JP2001093180A - Phase-difference element and optical head device - Google Patents

Phase-difference element and optical head device

Info

Publication number
JP2001093180A
JP2001093180A JP26930299A JP26930299A JP2001093180A JP 2001093180 A JP2001093180 A JP 2001093180A JP 26930299 A JP26930299 A JP 26930299A JP 26930299 A JP26930299 A JP 26930299A JP 2001093180 A JP2001093180 A JP 2001093180A
Authority
JP
Japan
Prior art keywords
phase difference
light
difference element
thin film
head device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26930299A
Other languages
Japanese (ja)
Other versions
JP4292649B2 (en
Inventor
Shinko Murakawa
真弘 村川
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP26930299A priority Critical patent/JP4292649B2/en
Publication of JP2001093180A publication Critical patent/JP2001093180A/en
Application granted granted Critical
Publication of JP4292649B2 publication Critical patent/JP4292649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin type phase-difference element generating desired phase difference and to provide a small-sized optical head device. SOLUTION: An organic thin film 1 having a function to generate the phase difference is fixed to a fixing substrate 3 having a reflecting function by using an adhesive 2 after adjusting the retardation value of the film 1 so as to generate the desired phase difference to obtain the phase-difference element. In the optical head device, this phase-difference element is arranged between a semiconductor laser and an object lens so that the beam emitting from the semiconductor laser is reflected and guided toward a recording medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位相差素子および
光ヘッド装置に関する。
The present invention relates to a phase difference element and an optical head device.

【0002】[0002]

【従来の技術】光記録媒体であるCDやDVDなどの光
ディスクまたは光磁気ディスクなどの光学的情報の記
録、再生のために、位相差素子や回折素子などの光学素
子を備えた光ヘッド装置が用いられる。光ヘッド装置
は、半導体レーザからの出射光を光記録媒体へ導き、光
記録媒体からの反射光を回折素子やビームスプリッタな
どの光学素子により回折または偏向させ、検出器で反射
光を検出する構成となっている。また、光学素子である
位相差素子は単独で、または回折素子と一体化されたも
のが、通常半導体レーザと光記録媒体の間に設置され
る。
2. Description of the Related Art An optical head device provided with an optical element such as a phase difference element or a diffractive element for recording and reproducing optical information such as an optical recording medium such as an optical disk such as a CD or DVD or a magneto-optical disk. Used. The optical head device guides emitted light from a semiconductor laser to an optical recording medium, diffracts or deflects reflected light from the optical recording medium by an optical element such as a diffraction element or a beam splitter, and detects reflected light with a detector. It has become. In addition, the phase difference element, which is an optical element, alone or integrated with the diffraction element is usually provided between the semiconductor laser and the optical recording medium.

【0003】従来、透過型の位相差素子としては、水晶
のような無機単結晶を研磨したものが用いられている。
しかし、無機単結晶は強い複屈折性を持つため位相差の
入射角度依存性が強く、所望の位相差を付加する機能を
有する位相差素子としては適さない。また、無機単結晶
の光学素子は作成の工程数が多く、さらに作成に困難を
伴う。
Conventionally, as a transmission type retardation element, an element obtained by polishing an inorganic single crystal such as quartz is used.
However, an inorganic single crystal has a strong birefringence and therefore has a strong incident angle dependence of a phase difference, and is not suitable as a phase difference element having a function of adding a desired phase difference. In addition, an inorganic single crystal optical element requires a large number of manufacturing steps, and further involves difficulties in manufacturing.

【0004】また、有機系材料の位相差素子は、作成に
大きな困難は伴なわないが、基板上に接着するなどして
位相差素子全体は厚くなっていた。したがって、光ヘッ
ド装置に組み込むと装置の小型化が困難であった。
[0004] The phase difference element made of an organic material does not involve any great difficulty in its production, but the entire phase difference element has been thickened, for example, by being adhered to a substrate. Therefore, it has been difficult to reduce the size of the device when incorporated into an optical head device.

【0005】[0005]

【発明が解決しようとする課題】上記のように、無機単
結晶を用いた位相差素子は位相差の入射角度依存性が大
きいため、所望の位相差を得ることが困難であり、また
作成に困難を伴っていた。したがって、光ヘッド装置に
用いることも難しかった。
As described above, the phase difference element using an inorganic single crystal has a large dependence on the incident angle of the phase difference, so that it is difficult to obtain a desired phase difference. It was difficult. Therefore, it has been difficult to use the optical head device.

【0006】また、有機系材料の位相差素子は固定基板
に設置されるため、透過型の位相差素子は、位相差素子
全体として厚くなる問題があった。したがって、この位
相差素子を光ヘッド装置に用いると装置の小型化が困難
であった。
Further, since the retardation element made of an organic material is provided on a fixed substrate, there is a problem that the transmission type retardation element becomes thick as a whole. Therefore, when this phase difference element is used in an optical head device, it is difficult to reduce the size of the device.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決するためになされたものであり、位相差発生機能を
有する有機薄膜が、所望の位相差を発生するようにリタ
デーション値が調整されて、反射機能を有する固定基板
に設置されていることを特徴とする位相差素子を提供す
る。また、中心部では2波長以上の光を透過し、中心部
を囲む周辺部では1波長以上の光を透過するように形成
された開口制御素子と一体化された上記の位相差素子を
提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an organic thin film having a phase difference generating function adjusts a retardation value so as to generate a desired phase difference. In addition, the present invention provides a phase difference element which is provided on a fixed substrate having a reflection function. In addition, the present invention provides the above-described phase difference element integrated with an aperture control element formed so as to transmit light of two or more wavelengths in a central part and to transmit light of one or more wavelengths in a peripheral part surrounding the central part. .

