JP2001091226A - Dimension measuring method for shape steel while running - Google Patents

Dimension measuring method for shape steel while running

Info

Publication number
JP2001091226A
JP2001091226A JP26990299A JP26990299A JP2001091226A JP 2001091226 A JP2001091226 A JP 2001091226A JP 26990299 A JP26990299 A JP 26990299A JP 26990299 A JP26990299 A JP 26990299A JP 2001091226 A JP2001091226 A JP 2001091226A
Authority
JP
Japan
Prior art keywords
running
distance
measurement
shape steel
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26990299A
Other languages
Japanese (ja)
Other versions
JP3598907B2 (en
Inventor
Minoru Matsumoto
実 松本
Yoshiki Fukutaka
善己 福高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26990299A priority Critical patent/JP3598907B2/en
Publication of JP2001091226A publication Critical patent/JP2001091226A/en
Application granted granted Critical
Publication of JP3598907B2 publication Critical patent/JP3598907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dimension measuring method for shape steel, which can measure the section dimensions of a running shape steel with satisfactory accuracy using an inexpensive device. SOLUTION: Position relationship between a pair of laser range finders adapted to reciprocate and scan in the direction orthogonal to tracks for shape steel provided on the upper and lower sides of the running shape steel is set, so that the advancing directions of both range finders are the same, one advances behind the other by a designated distance, so that measuring timings of both range finders are made coincide with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走行中の形鋼の寸
法測定方法に関し、とくに、H形鋼の脚長、中心偏りを
有利に自動測定するために適用される形鋼の寸法測定方
法に関する。本発明において、単に距離計というときは
レーザ距離計を指す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the dimension of a section steel while traveling, and more particularly to a method for measuring the dimension of a section steel applied to advantageously automatically measure the leg length and center deviation of an H section steel. . In the present invention, a rangefinder is simply a laser rangefinder.

【0002】[0002]

【従来の技術】形鋼例えばH形鋼の断面寸法を自動測定
する技術として、特開平4−157304号公報、特開平5−
93621 号公報に開示された方法がある。これらの方法で
は、図7に示すように、H形鋼1のフランジ幅を挟む方
向に1対のレーザ距離計A1 ,A2 を間隔LC の位置に
対向配置してフランジまでの距離L1 ,L2 を計測し、
またウエブを挟む方向に1対のレーザ距離計B1 ,B2
を間隔LC の位置に対向配置してウエブまでの距離
3 ,L4 を計測する。そして、フランジ幅W、上部脚
長bT 、下部脚長bB 、ウエブ厚TW 、中心偏りSを次
式で求める。
2. Description of the Related Art Japanese Patent Application Laid-Open Nos. 4-157304 and 5-5-
There is a method disclosed in Japanese Patent No. 93621. In these methods, as shown in FIG. 7, a pair of laser rangefinders A 1 and A 2 are arranged opposite to each other at a distance L C in a direction sandwiching the flange width of the H-section steel 1 and a distance L to the flange is determined. 1, L 2 were counted,
In addition, a pair of laser rangefinders B 1 , B 2
Are arranged opposite to each other at a distance L C , and distances L 3 and L 4 to the web are measured. Then, the flange width W, the upper leg length b T , the lower leg length b B , the web thickness T W , and the center deviation S are obtained by the following equations.

【0003】 W =LC −(L1 +L2 ) (1) bT =L3 −L1 (2) bB =L4 −L2 (3) TW =LC −(L3 +L4 ) (4) S =(bT −bB )/2 (5) 図7では左側のみ示したが、右側についても同様の相対
位置関係で距離計が配置される。なお、通常用いるレー
ザ距離計は1次元距離計であるが、特開平4−157304号
公報では走行中のH形鋼の横振れによるフランジ端面
(該端面の幅はフランジ厚に等しい)の計測ミスを回避
するためにフランジ幅を挟む1対(図7のA1 ,A2
を計測可能範囲の広い2次元距離計としている。
[0003] W = L C - (L 1 + L 2) (1) b T = L 3 -L 1 (2) b B = L 4 -L 2 (3) T W = L C - (L 3 + L 4 ) (4) S = (b T -b B) / 2 (5) showed only the left in FIG. 7, the distance meter is placed in the same relative positional relationship also right. Incidentally, the laser range finder usually used is a one-dimensional range finder, but in Japanese Patent Application Laid-Open No. 4-157304, there is a measurement error of the flange end face (the width of the end face is equal to the flange thickness) due to the lateral deflection of the running H-section steel. (A 1 , A 2 in FIG. 7) sandwiching the flange width to avoid
Is a two-dimensional rangefinder having a wide measurable range.

【0004】また、特開平10−115509号公報には、レー
ザ距離計を形鋼の上方下方に1台ずつ、左方右方に4台
ずつ配置する走行中の形鋼断面の寸法測定装置が開示さ
れている。一方、特開平8−327329号公報には、上下1
対のレーザ距離計で静止したH形鋼の上半分と下半分を
往復走査し、その際往路と復路で距離計の旋回角度(距
離計走行方向に対するレーザビーム照射方向の角度)を
変更し、計測した距離値と旋回角度をもとに上下の断面
形状プロフィルを合成し、その結果をもとに断面寸法を
算出する方法が開示されている。なお、上下の距離計の
基準位置座標は、被測定物の測定と同一時機に寸法およ
び配置位置が既知の校正片を測定し、その結果を用いて
校正される。
Japanese Patent Application Laid-Open No. H10-115509 discloses an apparatus for measuring the dimension of a cross section of a running steel section, in which one laser distance meter is arranged above and below the section steel, and four laser distance meters are arranged on the left and right sides. It has been disclosed. On the other hand, Japanese Unexamined Patent Publication No.
The upper and lower halves of the stationary H-section steel are reciprocally scanned by a pair of laser rangefinders, and at this time, the turning angle of the rangefinder (the angle of the laser beam irradiation direction with respect to the rangefinder running direction) is changed between the forward and return passes. There is disclosed a method of combining upper and lower cross-sectional shape profiles based on a measured distance value and a turning angle, and calculating a cross-sectional dimension based on the result. The reference position coordinates of the upper and lower distance meters are calibrated by measuring a calibration piece having a known size and arrangement position at the same time as the measurement of the object to be measured, and using the results.

【0005】[0005]

【発明が解決しようとする課題】特開平4−157304号公
報、特開平5−93621 号公報、特開平10−115509号公報
の測定法は、複数の距離計を定置して距離計測する方式
(定置測定法と称する)であるため被測定物にパスライ
ン変動(被測定物が走行中に上下方向にばたつく現象)
が生じてもそれによる影響はなく、走行中の被測定物を
測定するのに好適である。しかし、定置測定法では、距
離計の合計必要台数が8〜10台の多きにのぼることから
高価でありまた計器間の固有特性差(機差)による誤差
重畳の問題が大きいほか配置箇所も多数分散するため保
全負担が重い。
The measuring methods disclosed in JP-A-4-157304, JP-A-5-93621, and JP-A-10-115509 measure distances with a plurality of distance meters fixed. Due to the fixed measurement method), the path line fluctuates on the DUT (the phenomenon that the DUT flutters up and down while traveling)
Is not affected by this, and is suitable for measuring an object to be measured during traveling. However, the stationary measurement method is expensive because the total number of required rangefinders is as large as 8 to 10 units, is expensive, has a great problem of error superimposition due to a characteristic characteristic difference (machine difference) between the meters, and has many locations. Heavy maintenance burden due to dispersion.

【0006】一方、特開平8−327329号公報の測定方式
は距離計を走行させて被測定物を走査する方式(走査測
定法と称する)であって、距離計は上下1台ずつの計2
台で足りるから安価であり機差による誤差重畳の問題は
小さく保全負担も軽い。しかし、この方法は、上下の距
離計の走行位置を一致させた状態で走査するため、静止
した被測定物の寸法測定には有効であるが、走行中の被
測定物に対しては測定値にパスライン変動による誤差が
入る。
On the other hand, the measuring method disclosed in Japanese Patent Application Laid-Open No. 8-327329 is a method in which an object to be measured is scanned by moving a distance meter (referred to as a scanning measurement method).
It is inexpensive because a table is sufficient, and the problem of error superposition due to machine differences is small and the maintenance burden is light. However, this method is effective for measuring the dimensions of a stationary DUT because scanning is performed with the upper and lower rangefinders in the same running position. Error due to pass line fluctuation.

【0007】なお、走行中の形鋼を走路幅方向に走査す
ると、静止状態の形鋼を斜めに横切って走査する場合と
同じ結果になるが、形鋼の長手方向の形状変動は小さい
から、斜め横断走査であること自体は、測定精度悪化の
要因とはならない。すなわち、図8に示すように、上下
の距離計2a,2bがフランジ端面を走査してからウエ
ブ面を走査するまでのΔt秒間で変動量Pのパスライン
変動があると、上下の脚長と中心偏りの測定値bTP,b
BP,SP は、パスライン変動がないときに得られる正し
い値bT ,bB ,SからPだけずれてしまう。
[0007] Scanning the running section in the width direction of the running track has the same result as scanning the section in a stationary state obliquely across the section, but the shape variation in the longitudinal direction of the section is small. The oblique transverse scanning itself does not cause a deterioration in measurement accuracy. That is, as shown in FIG. 8, if there is a pass line fluctuation of the fluctuation amount P in Δt seconds from when the upper and lower distance meters 2a and 2b scan the flange end surface to the time when the web surface is scanned, the upper and lower leg lengths and the center Measurement value of bias b TP , b
BP and SP deviate from the correct values b T , b B and S obtained by P when there is no pass line fluctuation by P.

【0008】一例として、実生産ラインで搬送中のH形
鋼(サイズ400 ×200 ;ウエブ高さ400mm 、フランジ幅
200mm の意)のウエブ上下面を、走行位置合わせした上
下1対のレーザ距離計で搬送路幅方向に走査し、計測す
ることによりパスライン変動の程度を調査した結果を図
9に示す。距離計がH形鋼をOp側(搬送路の操作側)
からDr側(搬送路の駆動側)まで走査する間にパスラ
イン変動は約40回も発生し、パスライン変動量は最大約
3mmであった。
As an example, an H-section steel (size 400 × 200; web height 400 mm, flange width) being transported on an actual production line
FIG. 9 shows the results of examining the degree of path line fluctuation by scanning and measuring the upper and lower surfaces of a 200 mm web) in the width direction of the conveyance path using a pair of upper and lower laser distance meters that are aligned with each other. Distance meter puts H-section steel on Op side (operating side of transport path)
During scanning from the scanning line to the Dr side (driving side of the conveyance path), the pass line fluctuation occurred about 40 times, and the maximum amount of the pass line fluctuation was about 3 mm.

【0009】この変動量は、形鋼サイズにもよるが、通
常、数mm〜10mm程度はあると推定されるから、走行中の
形鋼を従来の走査測定法で測定すると脚長、中心偏りの
測定精度は数mm〜10mm程度悪くなる。このように、従来
は、上下一対の距離計で走行中の形鋼の断面寸法を精度
よく測定することは困難であった。
Although the amount of the variation depends on the size of the shape steel, it is usually estimated to be several mm to 10 mm. Therefore, when the running shape steel is measured by a conventional scanning measurement method, the leg length and the center deviation are measured. The measurement accuracy is reduced by several mm to 10 mm. As described above, conventionally, it has been difficult to accurately measure the cross-sectional dimensions of a shaped steel piece while traveling with a pair of upper and lower distance meters.

【0010】本発明は、この問題を解決し、走行中の形
鋼の断面寸法を安価な上下一対だけの距離計で精度よく
測定できる形鋼の寸法測定方法を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned problem and to provide a method for measuring the dimension of a shaped steel which can accurately measure the cross-sectional dimension of the shaped steel while traveling by using a pair of inexpensive upper and lower distance meters.

【0011】[0011]

【課題を解決するための手段】本発明は、走行中の形鋼
の上下に設けた形鋼の走路に直交する方向に往復して走
査する一対のレーザ距離計の位置関係を、双方の進行方
向が同じとき一方が他方よりも所定の距離だけ後方を進
行するように設定し、かつ双方の計測タイミングを一致
させることを特徴とする走行中の形鋼の寸法測定方法で
ある。
According to the present invention, the positional relationship between a pair of laser rangefinders which reciprocally scan in a direction perpendicular to a running path of a shaped steel member provided above and below a running shaped steel member is determined. This is a method for measuring the dimension of a running steel bar, wherein one is set to travel a predetermined distance behind the other when the directions are the same, and the measurement timings of both are set to coincide.

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施形態の一例
を示す断面図であり、(a)は上下の距離計2a,2b
が共に往路方向(この例ではOp側⇒Dr側)に進行中
の状態、(b)は上下の距離計2a,2bが共に復路方
向(この例ではDr側⇒Op側)に進行中の状態をそれ
ぞれ示す。
FIG. 1 is a sectional view showing an example of an embodiment of the present invention. FIG. 1 (a) shows upper and lower distance meters 2a, 2b.
Are in the forward direction (Op side → Dr side in this example), and (b) is the state in which the upper and lower distance meters 2a, 2b are both traveling in the backward direction (Dr side → Op side in this example). Are respectively shown.

【0013】この状態において本発明では、距離計の一
方例えば上距離計2aを、他方例えば下距離計2bより
も所定のずらし量ηだけ後方から進行させるものとす
る。該ずらし量ηはたとえば粗圧延後のH形鋼の断面に
ついて図2に示すように、一方のフランジ端面の内側端
部Wと一方のフランジ側に最も近いウエブ部Xとの水平
距離Z1 以上、ウエブの両端X,Y間の距離(ウエブ内
幅)Z2 以下であればよい。
In this state, according to the present invention, one of the rangefinders, for example, the upper rangefinder 2a is advanced from the other side, for example, by a predetermined shift amount η behind the lower rangefinder 2b. The shift amount η is, for example, a horizontal distance Z 1 or more between an inner end W of one flange end surface and a web portion X closest to one flange side as shown in FIG. , web across X, the distance between Y (web in width) may be any Z 2 or less.

【0014】η≧Z1 なる条件は、距離計の一方がフラ
ンジ端面を走査すると同時に他方がウエブ面を走査する
状態を実現し、正確にフランジ脚長を求めるために必要
であり、η≦Z2 なる条件は、両方の距離計がウエブ面
を走査する状態を実現し、正確にウエブ厚を求めるため
に必要である。しかし、さらに正確にフランジ脚長を求
めるためにはフランジ端面を複数点走査すること(たと
えば図3に示すように、フランジ端面を4ヶ所走査し、
中央の2ヶ所のデータを用いる等)が好ましく、この点
から距離計の一方がフランジ端面すべての部分を走査す
ると同時に、他方がウエブ面を走査する状態を実現する
べくηがZ3 以上であることが好ましい。また、ウエブ
内幅Z2 がZ3 に比べて倍以上大きい場合には、図4に
示すように、η≦Z2 /2とし、H形鋼の左半分と右半
分で各々、各測定値を求めれば、より高精度な測定がで
きる。
[0014] eta ≧ Z 1 becomes condition, one of the rangefinder can be regarded as the state in which the other simultaneously to scan the flange end face scans the web surface, it is necessary to determine the exact flange leg, eta ≦ Z 2 These conditions are necessary for realizing a state in which both rangefinders scan the web surface and accurately determining the web thickness. However, in order to obtain the flange leg length more accurately, it is necessary to scan the flange end face at a plurality of points (for example, as shown in FIG.
2 or the like using the locations of the data) are preferred in the center, and at the same time one of the rangefinder from this point to scan all parts flange end face, eta so the other to achieve a state of scanning the web plane is Z 3 or more Is preferred. Further, when the web in the width Z 2 is greater than times that of the Z 3, as shown in FIG. 4, and eta ≦ Z 2/2, respectively at left and right halves of the H-shaped steel, each measurement If it is determined, more accurate measurement can be performed.

【0015】なお、図1の例では、上距離計を後方(下
距離計を前方)としているが、上下の距離計の前後関係
はこの逆であってもよい。さらに本発明では上下の距離
計2a,2bの計測タイミングを一致させる。この措置
は、上下の計測タイミングがずれるとそのずれの間に生
じたパスライン変動の変動量が誤差としてはびこるのを
防止するために必要である。
In the example of FIG. 1, the upper distance meter is set to the rear (the lower distance meter is set to the front), but the order of the upper and lower distance meters may be reversed. Further, in the present invention, the measurement timings of the upper and lower distance meters 2a and 2b are matched. This measure is necessary in order to prevent the fluctuation amount of the path line fluctuation generated during the deviation between the measurement timings in the vertical direction from rising as an error.

【0016】これにより、計測した距離データを例えば
以下に図4を用いて説明するような方法で処理すること
で、パスライン変動の影響を受けずに形鋼の断面寸法を
導出することができるようになる。図4は、本発明によ
る上下同時計測状態の推移を示す断面図である。距離計
は往路で(a)⇒(b)⇒(c)の状態、復路で(d)
⇒(e)⇒(f)の状態を順次経過する。
Thus, by processing the measured distance data by, for example, a method described below with reference to FIG. 4, it is possible to derive the sectional dimensions of the section steel without being affected by path line fluctuations. Become like FIG. 4 is a sectional view showing the transition of the simultaneous upper and lower measurement state according to the present invention. The distance meter is in the state of (a) ⇒ (b) ⇒ (c) on the outward trip, and (d) on the return trip
The state of (e) ⇒ (f) is sequentially passed.

【0017】往路、復路のいずれにおいても下距離計2
bが上距離計2aよりもずらし量ηだけ先行して走行す
るので、往路では、まずOp側でフランジ上端面、ウエ
ブ下面が同時計測されて距離値LT1、LB1が得られ
(a)、次いでウエブOp側、Dr側でそれぞれウエブ
上下面が同時計測されて距離値LT2、LB2、LT2’、L
B2’が得られ(b)、さらにDr側でウエブ上面とフラ
ンジ下端面が同時計測されて距離値LT3、LB3が得られ
る(c)。そして、復路では、まずDr側でフランジ上
端面とウエブ下面が同時計測されて距離値LT4、LB4
得られ(d)、次いでウエブDr側、Op側でそれぞれ
ウエブ上下面が同時計測されて距離値LT5、LB5
T5’、LB5’が得られ(e)、さらにOp側でウエブ
上面とフランジ下端面が同時計測されて距離値LT6、L
B6が得られる(f)。
The lower distance meter 2 is used for both forward and return trips.
Since b travels ahead of the upper distance meter 2a by a shift amount η, on the outward path, the upper end face of the flange and the lower face of the web are simultaneously measured on the Op side to obtain distance values L T1 and L B1 (a). Then, the upper and lower surfaces of the web are simultaneously measured on the web Op side and the Dr side, respectively, and the distance values L T2 , L B2 , L T2 ′, L
B2 'is obtained (b), and the upper surface of the web and the lower end surface of the flange are simultaneously measured on the Dr side to obtain distance values LT3 and LB3 (c). Then, on the return path, first, the upper end face of the flange and the lower face of the web are simultaneously measured on the Dr side to obtain distance values LT4 and LB4 (d), and then the upper and lower faces of the web are simultaneously measured on the Dr and Op sides of the web. And the distance values L T5 , L B5 ,
L T5 ′ and L B5 ′ are obtained (e), and the upper surface of the web and the lower end surface of the flange are simultaneously measured on the Op side to obtain distance values L T6 and L T6 .
B6 is obtained (f).

【0018】そこで往路、復路で得た距離値を用いて次
式によりOp側ウエブ厚TWOP 、Dr側ウエブ厚
WDR 、Op側上部脚長bOPT 、Dr側下部脚長
DRB 、Dr側上部脚長bDRT 、Op側下部脚長
OPB 、Op側フランジ幅WOP、Dr側フランジ幅
DR、Op側中心偏りSOP、Dr側中心偏りSDRを算出
する。 TWOP =LC −(LT2+LB2+LT5’+LB5’)/2 (6) TWDR =LC −(LT5+LB5+LT2’+LB2’)/2 (7) bOPT ={LC −(LT1+LB1)}−{LC −(LT2+LB2) } (8) bDRB ={LC −(LT3+LB3)}−{LC −(LT2’+LB2’)} (9) bDRT ={LC −(LT4+LB4)}−{LC −(LT5+LB5)} (10) bOPB ={LC −(LT6+LB6)}−{LC −(LT5’+LB5’)} (11) WOP =bOPT +TWOP +bOPB (12) WDR =bDRT +TWDR +bDRB (13) SOP =(bOPT −bOPB )/2 (14) SDR =(bDRT −bDRB )/2 (15) 式(8) 〜(11)による脚長の算出には、距離データのうち
同時計測されたもののみが用いられるから、脚長および
中心偏りの測定結果にパスライン変動による誤差の入り
込む余地はない。それゆえ、本発明によれば、走行中の
形鋼の断面寸法の高精度測定が可能となる。
Then, using the distance values obtained in the forward and return trips , the following formulas are used to obtain the Op-side web thickness T WOP , the Dr-side web thickness T WDR , the Op-side upper leg length b OPT , the Dr-side lower leg length b DRB , and the Dr-side upper leg length. b DRT , Op side lower leg length b OPB , Op side flange width W OP , Dr side flange width W DR , Op side center deviation S OP , Dr side center deviation S DR are calculated. T WOP = L C - (L T2 + L B2 + L T5 '+ L B5') / 2 (6) T WDR = L C - (L T5 + L B5 + L T2 '+ L B2') / 2 (7) b OPT = { L C − (L T1 + L B1 )} − {L C − (L T2 + L B2 )} (8) b DRB = {L C − (L T3 + L B3 )} − {L C − (L T2 '+ L B2 ')} (9) b DRT = {L C - (L T4 + L B4)} - {L C - (L T5 + L B5)} (10) b OPB = {L C - (L T6 + L B6)} - {L C - (L T5 ' + L B5')} (11) W OP = b OPT + T WOP + b OPB (12) W DR = b DRT + T WDR + b DRB (13) S OP = (b OPT -b OPB) / 2 (14) S DR = (b DRT −b DRB ) / 2 (15) In calculating the leg length by the equations (8) to (11), only the distance data measured simultaneously is used. There is no room for errors due to path line fluctuations in the leg length and center deviation measurement results. Therefore, according to the present invention, high-precision measurement of the cross-sectional dimension of the running section steel is possible.

【0019】なお、図4(b)、(e)の状態において
ウエブ厚を求めるに当り、複数の時点で上下同時計測を
行い、それらを平均してもよい。また、ここでは被測定
物がH形鋼の場合の実施形態について説明したが、本発
明はこれに限定されるものではなく、被測定物はH形鋼
以外の形鋼例えば溝形鋼、I形鋼などでもよい。
In obtaining the web thickness in the states shown in FIGS. 4 (b) and 4 (e), upper and lower simultaneous measurements may be taken at a plurality of points in time and averaged. Although the embodiment in which the object to be measured is an H-section steel has been described here, the present invention is not limited to this. Shaped steel may be used.

【0020】[0020]

【実施例】H形鋼熱間圧延ラインにおいて中間圧延機出
側から仕上圧延機入側に至る搬送路を走行中のH形鋼の
断面寸法測定に本発明を適用した実施例について説明す
る。この実施例で使用した距離計支持機構は、図5に示
すように、両側にサイドガイド9の付いた搬送路3の上
方、下方に上下1対のレール4を支柱5で搬送路幅方向
に水平支持して設置し、各レール4にレーザ距離計2を
1台ずつ待機位置P 0 と折り返し位置P1 との間を往復
走行可能に取り付け、各レール4の一端側に、距離計2
の走行を駆動する駆動装置6と、該駆動装置6の駆動回
転数を計測してその結果を距離計2の走行位置に変換す
る位置検出器7とを配置して構成した。なお、距離計2
の旋回角度は90°に固定した。
[Example] Intermediate rolling mill at H-section steel hot rolling line
Of the H-section steel traveling on the conveyance path from the side to the entrance of the finishing mill
An example in which the present invention is applied to measurement of a cross-sectional dimension will be described.
You. The rangefinder support mechanism used in this embodiment is shown in FIG.
On the transport path 3 with side guides 9 on both sides
, A pair of upper and lower rails 4 are supported by supporting columns 5 in the conveying path width direction
And the laser distance meter 2 is mounted on each rail 4
Standby position P one by one 0And return position P1Round trip between
It is mounted so that it can run, and one end of each rail 4 has a distance meter 2
Driving device 6 for driving the vehicle, and a driving circuit of the driving device 6
Measure the number of turns and convert the result to the travel position of the distance meter 2
And a position detector 7 which is arranged. In addition, distance meter 2
Was fixed at 90 °.

【0021】また、待機位置P0 と搬送路3との間の所
定の位置に配置した寸法既知の校正片8をH形鋼1の測
定毎に走査して採取した校正片距離データを用いて距離
計2の基準位置座標を校正した。この装置で、変動量約
5mmのパスライン変動下で走行中のH形鋼20本について
図4で説明した方法でOp側、Dr側の上下部脚長と中
心偏りを自動測定し、測定誤差を調べた。この測定に供
したH形鋼においては、図2で定義したZ1 が35mm、Z
3 が50 mm 、Z2 が370 mmであったので、上下の距離計
(下先行)位置のずらし量ηを50 mm に設定した。
The calibration piece 8 having a known size, which is arranged at a predetermined position between the standby position P 0 and the transport path 3, is scanned every time the H-section 1 is measured, and the calibration piece distance data is used. The reference position coordinates of the distance meter 2 were calibrated. With this device, the length of the upper and lower legs and the center deviation of the Op and Dr sides of the 20 H-beams running under the variation of the pass line of about 5 mm are automatically measured by the method described with reference to FIG. Examined. In H-shaped steel subjected to the measurement, Z 1 as defined in Figure 2 is 35 mm, Z
3 50 mm, since Z 2 was 370 mm, was set up and down distance meter shift amount η (bottom first) position to 50 mm.

【0022】結果をまとめて図6に示す。なお、測定誤
差は自動測定結果から人手測定結果(最確値とみなされ
る)を差し引いて求めた。図6に示されるように、いず
れの測定部位においても測定誤差は±0.3mm の範囲内に
収まった。この測定誤差範囲はずらし量ηを0に設定す
る従来法に対比して約±5mmから±0.3mm へと大幅に縮
小しており、本発明により走査測定法による走行中の形
鋼の断面寸法測定精度が格段に向上することが確認され
た。
The results are summarized in FIG. The measurement error was obtained by subtracting the result of manual measurement (which is regarded as the most probable value) from the result of automatic measurement. As shown in FIG. 6, the measurement error was within ± 0.3 mm at any of the measurement sites. This measurement error range is significantly reduced from about ± 5 mm to ± 0.3 mm in comparison with the conventional method in which the shift amount η is set to 0. According to the present invention, the sectional dimension of the running section steel by the scanning measurement method is measured. It was confirmed that the measurement accuracy was significantly improved.

【0023】[0023]

【発明の効果】かくして本発明によれば、走行中の形鋼
の断面寸法を、上下1対の距離計を用いる安価な装置
で、高精度な測定が可能となるという優れた効果を奏す
る。
As described above, according to the present invention, an excellent effect can be obtained in that an inexpensive apparatus using a pair of upper and lower distance meters can be used to measure the cross-sectional dimension of a running steel section with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例を示す断面図である。FIG. 1 is a sectional view showing an example of an embodiment of the present invention.

【図2】ずらし量を説明するための図である。FIG. 2 is a diagram for explaining a shift amount.

【図3】フランジ端面を複数点走査する状態を示す図で
ある。
FIG. 3 is a diagram showing a state in which a flange end face is scanned at a plurality of points.

【図4】本発明による上下同時計測状態の推移を示す断
面図である。
FIG. 4 is a cross-sectional view showing a transition of a simultaneous upper and lower measurement state according to the present invention.

【図5】実施例で使用した距離計支持機構を示す断面図
である。
FIG. 5 is a sectional view showing a distance meter support mechanism used in the embodiment.

【図6】実施例の測定誤差調査結果を示すグラフであ
る。
FIG. 6 is a graph showing a measurement error investigation result of the example.

【図7】定置測定法を示す断面図である。FIG. 7 is a sectional view showing a stationary measurement method.

【図8】従来の走査測定法におけるパスライン変動によ
る測定誤差の発生原理を示す断面図である。
FIG. 8 is a cross-sectional view showing a principle of generation of a measurement error due to a pass line fluctuation in a conventional scanning measurement method.

【図9】実生産ラインでのパスライン変動調査結果の1
例を示すグラフである。
FIG. 9 shows the results of a pass line fluctuation survey on an actual production line.
It is a graph showing an example.

【符号の説明】[Explanation of symbols]

1 H形鋼 2 距離計(レーザ距離計、a:上、b:下) 3 搬送路 4 レール(a:上、b:下) 5 支柱 6 駆動装置 7 位置検出器 8 校正片 9 サイドガイド 10 レーザビーム照射方向(a:上、b:下) DESCRIPTION OF SYMBOLS 1 H-shaped steel 2 Distance meter (laser distance meter, a: upper, b: lower) 3 Transport path 4 Rail (a: upper, b: lower) 5 Prop 6 Drive 7 Position detector 8 Calibration piece 9 Side guide 10 Laser beam irradiation direction (a: upper, b: lower)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA52 BB15 CC07 DD14 FF11 FF44 GG06 HH04 JJ05 JJ16 MM03 MM07 PP22 QQ42 UU06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA52 BB15 CC07 DD14 FF11 FF44 GG06 HH04 JJ05 JJ16 MM03 MM07 PP22 QQ42 UU06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走行中の形鋼の上下に設けた形鋼の走路
に直交する方向に往復して走査する1対のレーザ距離計
の位置関係を、双方の進行方向が同じとき一方が他方よ
りも所定の距離だけ後方を進行するように設定し、かつ
双方の計測タイミングを一致させることを特徴とする走
行中の形鋼の寸法測定方法。
1. A positional relationship between a pair of laser rangefinders which reciprocally scan in a direction perpendicular to a running path of a shaped steel member provided above and below a running shaped steel member, wherein when both traveling directions are the same, one is the other. A method for measuring the dimensions of a running steel section, wherein the measuring section is set so as to travel backward by a predetermined distance from the vehicle, and the measurement timings of the two sections are matched.
JP26990299A 1999-09-24 1999-09-24 Method of measuring dimensions of running H-section steel Expired - Fee Related JP3598907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26990299A JP3598907B2 (en) 1999-09-24 1999-09-24 Method of measuring dimensions of running H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26990299A JP3598907B2 (en) 1999-09-24 1999-09-24 Method of measuring dimensions of running H-section steel

Publications (2)

Publication Number Publication Date
JP2001091226A true JP2001091226A (en) 2001-04-06
JP3598907B2 JP3598907B2 (en) 2004-12-08

Family

ID=17478816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26990299A Expired - Fee Related JP3598907B2 (en) 1999-09-24 1999-09-24 Method of measuring dimensions of running H-section steel

Country Status (1)

Country Link
JP (1) JP3598907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111571070A (en) * 2020-05-08 2020-08-25 华新水泥(黄石)装备制造有限公司 Welding method of I-shaped workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111571070A (en) * 2020-05-08 2020-08-25 华新水泥(黄石)装备制造有限公司 Welding method of I-shaped workpiece

Also Published As

Publication number Publication date
JP3598907B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US6556945B1 (en) Measurement of grooves and long waves on rails with a longitudinal streak of light
EP0736342B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
JPH0727518A (en) On-line shape measuring device for shape steel
JP3598907B2 (en) Method of measuring dimensions of running H-section steel
KR960013682B1 (en) Process and apparatus for measuring sizes of steel spections
JP3264210B2 (en) Roller table pass line measuring device and pass line measuring method
JP2994535B2 (en) Hot steel profile measuring device
JP3331341B2 (en) Dimension measuring device for section of steel section
JP2000081311A (en) Dimension measuring method of h steel
RU2686801C1 (en) Optical measuring device
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH06185988A (en) Measuring method for dimension of section steel
CN112129228A (en) Method and system for accurately measuring length dimension of high-temperature plate blank
JP3385174B2 (en) Cross section profile measurement method
JP2006234540A (en) H-section steel shape measuring method
JP2005291876A (en) Dimension-measuring method of section
JP2001221620A (en) Optical scanning method for structural surface
JP4626047B2 (en) Dimensional measurement method for H-section steel
JP3073374B2 (en) Dimension measuring device for shaped steel
JPH0647540A (en) Method and device for detecting welding groove shape
JPH05237654A (en) Method and device for measuring hot scarfed quantity
JP2953784B2 (en) On-line dimension measuring device for section steel
JPH0481123B2 (en)
JPH11271032A (en) Apparatus and method for measuring sectional profile
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees