of ammonia is stopped after the growth is completed. Feasible without the need.

【0022】従来のMOVPE法でキャリアガスとして
水素が用いられた理由は、水素を純化しやすいこと、お
よびガス流が乱れにくいこと等であり、有機原料のキャ
リアガスに窒素を用いると有機原料の分解効率やキャリ
アガス中での拡散が悪く結晶性の良い膜形成ができない
ためである。本実験では、窒素をキャリアガスとして用
いたが、これは水素に比べ、窒化物の結晶成長の際に反
応にあまり寄与しないからである。したがって、窒素以
外の不活性ガス、例えば、アルゴンガスやヘリウムガス
を窒素ガスの代わりに用いても、同様の効果は期待でき
る。
The reason why hydrogen is used as a carrier gas in the conventional MOVPE method is that hydrogen is easily purified and the gas flow is not easily disturbed. This is because a film having good crystallinity cannot be formed due to poor decomposition efficiency and poor diffusion in a carrier gas. In this experiment, nitrogen was used as a carrier gas, because it does not contribute much to the reaction during nitride crystal growth as compared with hydrogen. Therefore, the same effect can be expected even if an inert gas other than nitrogen, for example, an argon gas or a helium gas is used instead of the nitrogen gas.

【0023】本発明の上記の条件で高い正孔キャリア濃
度が得られる理由は十分には、解明されていないが、キ
ャリアガスを窒素ガスとすることにより、水素ガスをキ
ャリアガスとした場合に比べて水素パッシベーションの
発生を小さくした状態、すなわち、成長温度が高くNH
3 ガスから分解した水素原子がMgとともにある程度結
晶中に取り込まれMgの活性化が妨げられている状態と
なるが、この状態で成長膜の体積に対して1017〜10
20cm-3のIn添加のGaN層が形成されていると、M
gの活性化効果が顕著に発揮されるものと考えられる。
The reason why a high hole carrier concentration can be obtained under the above-mentioned conditions of the present invention is not fully understood, but by using a nitrogen gas as the carrier gas, the use of a hydrogen gas as a carrier gas can be improved. In a state in which the occurrence of hydrogen passivation is reduced, that is, when the growth temperature is high and NH
Hydrogen atoms decomposed from the 3 gas are taken into the crystal to some extent together with Mg to prevent the activation of Mg, but in this state, 10 17 to 10 10
When a 20 cm -3 In-added GaN layer is formed, M
It is considered that the activation effect of g is remarkably exhibited.

【0024】成長中に供給する原料ガスとしてのIn源
ガスのモル比は、ガリウム源ガス1に対して、0.00
1以上、より好ましくは0.01以上、ただし1.0以
下に調整する。0.001より小さいと、溶媒であるG
aNまたはAlGaNに取り込まれている溶質としての
Inの効果が小さくなり、Mgの活性化に効かない。1
より大きいとGaNやAlGaN中の転位の増大を抑え
ることができず、逆に転位が増えていくことによりMg
の活性化を妨げる。In源ガスのモル比は成長温度が高
いほど大きくする方が好ましく、それに応じて結晶性が
良くなる。In添加の量は、主にInのモル比および成
長温度によって変動する。
The molar ratio of the In source gas supplied as a source gas during the growth was 0.00
It is adjusted to 1 or more, more preferably 0.01 or more, but 1.0 or less. If it is less than 0.001, the solvent G
The effect of In as a solute incorporated in aN or AlGaN is small, and is not effective in activating Mg. 1
If it is larger, the increase in dislocations in GaN or AlGaN cannot be suppressed.
Hinders activation. It is preferable to increase the molar ratio of the In source gas as the growth temperature increases, and accordingly the crystallinity improves. The amount of In addition mainly varies depending on the molar ratio of In and the growth temperature.

【0025】成長温度を950〜1050℃の範囲とし
たのは、高温ほどGaNの結晶性が良いものの、In添
加のAl1-x-y Gay Inx Nの形成のためには低温ほ
どよく、この両条件を満たすこの範囲で結晶性の良いI
n添加のGaN層が得られるからである。
[0025] was in the range of the growth temperature 950 to 1050 ° C., although elevated temperatures as the crystallinity of the GaN is good, for the formation of Al 1-xy Ga y In x N of In addition may lower temperature, this In this range satisfying both conditions, I having good crystallinity
This is because an n-added GaN layer is obtained.

【0026】MOVPE法でGaNを形成するには、窒
素源の反応ガスとして通常アンモニアを用いているが、
この場合、結晶欠陥の少ない化合物半導体を実用的な速
度で基板上に堆積するには、III 族元素のアルキル化合
物の〜50万倍のアンモニア流量を必要とし、また通常
高い成長温度ほどアンモニアの利用効率を高めることが
できるが、本発明は、ほぼこの温度に近い高温で成長さ
せることができ、アンモニアの利用効率を高め、生産性
を著しく向上させる効果をもたらす。
To form GaN by the MOVPE method, ammonia is usually used as a reaction gas of a nitrogen source.
In this case, in order to deposit a compound semiconductor having few crystal defects on a substrate at a practical rate, an ammonia flow rate of 500,000 times that of an alkyl compound of a group III element is required. Although the efficiency can be increased, the present invention can be grown at a high temperature close to this temperature, and has an effect of increasing the efficiency of using ammonia and significantly improving the productivity.

【0027】[0027]

【発明の実施の形態】本発明の方法には、横型反応管を
用いて基板のサファイア上にGaNを成長させる従来公
知の装置を用いることができる。例えば、誘導加熱され
る基板ホルダを横型管状の反応管内に置き、サファイア
基板を斜めにホルダに保持し、反応ガスを常圧でキャリ
アガスとともに導入口から反応管内に流入し、高温の基
板上で分解させ、化合物半導体膜を基板上に堆積させた
後、真空排気口から反応ガスを排出させるようにする。
成長温度は、カーボン製サセプターの温度をRFコイル
に流す電流によって調整することにより制御できる。温
度測定は熱電対を用いればよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, a conventionally known apparatus for growing GaN on sapphire of a substrate using a horizontal reaction tube can be used. For example, the substrate holder to be induction-heated is placed in a horizontal tubular reaction tube, the sapphire substrate is held diagonally in the holder, and the reaction gas flows into the reaction tube together with the carrier gas at normal pressure from the introduction port into the reaction tube. After the decomposition and the deposition of the compound semiconductor film on the substrate, the reaction gas is discharged from the vacuum exhaust port.
The growth temperature can be controlled by adjusting the temperature of the carbon susceptor by the current flowing through the RF coil. Temperature measurement may use a thermocouple.

【0028】基板としては、Si,SiC,サファイア
等を使用できる。基板の上には、低温で、AlN、Ga
N、一般式Gas Alt N(s+t=1,0<s<1,
0<t<1)で表される化合物半導体、またはこれらの
積層構造を公知の手段によりバッファ層として設ける。
As the substrate, Si, SiC, sapphire or the like can be used. On the substrate, at low temperature, AlN, Ga
N, formula Ga s Al t N (s + t = 1,0 <s <1,
A compound semiconductor represented by 0 <t <1) or a stacked structure thereof is provided as a buffer layer by a known means.

【0029】GaNの原料としては、代表的には、トリ
メチルガリウム(TMG)および/またはトリエチルガ
リウム(TEGa)等のトリアルキルガリウム、アンモ
ニア(NH3 )を用い、Mg原料に、ビスシクロペンタ
ジエニルマグネシウム(Cp 2 Mg)を用いる。
As a raw material of GaN, typically,
Methyl gallium (TMG) and / or triethyl gallium
Trialkyl gallium such as lithium (TEGa), ammonia
Near (NHThree), And biscyclopenta
Dienyl magnesium (Cp TwoMg).

【0030】窒素源のアンモニアの代わりに、N
2 4 、(CH3 )CNH2 、C2 5 3 、CH3
H・NH2 を用いてもよい。
Instead of ammonia as a nitrogen source, N
TwoHFour, (CHThree) CNHTwo, CTwoHFiveN Three, CHThreeN
H ・ NHTwoMay be used.

【0031】Mg原料としては、メチルビスシクロペン
タジエニルマグネシウム(C6 72 Mg、(CH3
5 4 2 Mg、(C5 5 5 4 2 Mg、(i
−C 3 7 5 4 2 Mg、(n−C3 7
5 4 2 Mg等を用いてもよい。
As the Mg raw material, methyl biscyclopen
Tadienyl magnesium (C6H7)TwoMg, (CHThree
CFiveHFour)TwoMg, (CFiveHFiveCFiveHFour)TwoMg, (i
-C ThreeH7CFiveHFour)TwoMg, (n-CThreeH7C
FiveHFour)TwoMg or the like may be used.

【0032】Alの原料としては、トリメチルアルミニ
ウム(TMAl)、トリエチルアルミニウム(TEA
l)等のトリアルキルアルミニウム、Inの原料として
は、トリメチルインジウム(TMIn)、トリエチルイ
ンジウム(TEIn)等のトリアルキルインジウムが適
する。
The raw materials for Al include trimethyl aluminum (TMAl) and triethyl aluminum (TEA).
As a raw material of trialkylaluminum and In such as l), trialkylindium such as trimethylindium (TMIn) and triethylindium (TEIn) is suitable.

【0033】具体的条件としては、TMGa:2.5〜
25μmol/分、TMAl:30〜300μmol/
分、アンモニア:0.02〜0.2mol/分、ビスシ
クロペンタジエニルマグネシウム(Cp2 Mg):0.
01〜0.5μmol/分、TMI:1〜100scc
m、キャリアガスとしての窒素:300〜3000sc
cmを流し、成長温度を950〜1050℃とし、成長
圧力を70〜760Torrとして、厚さ100〜20
00nmのp型AlGaInN層を成長させる。ガスの
絶対流量は、マスフローコントローラーにより、電圧制
御により行うことができる。流量比は、物質の絶対量の
比で表すために、マスフローコントローラーの値から物
質量を換算し、それによりガス流量比を求めることがで
きる。
As specific conditions, TMGa: 2.5 to
25 μmol / min, TMAl: 30 to 300 μmol /
Min, ammonia: 0.02 to 0.2 mol / min, biscyclopentadienyl magnesium (Cp 2 Mg): 0.1
01-0.5 μmol / min, TMI: 1-100 scc
m, nitrogen as a carrier gas: 300 to 3000 sc
cm, a growth temperature of 950 to 1050 ° C., a growth pressure of 70 to 760 Torr, and a thickness of 100 to 20 Torr.
A 00 nm p-type AlGaInN layer is grown. The absolute flow rate of the gas can be controlled by voltage control using a mass flow controller. In order to express the flow rate ratio in terms of the ratio of the absolute amount of the substance, the amount of the substance is converted from the value of the mass flow controller, whereby the gas flow rate ratio can be obtained.

【0034】[0034]

【実施例】実施例1 横型反応管を用いた常圧MOVPE法により下記の条件
で実施した。基板にはサファイア(0001)面を用
い、GaInNの成長に先立ち、サファイア基板を11
50℃において,10分間水素ベーキングした後、成長
温度600℃において、成長時間5分間でAlNバッフ
ァ層を約50nm堆積した。原料の流量は、TMA:5
sccm、NH3 :1slm、キャリアガスとしてのN
2 :総量3slmで行った。
Example 1 An atmospheric pressure MOVPE method using a horizontal reaction tube was carried out under the following conditions. A sapphire (0001) plane was used as the substrate.
After hydrogen baking at 50 ° C. for 10 minutes, an AlN buffer layer of about 50 nm was deposited at a growth temperature of 600 ° C. for a growth time of 5 minutes. The flow rate of the raw material is TMA: 5
sccm, NH 3 : 1slm, N as carrier gas
2 : Performed with a total amount of 3 slm.

【0035】その後続けて、GaN:Mgを成長温度約
950℃、成長時間約20分でGaN層を約2μm堆積
した。流量は、TMG:20sccm、Cp2 Mg:1
50sccm、NH3 :1slm、キャリアガスとして
のN2 :総量3slmにて行い、膜の成長終了後もアン
モニアの供給は継続した。TMI流量を、10、15s
ccmとした場合、得られたGaInN膜のIn添加量
は、約1.1×1019cm-3で、Mg濃度2×1019
-3で、移動度0.44cm2 /VSであった。表1お
よび図1に●印で示すように、TMI流量10〜35s
ccmの間で正孔キャリア濃度約5.0×1017cm-3
以上のp型のGaInN膜が得られた。
Subsequently, GaN: Mg was deposited at a growth temperature of about 950 ° C. for a growth time of about 20 minutes to deposit a GaN layer of about 2 μm. The flow rate is TMG: 20 sccm, Cp 2 Mg: 1
The process was performed at 50 sccm, NH 3 : 1 slm, and N 2 as a carrier gas: a total amount of 3 slm, and the supply of ammonia was continued even after the film growth was completed. TMI flow rate is 10, 15s
ccm, the amount of In added to the obtained GaInN film is about 1.1 × 10 19 cm −3 , and the Mg concentration is 2 × 10 19 c
At m -3 , the mobility was 0.44 cm 2 / VS. As shown in Table 1 and FIG.
Hole carrier concentration of about 5.0 × 10 17 cm −3 between ccm
The above p-type GaInN film was obtained.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例2 成長温度を1000℃とし、その他の条件は実施例1と
同じとした。TMI流量を、35、40、45sccm
とした場合、得られたGaInN膜のIn添加量は、約
5.0×1019cm-3で、Mg濃度2×1019cm
-3で、移動度0.50cm2 /VSであった。表1およ
び図1に△印で示すように、TMI流量30〜70sc
cmの間で正孔キャリア濃度約5.0×1017cm-3
上のp型のGaInN膜が得られた。
Example 2 The growth temperature was 1000 ° C., and other conditions were the same as in Example 1. TMI flow rate of 35, 40, 45 sccm
In this case, the amount of In added to the obtained GaInN film is about 5.0 × 10 19 cm −3 and the Mg concentration is 2 × 10 19 cm 3.
-3 , and the mobility was 0.50 cm 2 / VS. As shown in Table 1 and FIG. 1, the TMI flow rate is 30 to 70 sc.
Thus, a p-type GaInN film having a hole carrier concentration of about 5.0 × 10 17 cm −3 or more was obtained.

【0038】実施例3 成長温度を1050℃とし、その他の条件は実施例1と
同じとした。TMI流量を、70、73、75、80s
ccmとした場合、得られたGaInN膜のIn添加量
は、約5.6×1019cm-3で、Mg濃度2×1019
-3で、移動度0.39cm2 /VSであった。表1お
よび図1に■印で示すように、TMI流量70〜80s
ccmの間で正孔キャリア濃度約5.0×1017cm-3
以上のp型のGaInN膜が得られた。
Example 3 The growth temperature was 1050 ° C., and the other conditions were the same as in Example 1. TMI flow rate of 70, 73, 75, 80s
ccm, the amount of In added to the obtained GaInN film is about 5.6 × 10 19 cm −3 , and the Mg concentration is 2 × 10 19 c
At m -3 , the mobility was 0.39 cm 2 / VS. As shown in Table 1 and FIG.
Hole carrier concentration of about 5.0 × 10 17 cm −3 between ccm
The above p-type GaInN film was obtained.

【0039】[0039]

【発明の効果】本発明は、発光ダイオードやレーザダイ
オードといったデバイスの電流駆動動作に不可欠な電極
に用いることにより、キャリアの注入効率を増大させ、
その結果、発光ダイオードの高効率化やレーザダイオー
ドの低しきい値化に大きな効果をもたらすものである。
According to the present invention, the carrier injection efficiency can be increased by using the electrodes indispensable for the current driving operation of devices such as light emitting diodes and laser diodes.
As a result, a large effect is brought about for increasing the efficiency of the light emitting diode and lowering the threshold value of the laser diode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1〜3における成長温度、TM
I流量と正孔キャリア濃度の関係を示すグラフ。
FIG. 1 shows growth temperature, TM in Examples 1 to 3 of the present invention.
4 is a graph showing the relationship between I flow rate and hole carrier concentration.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA03 CA40 CA57 CA65 5F045 AA04 AB09 AB14 AB17 AB18 AC07 AC08 AC09 AC12 AC15 AD13 AD14 AE23 AE25 AE29 AF02 AF03 AF09 AF13 BB08 BB16 CA11 CA12 DA53 DA59 DP07 DQ06 EB15 EE12 EK03 5F073 CA17 CB05 CB07 CB19 DA05 EA23 EA24  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA03 CA40 CA57 CA65 5F045 AA04 AB09 AB14 AB17 AB18 AC07 AC08 AC09 AC12 AC15 AD13 AD14 AE23 AE25 AE29 AF02 AF03 AF09 AF13 BB08 BB16 CA11 CA12 DA53 DA59 DP07 DQ06 EB15 FE5 CB05 CB07 CB19 DA05 EA23 EA24

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1×1017〜5×1020cm-3のInを
含むMgをドープしたAl1-x-y Gay Inx N(ただ
し、0≦y<1、xは1×1017〜5×10 20cm-3
相当するモル分率、0<x+y≦1)膜であって、アニ
ールされていないで室温で測定した正孔キャリア濃度が
1×1017cm-3以上であることを特徴とするp型III
族窒化物半導体。
1. 1 × 1017~ 5 × 1020cm-3In
Containing Mg doped Al1-xyGayInxN (just
And 0 ≦ y <1, x is 1 × 1017~ 5 × 10 20cm-3To
Corresponding molar fraction, 0 <x + y ≦ 1)
Hole carrier concentration measured at room temperature without cooling
1 × 1017cm-3P-type III
Group nitride semiconductor.
【請求項2】 基板上に設けたバッファ層上に有機金属
化合物気相成長法により原料ガスとして少なくともガリ
ウム源のガスと窒素源のガスとp型不純物を含むガスを
用いてGaN系半導体を成長させる方法において、p型
不純物を含むガスとしてMgを含むガスを用い、これら
の原料のキャリアガスとして実質的に窒素ガスを用いる
とともに、インジウム源のガスをインジウム源ガスのモ
ル比がガリウム源ガス1に対して0.001以上で1以
下となる量とし、成長温度を950〜1050℃の範囲
において室温で測定した正孔キャリア濃度1×1017
-3以上が得られる温度とすることによりアニールの工
程をとること無しで正孔キャリア濃度を増大させること
を特徴とする請求項1記載のp型III 族窒化物半導体の
製造方法。
2. A GaN-based semiconductor is grown on a buffer layer provided on a substrate by organometallic compound vapor deposition using at least a gallium source gas, a nitrogen source gas, and a gas containing a p-type impurity as source gases. In this method, a gas containing Mg is used as a gas containing a p-type impurity, a substantially nitrogen gas is used as a carrier gas for these raw materials, and the molar ratio of the indium source gas is 1 gallium source gas. And a hole carrier concentration of 1 × 10 17 c measured at room temperature in a range of 950 to 1050 ° C.
2. The method for producing a p-type group III nitride semiconductor according to claim 1, wherein the hole carrier concentration is increased without taking an annealing step by setting the temperature to obtain a temperature not lower than m -3 .
JP26636199A 1999-09-20 1999-09-20 Method for producing p-type group III nitride semiconductor Expired - Lifetime JP4009043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26636199A JP4009043B2 (en) 1999-09-20 1999-09-20 Method for producing p-type group III nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26636199A JP4009043B2 (en) 1999-09-20 1999-09-20 Method for producing p-type group III nitride semiconductor

Publications (2)

Publication Number Publication Date
JP2001094149A true JP2001094149A (en) 2001-04-06
JP4009043B2 JP4009043B2 (en) 2007-11-14

Family

ID=17429886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26636199A Expired - Lifetime JP4009043B2 (en) 1999-09-20 1999-09-20 Method for producing p-type group III nitride semiconductor

Country Status (1)

Country Link
JP (1) JP4009043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103769A1 (en) * 2001-06-18 2002-12-27 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device
CN113808916A (en) * 2021-07-30 2021-12-17 中国电子科技集团公司第五十五研究所 Secondary epitaxy method of N-type heavily-doped thin-layer gallium nitride material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103769A1 (en) * 2001-06-18 2002-12-27 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device
US7029939B2 (en) 2001-06-18 2006-04-18 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device
CN113808916A (en) * 2021-07-30 2021-12-17 中国电子科技集团公司第五十五研究所 Secondary epitaxy method of N-type heavily-doped thin-layer gallium nitride material
CN113808916B (en) * 2021-07-30 2024-03-08 中国电子科技集团公司第五十五研究所 Secondary epitaxy method of N-type heavily doped thin-layer gallium nitride material

Also Published As

Publication number Publication date
JP4009043B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US6830949B2 (en) Method for producing group-III nitride compound semiconductor device
US5290393A (en) Crystal growth method for gallium nitride-based compound semiconductor
US6362496B1 (en) Semiconductor light emitting device having a GaN-based semiconductor layer, method for producing the same and method for forming a GaN-based semiconductor layer
JPH088217B2 (en) Crystal growth method for gallium nitride-based compound semiconductor
WO2010113423A1 (en) Method for growing crystals of nitride semiconductor, and process for manufacture of semiconductor device
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP3147316B2 (en) Method for manufacturing semiconductor light emitting device
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
JP4647723B2 (en) Nitride semiconductor crystal growth method and semiconductor device manufacturing method
JPH06326416A (en) Compound semiconductor element
JP3598591B2 (en) Method for manufacturing group 3-5 compound semiconductor
US8236103B2 (en) Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JP3478287B2 (en) Crystal growth method of gallium nitride based compound semiconductor and gallium nitride based compound semiconductor
TW200527721A (en) Group III nitride semiconductor device and light-emitting device using the same
JP3883303B2 (en) Method for producing p-type group III nitride semiconductor
JP3663722B2 (en) Compound semiconductor growth layer and manufacturing method thereof
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JPH06216409A (en) Growth method of single-crystal semiconductor nitride
JP2001308017A (en) Method for manufacturing p-type iii-v nitride compound semiconductor, and method for manufacturing semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term