【0008】また、半導体レーザからの直線偏光の出射
光を光記録媒体に導き、前記光記録媒体からの反射光を
光検出器へ導く光ヘッド装置において、前記出射光を反
射して前記光記録媒体に到達するように、上記の位相差
素子が設置されている光ヘッド装置を提供する。さら
に、前記出射光が前記位相差素子に入射して発生する位
相差が、入射する角度に依存しないように、前記位相差
素子の遅相軸方向と前記出射光の偏光方向との関係が特
定されている上記の光ヘッド装置を提供する。
In an optical head device for guiding linearly-polarized light emitted from a semiconductor laser to an optical recording medium and for guiding reflected light from the optical recording medium to a photodetector, the optical recording device reflects the emitted light to form the optical recording medium. An optical head device provided with the above phase difference element so as to reach a medium is provided. Further, the relationship between the slow axis direction of the phase difference element and the polarization direction of the emitted light is specified so that the phase difference generated when the emitted light enters the phase difference element does not depend on the angle of incidence. The above-mentioned optical head device is provided.

【0009】[0009]

【発明の実施の形態】本発明の位相差素子では、位相差
発生機能を有する有機薄膜が反射機能を有する固定基板
に設置されていることにより、有機薄膜を固定基板に固
定した透過型の位相差素子と比べ約半分の有機膜厚とす
ることができ、薄型の位相差素子が実現できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the phase difference element of the present invention, the organic thin film having a phase difference generating function is mounted on a fixed substrate having a reflection function, so that a transmission type substrate having the organic thin film fixed to the fixed substrate is provided. The thickness of the organic layer can be reduced to about half that of the phase difference element, and a thin phase difference element can be realized.

【0010】以下、図面を参照しながら説明する。図1
に示すように、反射型位相差素子8は次の構成となって
いる。すなわち、位相差発生機能を有する有機薄膜1の
一方の表面を例えば接着剤2によって反射機能を有する
固定基板3に固定する。図1の構成では、有機薄膜1の
他方の表面に無反射コート4を施してもよく、空気と有
機薄膜1との屈折率差による表面反射損失がほとんど0
となる。ここでは、無反射コート4を施している。
Hereinafter, description will be made with reference to the drawings. FIG.
As shown in the figure, the reflection type retardation element 8 has the following configuration. That is, one surface of the organic thin film 1 having a phase difference generating function is fixed to a fixed substrate 3 having a reflecting function by, for example, an adhesive 2. In the configuration of FIG. 1, a non-reflection coating 4 may be applied to the other surface of the organic thin film 1, and the surface reflection loss due to the difference in the refractive index between air and the organic thin film 1 is almost zero.
Becomes Here, an anti-reflection coat 4 is applied.

【0011】また、有機薄膜1は、半導体レーザなどの
レーザ光が垂直に入射し透過するとき透過光に対しmπ
/4(mは自然数)の位相差を生じるように形成でき、
また固定基板3で反射するとき反射光に対してはmπ/
2の位相差を生じるように形成できる。このmπ/2に
ついては後述する。
Further, when a laser beam such as a semiconductor laser is perpendicularly incident and transmitted, the organic thin film 1
/ 4 (m is a natural number).
When the light is reflected by the fixed substrate 3, the reflected light is mπ /
2 can be formed. This mπ / 2 will be described later.

【0012】ここで、所望の位相差を発生させるには有
機薄膜1のリタデーション値を調整する。すなわち、有
機薄膜1の常光屈折率と異常光屈折率の差をΔn、有機
薄膜1の膜厚をd、透過光の波長をλとするとリタデー
ション値はΔn・dで与えられ、位相差ψとの間にψ=
Δn・d・2π/λの関係がある。したがって、特定の
波長光に対しリタデーション値を調整すれば、所望の位
相差が得られる。
Here, in order to generate a desired phase difference, the retardation value of the organic thin film 1 is adjusted. That is, when the difference between the ordinary refractive index and the extraordinary refractive index of the organic thin film 1 is Δn, the thickness of the organic thin film 1 is d, and the wavelength of the transmitted light is λ, the retardation value is given by Δn · d, and the phase difference 位相Ψ = between
There is a relationship of Δn · d · 2π / λ. Therefore, a desired phase difference can be obtained by adjusting the retardation value for light of a specific wavelength.

【0013】有機薄膜は、ポリカーボネート、ポリイミ
ド、ポリアリレート、ポリエーテルスルホン、脂環式ポ
リオレフィン、ポリアクリレートなどの高分子薄膜を一
軸延伸などにより複屈折性を付与し、位相差発生機能を
発現させた有機薄膜を使用できる。位相差発生機能を有
する有機薄膜で上記以外の樹脂も使用できるが、耐熱性
の面から、変性ポリカーボネート、ポリイミド、ポリエ
ーテルスルホンまたは脂環式ポリオレフィンを用いるこ
とが好ましい。ここで変性ポリカーボネートとは、ポリ
エステルカーボネートをビスフェノールAからなるポリ
カーボネートの構成成分の一部に使用した変性ポリカー
ボネートを意味する。また、有機薄膜として、固定基板
に通常の液晶配向処理を施し、高分子液晶のモノマーを
塗布して得た高分子液晶薄膜も使用できる。この高分子
液晶は、側鎖型、主鎖型のいずれのタイプでもよい。
The organic thin film is made of a polymer thin film such as polycarbonate, polyimide, polyarylate, polyethersulfone, alicyclic polyolefin, and polyacrylate by imparting birefringence by uniaxial stretching or the like, thereby exhibiting a phase difference generating function. Organic thin films can be used. A resin other than the above may be used as an organic thin film having a phase difference generating function, but it is preferable to use modified polycarbonate, polyimide, polyethersulfone or alicyclic polyolefin from the viewpoint of heat resistance. Here, the modified polycarbonate means a modified polycarbonate in which polyester carbonate is used as a part of a component of the polycarbonate made of bisphenol A. Further, as the organic thin film, a polymer liquid crystal thin film obtained by subjecting a fixed substrate to a normal liquid crystal alignment treatment and applying a polymer liquid crystal monomer can also be used. This polymer liquid crystal may be either a side chain type or a main chain type.

【0014】ポリカーボネートなどの有機薄膜は、一軸
延伸することにより、高分子鎖が配向するため、延伸方
向の屈折率とそれに直交する方向の屈折率に差異が生
じ、位相差発生機能を有する有機薄膜となる。通常は、
延伸方向が光の位相を遅らせる遅相軸の方向となり、遅
相軸は一般的な複屈折性材料の常光屈折率または異常光
屈折率を与える方向と一致する。また、延伸の加減によ
り所望の位相差を得ることができる。
An organic thin film made of polycarbonate or the like is uniaxially stretched so that a polymer chain is oriented, so that a difference occurs between a refractive index in a stretching direction and a refractive index in a direction perpendicular to the stretching direction. Becomes Normally,
The stretching direction is the direction of the slow axis that retards the phase of light, and the slow axis coincides with the direction in which a general birefringent material gives an ordinary refractive index or an extraordinary refractive index. Also, a desired retardation can be obtained by adjusting the stretching.

【0015】また、半導体レーザなどの出射光で発散す
る光が位相差素子に入射する際、種々の入射角度を持つ
ことになり位相差素子を反射する光に大きな非点収差が
生じる。しかし、本発明では、位相差発生機能を有する
有機薄膜の厚さを0.5mm以下にすることで、非点収
差による情報の再生信号の劣化を防いでいるが、この厚
さを0.1mm以下とすることによりさらに再生信号の
劣化を防止できて好ましい。
Further, when light diverging from the light emitted from a semiconductor laser or the like enters the phase difference element, the light has various angles of incidence, and large astigmatism occurs in the light reflected from the phase difference element. However, in the present invention, the thickness of the organic thin film having the phase difference generating function is set to 0.5 mm or less to prevent the deterioration of the information reproduction signal due to astigmatism. The following is preferable because deterioration of the reproduction signal can be further prevented.

【0016】接着剤の材料としては、アクリル系、エポ
キシ系、ウレタン系、ポリエステル系、ポリイミド系、
ユリア系、メラミン系、フラン系、イソシアネート系、
シリコーン系、セルロース系、酢酸ビニル系、塩化ビニ
ル系、ゴム系やそれらの混合系のものを使用できる。接
着剤はUV硬化型や熱硬化型であれば作業性がよく好ま
しいが、これらに限定されない。接着剤は平滑に一定厚
みで薄く塗布することが、波面収差を低減するために好
ましい。塗布の方法としては、スピンコート、ロールコ
ートなどの方法を用いると作業性が優れ、また厚さの制
御が容易であり好ましい。
As the material of the adhesive, acrylic, epoxy, urethane, polyester, polyimide,
Urea, melamine, furan, isocyanate,
Silicone-based, cellulose-based, vinyl acetate-based, vinyl chloride-based, rubber-based, and mixtures thereof can be used. The adhesive is preferably workable if it is a UV-curing type or a thermosetting type, but is not limited thereto. It is preferable that the adhesive is applied smoothly and thinly at a constant thickness in order to reduce the wavefront aberration. As a method of application, it is preferable to use a method such as spin coating or roll coating because the workability is excellent and the thickness can be easily controlled.

【0017】また、接着剤の屈折率と位相差発生機能を
有する有機薄膜の屈折率の相違によるこれらの界面の反
射損失をほとんど0にするために、有機薄膜とほぼ等し
い屈折率を持つ接着剤を使用することが望ましい。本発
明の反射型位相差素子に用いられる反射機能を有する固
定基板としては、平滑な光学ガラス表面にアルミニウム
などの金属薄膜またはTiO2とSiO2またはTa25
とSiO2からなる誘電体多層薄膜を成膜したものが使
用できる。金属薄膜は比較的容易に高い反射率を得るこ
とができ、これを使用することは望ましい。一方、誘電
体多層膜鏡も光学膜設計によっては使用する光の波長に
対してほぼ100%の反射率を得ることができ、これを
使用することも望ましい。
Further, in order to reduce the reflection loss at the interface due to the difference between the refractive index of the adhesive and the refractive index of the organic thin film having a phase difference generating function, an adhesive having a refractive index substantially equal to that of the organic thin film is used. It is desirable to use As a fixed substrate having a reflection function used in the reflection type retardation element of the present invention, a metal thin film such as aluminum or a TiO 2 and SiO 2 or Ta 2 O 5
A dielectric multilayer thin film made of SiO 2 and SiO 2 can be used. A metal thin film can obtain a high reflectance relatively easily, and it is desirable to use this. On the other hand, a dielectric multilayer mirror can obtain a reflectance of almost 100% with respect to the wavelength of light to be used depending on the design of the optical film, and it is desirable to use this.

【0018】図2では、図1の位相差素子における有機
薄膜1の一方の表面に施された無反射コート4の代わり
に、無反射コートを施した平行透明基板の光学カバーガ
ラス5を接着剤6で接着している。図2において図1と
同じ符号の構成要素は同じものを意味する。光学カバー
ガラス5を有機薄膜1に接着することにより有機薄膜1
の表面粗さに基づく光の波面への影響を除去できるの
で、波面収差特性を良好にできる。また、光学カバーガ
ラス5と接着剤6との界面、および接着剤6と有機薄膜
1との界面での反射を小さくするために、接着剤6の屈
折率n6を光学カバーガラス5の屈折率n5および有機薄
膜1の常光屈折率および異常光屈折率の平均屈折率n11
との間に、n6≒(n5・n11/2の関係を満たすように
選択することは望ましい。
In FIG. 2, instead of the anti-reflection coating 4 applied to one surface of the organic thin film 1 in the phase difference element of FIG. 1, an optical cover glass 5 of a parallel transparent substrate provided with an anti-reflection coating is used as an adhesive. 6 is adhered. In FIG. 2, components having the same reference numerals as those in FIG. 1 mean the same components. By bonding the optical cover glass 5 to the organic thin film 1, the organic thin film 1
Since the influence of the light on the wavefront based on the surface roughness can be removed, the wavefront aberration characteristics can be improved. In order to reduce reflection at the interface between the optical cover glass 5 and the adhesive 6 and at the interface between the adhesive 6 and the organic thin film 1, the refractive index n 6 of the adhesive 6 is changed to the refractive index of the optical cover glass 5. n 5 and the average refractive index n 11 of the ordinary light refractive index and the extraordinary light refractive index of the organic thin film 1
It is desirable to select such that the relationship of n 6 ≒ (n 5 · n 1 ) 1/2 is satisfied.

【0019】図3に示す反射型位相差素子8は、反射機
能を有する固定基板3と、光学カバーガラス5の形状を
プリズムに変えたものである。このプリズムの形状によ
り光学カバーガラス5に対し光が垂直に入射するため、
空気と光学カバーガラス5の屈折率差による屈折角の波
長依存性が除去される。また、接着剤6の屈折率が光学
カバーガラス5の屈折率に等しくなるように選択するこ
とは、位相差発生機能を有する有機薄膜1に対する光の
入射角度の波長依存性を取り除くことができるので望ま
しい。
The reflection type retardation element 8 shown in FIG. 3 is obtained by changing the shapes of the fixed substrate 3 having a reflection function and the optical cover glass 5 to prisms. Since the light is vertically incident on the optical cover glass 5 due to the shape of the prism,
The wavelength dependence of the refraction angle due to the refractive index difference between the air and the optical cover glass 5 is removed. Selecting the refractive index of the adhesive 6 to be equal to the refractive index of the optical cover glass 5 can eliminate the wavelength dependence of the incident angle of light on the organic thin film 1 having a phase difference generating function. desirable.

【0020】図4において図2と同じ符号の構成要素は
同じものを意味する。反射型位相差素子8は位相差発生
機能と反射機能とをあわせ持つ光学素子であり、薄型の
位相差素子であって、またミラーを必要としないので光
ヘッド装置内の占有体積を減らして装置を小型化できて
好ましい。
In FIG. 4, components having the same reference numerals as those in FIG. 2 mean the same components. The reflection type phase difference element 8 is an optical element having both a phase difference generation function and a reflection function, is a thin phase difference element, and does not require a mirror, so that the volume occupied in the optical head device is reduced. Is preferable because it can be downsized.

【0021】また、透明基板の中心部では2波長以上の
光を透過し、中心部を囲む周辺部では1波長以上の光を
透過させる開口制御機能を位相差素子を一体化させるこ
とが、一素子でありながら開口制御と位相差発生の2つ
の機能を併せ持つので好ましい。そして、この複合的な
素子を光ヘッド装置に組み込むと装置の小型化が図れて
好ましい。通常、中心部は、半導体レーザからの2波長
の光を透過し、周辺部は1波長の光のみを透過する。こ
の開口制御機能は、透明基板の周辺部に誘電多層膜、断
面が周期的な凹凸の形状をした回折格子などを形成する
ことにより得られる。
It is also possible to integrate a phase difference element with an aperture control function of transmitting light of two or more wavelengths in the central portion of the transparent substrate and transmitting light of one or more wavelengths in the peripheral portion surrounding the central portion. Although it is an element, it is preferable because it has both functions of aperture control and phase difference generation. It is preferable to incorporate this composite element into an optical head device, because the size of the device can be reduced. Usually, the central portion transmits light of two wavelengths from the semiconductor laser, and the peripheral portion transmits only light of one wavelength. This aperture control function can be obtained by forming a dielectric multilayer film on the periphery of the transparent substrate, a diffraction grating having a cross section having a periodically uneven shape, and the like.

【0022】本発明の位相差素子をCDやDVDなどの
光ディスクまたは光磁気ディスクなどの光記録媒体に対
して情報の記録、再生を行う光ヘッド装置に用いる場合
は、図4にあるように、光源となる例えば半導体レーザ
7の出射光が有機薄膜1に入射するように設置する。有
機薄膜1は、半導体レーザ7の出射光が有機薄膜1に垂
直入射し固定基板で反射し出射した際に(2p−1)π
/2(pは自然数)近傍の値となるものを用いる。これ
により、半導体レーザから出射した直線偏光は、本発明
の位相差素子で反射されて円偏光となる。
When the phase difference element of the present invention is used in an optical head device for recording and reproducing information on an optical recording medium such as an optical disk such as a CD or DVD or a magneto-optical disk, as shown in FIG. It is installed so that the emitted light of, for example, a semiconductor laser 7 serving as a light source enters the organic thin film 1. When the light emitted from the semiconductor laser 7 is perpendicularly incident on the organic thin film 1 and is reflected and emitted from the fixed substrate, the organic thin film 1 is (2p-1) π
/ 2 (p is a natural number) is used. Thereby, the linearly polarized light emitted from the semiconductor laser is reflected by the phase difference element of the present invention and becomes circularly polarized light.

【0023】また、位相差素子の遅相軸の方向と半導体
レーザからの出射光の直線偏光方向が特定の関係にある
ときに、位相差素子に入射する出射光の入射角度にほと
んど影響されずにほぼ一定の位相差が得られて好まし
い。例えば、波長が650nmの光に対し、位相差素子
からの反射光の偏光状態を示す楕円率角が、入射角度に
よらずほぼ45°になるように有機薄膜1の遅相軸方向
を入射直線偏光方向に対して調整して固定基板3に固定
する。これにより、位相差素子8を反射した出射光は
(2p−1)π/2(pは自然数)の位相差を発生し、
円偏光に変換できる。
Further, when the direction of the slow axis of the phase difference element and the linear polarization direction of the light emitted from the semiconductor laser have a specific relationship, the angle of incidence of the emitted light entering the phase difference element is hardly affected. It is preferable because a substantially constant phase difference can be obtained. For example, with respect to light having a wavelength of 650 nm, the direction of the slow axis of the organic thin film 1 is changed so that the ellipticity angle indicating the polarization state of the reflected light from the phase difference element becomes approximately 45 ° regardless of the incident angle. It is adjusted to the polarization direction and fixed to the fixed substrate 3. Thus, the outgoing light reflected by the phase difference element 8 generates a phase difference of (2p-1) π / 2 (p is a natural number),
Can be converted to circularly polarized light.

【0024】ここで、楕円率角とは、楕円偏光の長軸を
a、短軸をbとしたとき、tanα=±b/a(−45
°≦α≦45°)で定義されるαのことである。特に、
特定の波長に対して所望のリタデーション値の有機薄膜
1を選択することにより、DVDに用いる波長650n
m近傍の光に対しては5π/2の位相差を、一方CDに
用いる波長780nmの光に対し2πの位相差を与える
反射型の位相差素子を構成できる。
Here, the ellipticity angle is defined as tan α = ± b / a (−45) where a is the major axis of the elliptically polarized light and b is the minor axis.
(Α ≦ α ≦ 45 °). In particular,
By selecting an organic thin film 1 having a desired retardation value for a specific wavelength, the wavelength 650n used for DVD is selected.
A reflection-type retardation element that gives a phase difference of 5π / 2 for light in the vicinity of m and 2π for light of a wavelength of 780 nm used for CD on the other hand.

【0025】すなわち、2種類の波長の光を使用する光
ヘッド装置に位相差素子を組み込む場合、リタデーショ
ン値を調整し位相差素子を反射した一方の波長の光に対
しては5π/2(すなわち、奇数・π/2)の位相差を
与えて円偏光とし、他方の波長の光に対しては2π(す
なわち、偶数・π/2)の位相差を与えて直線偏光とで
きる。また、πの位相差でも直線とすることができる。
That is, when a phase difference element is incorporated in an optical head device using light of two wavelengths, the retardation value is adjusted, and light of one wavelength reflected by the phase difference element is 5π / 2 (ie, 5π / 2). , / 2) to give a circularly polarized light, and to the light of the other wavelength, give a phase difference of 2π (that is, an even number, π / 2) to make it linearly polarized. Further, a straight line can be obtained even with a phase difference of π.

【0026】そして、650nmの光と780nmの光
の共通光路中に位相差素子が置かれる場合、650nm
の光に対しては偏光ホログラムなどを用いて光の利用効
率を高める。また、780nmの光に対しては偏光ホロ
グラムの光の利用効率を低めて、別置きされる無偏光ホ
ログラムを使用できる。
When the phase difference element is placed in the common optical path of the light of 650 nm and the light of 780 nm,
The use efficiency of the light is increased using a polarization hologram or the like. In addition, for the light of 780 nm, the use efficiency of the light of the polarization hologram is reduced, and a separately placed non-polarization hologram can be used.

【0027】このように、それぞれの波長の光の偏光状
態を互いに異ならせる(円偏光および直線偏光)ことに
よって、波長ごとに個々の光を制御しやすくなる。した
がって一般的に、リタデーション値が調整された有機薄
膜を反射機能を有する固定基板に固定した位相差素子に
より反射した光は、mπ/2(mは自然数)の位相差を
発生することが好ましい。ここで、mが奇数のとき反射
光は円偏光、偶数のときは直線偏光となる。なお、2p
−1はmが奇数のときに対応する。
As described above, by making the polarization states of the lights of the respective wavelengths different from each other (circularly polarized light and linearly polarized light), it becomes easier to control each light for each wavelength. Therefore, in general, it is preferable that light reflected by a phase difference element in which an organic thin film whose retardation value is adjusted is fixed to a fixed substrate having a reflection function generates a phase difference of mπ / 2 (m is a natural number). Here, when m is an odd number, the reflected light becomes circularly polarized light, and when it is an even number, it becomes linearly polarized light. In addition, 2p
-1 corresponds to a case where m is an odd number.

【0028】[0028]

【実施例】「例1」本例では図1に示した反射型の位相
差素子を作製した。位相差発生機能を有する有機薄膜1
として、一軸延伸を施したポリカーボネートを、接着剤
2としてポリエステル系接着剤を、反射機能を有する固
定基板3としてアルミニウムを厚さ100nm蒸着した
ガラス基板を用いて位相差素子を作製した。
Example 1 In this example, the reflection type retardation element shown in FIG. 1 was manufactured. Organic thin film 1 having phase difference generating function
A retardation element was manufactured using uniaxially stretched polycarbonate, a polyester-based adhesive as an adhesive 2, and a glass substrate on which aluminum was deposited to a thickness of 100 nm as a fixed substrate 3 having a reflective function.

【0029】有機薄膜1は厚さが45μmであり、有機
薄膜1を垂直入射し透過した波長652nmの光に40
8nm(すなわち5π/4)の位相差、有機薄膜1を設
置した位相差素子を反射した場合には2倍の816nm
(すなわち5π/2)の位相差、を発生させた。また、
有機薄膜1と空気との界面での反射を防ぐために、有機
薄膜1の空気側界面に無反射コートを4を施した。
The organic thin film 1 has a thickness of 45 μm.
A phase difference of 8 nm (that is, 5π / 4), which is doubled to 816 nm when reflected by a phase difference element provided with the organic thin film 1.
(Ie, 5π / 2). Also,
In order to prevent reflection at the interface between the organic thin film 1 and air, a non-reflection coating 4 was applied to the air-side interface of the organic thin film 1.

【0030】図5に示すように発振波長が652nmで
ある半導体レーザ7を出射した光は、偏光子9を透過す
ることによりx軸に平行な直線偏光とした。この直線偏
光は位相差素子8に任意の角度で入射する。このとき、
入射角度は位相差素子8の表面に立てた法線と直線偏光
とのなす角度とする。
As shown in FIG. 5, light emitted from a semiconductor laser 7 having an oscillation wavelength of 652 nm is transmitted through a polarizer 9 to be linearly polarized light parallel to the x-axis. This linearly polarized light enters the phase difference element 8 at an arbitrary angle. At this time,
The angle of incidence is the angle between the normal to the surface of the phase difference element 8 and the linearly polarized light.

【0031】ここで、有機薄膜1の遅相軸方位は楕円率
角が略45°になるように調整した結果、図5に示す座
標系のx軸と42°の方向をなすように、すなわちφ=
42°回転させて前述の接着剤2を用いて前述の固定基
板3のアルミニウム膜側に貼った。
Here, the slow axis azimuth of the organic thin film 1 is adjusted so that the ellipticity angle becomes approximately 45 °, and as a result, it is oriented in the direction of 42 ° with the x-axis of the coordinate system shown in FIG. φ =
After being rotated by 42 °, it was adhered to the aluminum film side of the fixed substrate 3 using the adhesive 2 described above.

【0032】上記のように作成された位相差素子を反射
した光の位相差の入射角度依存性を調べた。その結果、
入射角度がθ=20〜50°で位相差素子8を反射した
光は、806〜824nmの位相差が発生した。これ
は、垂直入射の場合の位相差816nmから最大わずか
9nm程度しかずれておらず、位相差は約5π/2で円
偏光となっている。
The incident angle dependence of the phase difference of the light reflected by the phase difference element formed as described above was examined. as a result,
The light reflected at the phase difference element 8 at an incident angle θ = 20 to 50 ° has a phase difference of 806 to 824 nm. This is a shift of only about 9 nm at the maximum from the phase difference of 816 nm in the case of normal incidence, and the phase difference is circularly polarized at about 5π / 2.

【0033】また、光源として発振波長が780nmで
ある半導体レーザ7を用いて、同様に位相差の入射角度
依存性を調べた。入射角度がθ=20〜50°で位相差
素子8を反射する直線偏光は、反射することにより77
9〜797nmの位相差が発生した。これは、垂直入射
の場合の位相差788nmから最大わずか9nm程度し
かずれておらず、位相差は約2πで直線偏光となってい
る。
The dependence of the phase difference on the incident angle was similarly examined using a semiconductor laser 7 having an oscillation wavelength of 780 nm as a light source. The linearly polarized light that reflects the phase difference element 8 at an incident angle θ = 20 to 50 ° is
A phase difference of 9 to 797 nm occurred. This means that the phase difference is only about 9 nm at the maximum from the phase difference of 788 nm in the case of normal incidence, and the phase difference is about 2π, which is linearly polarized light.

【0034】したがって、この反射機能を有する位相差
素子はθ=20〜50°の広い角度範囲で入射する直線
偏光をほぼ一様な円偏光(波長650nmに対し)に変
換、また一様な直線偏光(波長780nmに対し)のま
ま保存することができ、反射光の位相差の入射角度依存
性を減少できた。
Accordingly, the phase difference element having the reflection function converts the linearly polarized light incident in a wide angle range of θ = 20 to 50 ° into substantially uniform circularly polarized light (for a wavelength of 650 nm), The polarized light (with respect to the wavelength of 780 nm) could be stored as it was, and the incident angle dependence of the phase difference of the reflected light could be reduced.

【0035】「例2」本例では図2に示した反射型の位
相差素子を作製した。位相差発生機能を有する有機薄膜
1として一軸延伸を施したポリカーボネートを、接着剤
2および接着剤6として同一のポリエステル系接着剤
を、反射機能を有する固定基板3としてアルミニウムを
厚さ100nm蒸着したガラス基板を、光学カバーガラ
ス5として無反射コートを施した厚さ0.3mmの光学
ガラスを用いて位相差素子を作製した。
Example 2 In this example, the reflection type retardation element shown in FIG. 2 was manufactured. Glass in which uniaxially stretched polycarbonate is applied as the organic thin film 1 having a phase difference generating function, the same polyester-based adhesive is used as the adhesive 2 and the adhesive 6, and aluminum is deposited to a thickness of 100 nm as the fixing substrate 3 having the reflecting function. A retardation element was manufactured using a substrate having a thickness of 0.3 mm as an optical cover glass 5 and having an anti-reflection coating.

【0036】有機薄膜1は例1と同一のもので、厚さが
45μmであり、この有機薄膜1を垂直入射し透過した
波長652nmの光に対して408nm(約5π/4)
の位相差、有機薄膜1を設置した位相差素子を反射した
場合には2倍の816nm(すなわち5π/2)の位相
差、を発生させた。
The organic thin film 1 is the same as that of Example 1 and has a thickness of 45 μm. The light having a wavelength of 652 nm transmitted through the organic thin film 1 at normal incidence and transmitted at 408 nm (about 5π / 4).
When the light reflected by the phase difference element provided with the organic thin film 1 was reflected, a phase difference of 816 nm (ie, 5π / 2) was doubled.

【0037】上記の有機薄膜1を前述の接着剤2と接着
剤6を用いて前述の固定基板3のアルミニウム膜面と前
述の光学カバーガラス5の非コート面の間に挟んだ。こ
こで、有機薄膜1の遅相軸方位は楕円率角が略45°に
なるように調整した結果、図5に示す座標系のx軸と4
5°の方向をなすように、すなわちφ=45°回転させ
て前述の接着剤2を用いて前述の固定基板3のアルミニ
ウム膜側に貼った。
The organic thin film 1 was sandwiched between the aluminum film surface of the fixed substrate 3 and the uncoated surface of the optical cover glass 5 using the adhesive 2 and the adhesive 6. Here, the slow axis azimuth of the organic thin film 1 was adjusted so that the ellipticity angle became approximately 45 °, and as a result, the x axis of the coordinate system shown in FIG.
It was rotated in a direction of 5 °, that is, rotated by φ = 45 °, and attached to the aluminum film side of the fixed substrate 3 using the adhesive 2 described above.

【0038】上記のように作成された位相差素子を反射
した光の位相差の入射角度依存性を例1と同様に調べ
た。入射角度がθ=10〜60°で位相差素子8を反射
した光は、808〜822nmの位相差が発生した。こ
れは、垂直入射の場合の位相差816nmから最大わず
か8nm程度しかずれておらず、位相差は約5π/2で
円偏光となっている。
The incident angle dependence of the phase difference of the light reflected by the phase difference element formed as described above was examined in the same manner as in Example 1. The light reflected from the phase difference element 8 at an incident angle θ = 10 to 60 ° has a phase difference of 808 to 822 nm. This means that the phase difference is only about 8 nm at the maximum from the phase difference of 816 nm in the case of normal incidence, and the phase difference is a circularly polarized light at about 5π / 2.

【0039】また、光源として発振波長が780nmで
ある半導体レーザ7を用いて、同様に位相差の入射角度
依存性を調べた。入射角度がθ=10〜60°で位相差
素子8を反射する直線偏光は、反射することにより78
1〜795nmの位相差が発生した。これは、垂直入射
の場合の位相差788nmから最大わずか7nm程度し
かずれておらず、位相差は約2πで直線偏光となってい
る。
Further, the semiconductor laser 7 having an oscillation wavelength of 780 nm was used as a light source, and the incident angle dependence of the phase difference was similarly examined. The linearly polarized light that reflects the phase difference element 8 when the incident angle θ is 10 to 60 ° is 78
A phase difference of 1 to 795 nm occurred. This means that the phase difference is only about 7 nm at the maximum from the phase difference of 788 nm in the case of normal incidence, and the phase difference is about 2π, which is linearly polarized light.

【0040】したがって、この反射機能を有する位相差
素子はθ=20〜50°の例1よりも広い角度で入射す
る直線偏光をほぼ一様な円偏光(波長650nmに対
し)に変換、また一様な直線偏光(波長780nmに対
し)のまま保存することができ、反射光の位相差の入射
角度依存性をさらに減少させることができた。
Therefore, the phase difference element having the reflection function converts linearly polarized light incident at a wider angle than in Example 1 with θ = 20 to 50 ° into substantially uniform circularly polarized light (for a wavelength of 650 nm). Such linearly polarized light (with respect to a wavelength of 780 nm) could be preserved, and the incident angle dependence of the phase difference of the reflected light could be further reduced.

【0041】「例3」本例では、例2の位相差素子を光
ヘッド装置に組み込んだ。この様子を図6に示す。半導
体レーザ7を出射した直線偏光(14bの方向)は反射
型位相差素子8で反射し左回り円偏光(14cの方向)
となる。前記位相差素子8を反射した円偏光(14cの
方向)は、ビームスプリッタ10によって分割される。
このときビームスプリッタ10を回折せずに直進する光
のみ利用し、回折して進む光(図示せず)は利用しな
い。
Example 3 In this example, the phase difference element of Example 2 was incorporated in an optical head device. This is shown in FIG. The linearly polarized light (in the direction of 14b) emitted from the semiconductor laser 7 is reflected by the reflection type retardation element 8 and is counterclockwise circularly polarized (in the direction of 14c).
Becomes The circularly polarized light (in the direction of 14 c) reflected by the phase difference element 8 is split by the beam splitter 10.
At this time, only the light traveling straight without diffracting the beam splitter 10 is used, and the light (not shown) traveling diffracted is not used.

【0042】ビームスプリッタ10を直進した円偏光は
対物レンズ11により光ディスク13に集光される。さ
らに、光ディスク13を反射した光は、右回り円偏光
(14dの方向)となり対物レンズ11とビームスプリ
ッタ10を透過する。このとき、ビームスプリッタ10
を透過した光は、光検出器12に向かう光と半導体レー
ザ7に向かう光に分けられる。ビームスプリッタ10に
より分割された円偏光は、反射型位相差素子8を反射し
直線偏光(14aの方向)となる。
The circularly polarized light having passed straight through the beam splitter 10 is condensed on an optical disk 13 by an objective lens 11. Further, the light reflected from the optical disk 13 becomes clockwise circularly polarized light (in the direction of 14d) and passes through the objective lens 11 and the beam splitter 10. At this time, the beam splitter 10
Is divided into light traveling toward the photodetector 12 and light traveling toward the semiconductor laser 7. The circularly polarized light split by the beam splitter 10 is reflected by the reflection type retardation element 8 and becomes linearly polarized light (direction of 14a).

【0043】この直線偏光(14aの方向)は、半導体
レーザ7を出射した直線偏光(14bの方向)に対し、
振動方向が直交する。したがって、半導体レーザ7を出
射した光と半導体レーザ7に戻る光は干渉が生じず、安
定したレーザ出力が半導体レーザ7より得られた。その
結果、光検出器12で検出される光のジッタと呼ばれる
信号検出誤差が減少し、良好な再生信号が得られた。
This linearly polarized light (in the direction of 14a) is different from the linearly polarized light (in the direction of 14b) emitted from the semiconductor laser 7.
Vibration directions are orthogonal. Therefore, light emitted from the semiconductor laser 7 and light returning to the semiconductor laser 7 did not interfere with each other, and a stable laser output was obtained from the semiconductor laser 7. As a result, a signal detection error called jitter of light detected by the photodetector 12 was reduced, and a good reproduced signal was obtained.

【0044】本例では、本発明の反射型位相差素子8を
光ヘッド装置に組み込むことにより、光ヘッド装置の構
成部品点数を減らし、小型化が実現できたとともに、光
ヘッド装置において良好なジッタ特性が得られることが
確認できた。さらに、反射型位相差素子へのレーザ光の
入射角度の精度に余裕ができたため、光ヘッド装置の組
み立てが容易になった。
In this embodiment, by incorporating the reflection type phase difference element 8 of the present invention into an optical head device, the number of components of the optical head device can be reduced, the size can be reduced, and good jitter can be achieved in the optical head device. It was confirmed that characteristics were obtained. Further, since the accuracy of the angle of incidence of the laser beam on the reflection type phase difference element is allowed, it is easy to assemble the optical head device.

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、位
相差発生機能を有する有機薄膜が、所望の位相差が発生
するようにリタデーション値を調整されて反射機能を有
する固定基板に設置された反射型位相差素子は、薄型で
ありながら所望の位相差を発生する位相差素子である。
As described above, according to the present invention, an organic thin film having a phase difference generating function is mounted on a fixed substrate having a reflection function by adjusting a retardation value so that a desired phase difference is generated. The reflection type phase difference element is a phase difference element that generates a desired phase difference while being thin.

【0046】また、この位相差素子を使用することによ
り部品点数を低減でき光ヘッド装置の組み立て工程数を
少なくでき、さらに装置を小型化できる。さらに、位相
差素子の遅相軸と位相差素子に入射するレーザ光の直線
偏光方向とを特定することにより、レーザ光の位相差素
子への入射角自由度の大きい(組み立ての容易な)光ヘ
ッド装置にできる。
Also, by using this phase difference element, the number of parts can be reduced, the number of steps of assembling the optical head device can be reduced, and the device can be further downsized. Further, by specifying the slow axis of the phase difference element and the linear polarization direction of the laser light incident on the phase difference element, light having a large degree of freedom of the incident angle of the laser light to the phase difference element (easy to assemble). Can be a head device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相差素子の構成の一例を示す断面図
である。
FIG. 1 is a sectional view showing an example of the configuration of a phase difference element of the present invention.

【図2】本発明の位相差素子の構成の他の例を示す断面
図である。
FIG. 2 is a sectional view showing another example of the configuration of the phase difference element of the present invention.

【図3】本発明の位相差素子の構成の別の例を示す断面
図である。
FIG. 3 is a sectional view showing another example of the configuration of the phase difference element of the present invention.

【図4】図2の位相差素子を設置した本発明の光ヘッド
装置の拡大図である。
FIG. 4 is an enlarged view of the optical head device of the present invention in which the phase difference element of FIG. 2 is installed.

【図5】本発明の位相差素子の測定光学系および座標系
を示す概念図である。
FIG. 5 is a conceptual diagram showing a measuring optical system and a coordinate system of the phase difference element of the present invention.

【図6】図2の位相差素子を設置した本発明の光ヘッド
装置の断面図である。
FIG. 6 is a cross-sectional view of the optical head device of the present invention in which the phase difference element of FIG. 2 is installed.

【符号の説明】[Explanation of symbols]

1:有機薄膜 2:接着剤 3:固定基板 4:無反射コート 5:光学カバーガラス 6:接着剤 7:半導体レーザ 8:位相差素子 9:偏光子 10:ビームスプリッタ 11:対物レンズ 12:光検出器 13:光ディスク 1: Organic thin film 2: Adhesive 3: Fixed substrate 4: Non-reflective coating 5: Optical cover glass 6: Adhesive 7: Semiconductor laser 8: Phase difference element 9: Polarizer 10: Beam splitter 11: Objective lens 12: Light Detector 13: Optical disk

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】位相差発生機能を有する有機薄膜が、所望
の位相差を発生するようにリタデーション値が調整され
て、反射機能を有する固定基板に設置されていることを
特徴とする位相差素子。
1. A phase difference element, wherein an organic thin film having a phase difference generation function is mounted on a fixed substrate having a reflection function, the retardation value of which is adjusted so as to generate a desired phase difference. .
【請求項2】中心部では2波長以上の光を透過し、中心
部を囲む周辺部では1波長以上の光を透過するように形
成された開口制御素子と一体化された請求項1に記載の
位相差素子。
2. An aperture control element formed to transmit light of two or more wavelengths in a central portion and to transmit light of one or more wavelengths in a peripheral portion surrounding the central portion. Phase difference element.
【請求項3】半導体レーザからの直線偏光の出射光を光
記録媒体に導き、前記光記録媒体からの反射光を光検出
器へ導く光ヘッド装置において、前記出射光を反射して
前記光記録媒体に到達するように、請求項1または2に
記載の位相差素子が設置されている光ヘッド装置。
3. An optical head device which guides linearly polarized light emitted from a semiconductor laser to an optical recording medium and guides reflected light from the optical recording medium to a photodetector. An optical head device provided with the phase difference element according to claim 1 so as to reach a medium.
【請求項4】前記出射光が前記位相差素子に入射して発
生する位相差が、入射する角度に依存しないように、前
記位相差素子の遅相軸方向と前記出射光の偏光方向との
関係が特定されている請求項3に記載の光ヘッド装置。
4. A method according to claim 1, wherein a phase difference between a slow axis direction of the phase difference element and a polarization direction of the emitted light is adjusted so that a phase difference generated when the emitted light is incident on the phase difference element does not depend on an incident angle. The optical head device according to claim 3, wherein the relationship is specified.
JP26930299A 1999-09-22 1999-09-22 Phase difference element and optical head device Expired - Fee Related JP4292649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26930299A JP4292649B2 (en) 1999-09-22 1999-09-22 Phase difference element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26930299A JP4292649B2 (en) 1999-09-22 1999-09-22 Phase difference element and optical head device

Publications (2)

Publication Number Publication Date
JP2001093180A true JP2001093180A (en) 2001-04-06
JP4292649B2 JP4292649B2 (en) 2009-07-08

Family

ID=17470462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26930299A Expired - Fee Related JP4292649B2 (en) 1999-09-22 1999-09-22 Phase difference element and optical head device

Country Status (1)

Country Link
JP (1) JP4292649B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098350A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Optical element, optical pickup device and optical disk drive device using the optical element
JP2007102183A (en) * 2005-09-08 2007-04-19 Seiko Epson Corp Optical low pass filter
JP2008170990A (en) * 2007-12-26 2008-07-24 Jsr Corp Manufacturing method of wavelength plate for laser optical system
WO2011049144A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Reflection type wavelength plate and optical head device
JP2013012273A (en) * 2011-06-29 2013-01-17 Asahi Glass Co Ltd Reflection type wideband wavelength plate and optical head device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098350A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Optical element, optical pickup device and optical disk drive device using the optical element
JP4728542B2 (en) * 2001-09-21 2011-07-20 株式会社リコー Optical element, optical pickup device using the optical element, and optical disc drive apparatus
JP2007102183A (en) * 2005-09-08 2007-04-19 Seiko Epson Corp Optical low pass filter
JP2008170990A (en) * 2007-12-26 2008-07-24 Jsr Corp Manufacturing method of wavelength plate for laser optical system
WO2011049144A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Reflection type wavelength plate and optical head device
US8451704B2 (en) 2009-10-20 2013-05-28 Asahi Glass Company, Limited Reflection type wavelength plate and optical head device
JP2013012273A (en) * 2011-06-29 2013-01-17 Asahi Glass Co Ltd Reflection type wideband wavelength plate and optical head device

Also Published As

Publication number Publication date
JP4292649B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
EP1126291B1 (en) Phase shifter and optical head device mounted with the same
US5659531A (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
US7688700B2 (en) Phase correction element and optical head device
US7859977B2 (en) Optical pick-up unit
JP4300784B2 (en) Optical head device
US5309423A (en) Magneto-optical reproducing device with optical system having two reflective elements and providing phase difference cancellation
JP4292649B2 (en) Phase difference element and optical head device
US20100321627A1 (en) Wavelength selective optical rotator and optical head device
US6552317B1 (en) Optical pickup device
JP3458895B2 (en) Phase difference element, optical element and optical head device
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP2007280460A (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP4626026B2 (en) Optical head device
JP2008004146A (en) Optical element and optical head device provided with optical element
JP4427877B2 (en) Aperture limiting element and optical head device
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JP2001311821A (en) Phase shifter and optical head device
JP2002250815A (en) Phase plate for two wavelengths and optical head device
JP4876826B2 (en) Phase difference element and optical head device
JP2008004145A (en) Optical element and optical head device provided with optical element
JP2005339595A (en) Optical head device
JP2001060337A (en) Optical pickup device
JP2725324B2 (en) Optical head for optical recording media
JP2001216675A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees