JP2001087907A - Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining - Google Patents

Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining

Info

Publication number
JP2001087907A
JP2001087907A JP26827699A JP26827699A JP2001087907A JP 2001087907 A JP2001087907 A JP 2001087907A JP 26827699 A JP26827699 A JP 26827699A JP 26827699 A JP26827699 A JP 26827699A JP 2001087907 A JP2001087907 A JP 2001087907A
Authority
JP
Japan
Prior art keywords
layer
average
layer thickness
tensile stress
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26827699A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Hitoshi Kunugi
斉 功刀
Masayuki Miichi
昌之 見市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP26827699A priority Critical patent/JP2001087907A/en
Publication of JP2001087907A publication Critical patent/JP2001087907A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machining tool made of surface-covered cemented carbide having a hard covering layer exhibiting an excellent chipping resistance in intermittent heavy-duty machining. SOLUTION: To the surface of the cemented carbide body based on tungsten carbide, a hard covering layer having a total mean thickness of 5-25 μm is formed by chemical evaporation, wherein the hard covering layer is composed of (a) a Ti-compound layer consisting of one or more of layers of TiC, TiN, TiCN, TiCO and TiCNO each of which has a mean thickness of 0.1-5 μm and has a granular crystalline structure and in which a residual tensile stress exists, (b) a TiCN layer having a mean thickness of 2-15 μm and composed of an upper layer where a residual compressive stress exists and a lower layer where a residual tensile stress exists, (c) a TiN layer having a mean thickness of 2-15 μm and composed of an upper layer where a residual compressive stress exists and a lower layer where a residual tensile stress exists, and (d) an Al2O3 layer which has a mean thickness of 0.5-10 μm and a granular crystalline structure and in which a residual tensile stress exists.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に断続切削を
高送りおよび高切り込みなどの重切削条件で行った場合
に硬質被覆層がすぐれた耐チッピング性を発揮する表面
被覆炭化タングステン基超硬合金製切削工具(以下、被
覆超硬工具という)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-coated tungsten carbide-based cemented carbide in which a hard coating layer exhibits excellent chipping resistance, especially when interrupted cutting is performed under heavy cutting conditions such as high feed and high cutting. The present invention relates to a cutting tool (hereinafter referred to as a coated carbide tool).

【0002】[0002]

【従来の技術】従来、一般に、炭化タングステン基超硬
合金基体(以下、超硬基体という)の表面に、(a)
いずれも0.1〜5μmの平均層厚および粒状結晶組織
を有する、炭化チタン(以下、TiCで示す)層、窒化
チタン(以下、同じくTiNで示す)層、炭窒化チタン
(以下、TiCNで示す)層、炭酸化チタン(以下、T
iCOで示す)層、および炭窒酸化チタン(以下、Ti
CNOで示す)層のうちの1種または2種以上からなる
Ti化合物層と、(b) 2〜15μmの平均層厚およ
び縦長成長結晶組織を有する炭窒化チタン(以下、l−
TiCNで示す)層と、(c) 0.5〜10μmの平
均層厚および粒状結晶組織を有する酸化アルミニウム
(以下、Al23 で示す)層と、で構成された硬質被
覆層を5〜25μmの全体平均層厚で化学蒸着してなる
被覆超硬工具が知られており、またこの被覆超硬工具が
鋼や鋳鉄などの連続切削や断続切削に用いられることも
知られている。また、一般に上記の被覆超硬工具の硬質
被覆層を構成するAl23層として、α型結晶構造を
もつものやκ型結晶構造をもつものなどが広く実用に供
されることも良く知られており、さらに上記l−TiC
N層は、例えば特開平6−8010号公報や特開平7−
328808号公報などにより公知であり、通常の化学
蒸着装置にて、反応ガスとして有機炭窒化物を含む混合
ガスを使用し、700〜950℃の中温温度域で化学蒸
着することにより形成されるものである。
2. Description of the Related Art Conventionally, a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) generally has (a)
Each of which has an average layer thickness of 0.1 to 5 μm and a granular crystal structure, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, and a titanium carbonitride (hereinafter referred to as TiCN). ) Layer, titanium carbonate (hereinafter, T
iCO) layer and titanium carbonitride (hereinafter referred to as Ti
(B) Titanium carbonitride (hereinafter referred to as l-type) having an average layer thickness of 2 to 15 μm and a vertically grown crystal structure.
A hard coating layer composed of an aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer having an average layer thickness of 0.5 to 10 μm and a granular crystal structure; A coated carbide tool formed by chemical vapor deposition with a total average layer thickness of 25 μm is known, and it is also known that this coated carbide tool is used for continuous cutting or interrupted cutting of steel, cast iron, or the like. It is also well known that, generally, those having an α-type crystal structure, those having a κ-type crystal structure, and the like are widely and practically used as the Al 2 O 3 layer constituting the hard coating layer of the coated carbide tool. And the above l-TiC
The N layer is formed, for example, in JP-A-6-8010 or JP-A-7-810.
It is known from, for example, 328808, and is formed by performing chemical vapor deposition in a normal chemical vapor deposition apparatus at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas. It is.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
のFA化はめざましく、また切削加工に対する省力化お
よび省エネ化、さらに低コスト化の要求も強く、これに
伴い、切削工具には、通常の条件での連続切削および断
続切削は勿論のこと、切削を高送りおよび高切り込みな
どの重切削条件でも行うことのできる汎用性が求められ
ているが、上記の従来被覆超硬工具においては、特にこ
れを断続切削を高送りおよび高切り込みなどの重切削条
件で行うのに用いると、硬質被覆層にチッピング(微小
欠け)が発生し易く、これが原因で比較的短時間で使用
寿命に至るのが現状である。
On the other hand, in recent years, the use of FA in cutting equipment has been remarkable, and there has been a strong demand for labor saving, energy saving, and further cost reduction in cutting work. In addition to continuous cutting and intermittent cutting under the conditions described above, versatility capable of performing cutting even in heavy cutting conditions such as high feed and high cutting is required, but in the conventional coated carbide tool described above, In particular, when this is used to perform intermittent cutting under heavy cutting conditions such as high feed and high cutting, chipping (small chipping) is likely to occur in the hard coating layer, which leads to a relatively short service life. Is the current situation.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具におけ
る硬質被覆層の耐チッピング性向上を図るべく研究を行
った結果、 (a)上記の従来被覆超硬工具の硬質被覆層において
は、これを化学蒸着法にて形成した場合、いずれの構成
層にもその結晶組織が粒状結晶であっても、また縦長成
長結晶であっても30〜70kgf/mmの残留引張応
力が存在し、これが高衝撃のかかる断続重切削ではチッ
ピング発生の原因となること。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to improve the chipping resistance of the hard coating layer in the conventional coated carbide tool, (a) in the hard coating layer of the conventional coated carbide tool, Is formed by a chemical vapor deposition method, a residual tensile stress of 30 to 70 kgf / mm is present in any of the constituent layers, even if the crystal structure is a granular crystal or a vertically-grown crystal. Intermittent heavy cutting with impact may cause chipping.

【0005】(b)上記の通り被覆超硬工具の硬質被覆
層を構成するTi化合物層およびAl23 層、さらに
l−TiCN層を化学蒸着法により形成した場合、いず
れも引張応力が残留し、これを圧縮応力が残留するよう
に形成することはできないが、前記l−TiCN層にお
いては、引張応力が残留したl−TiCN層(下方部分
層)を形成した後に、蒸着条件を変えることにより前記
下方部分層のもつ縦長成長結晶組織を損なわずに、すな
わち前記下方部分層のもつ縦長成長結晶組織と連続した
縦長成長結晶組織のままで、5〜20kgf/mmの圧
縮応力が残留したl−TiCN層(上方部分層)を形成
することができること。
(B) As described above, when a Ti compound layer, an Al 2 O 3 layer, and an l-TiCN layer constituting a hard coating layer of a coated carbide tool are formed by a chemical vapor deposition method, tensile stress remains in any case. However, this cannot be formed so that the compressive stress remains, but in the case of the 1-TiCN layer, after forming the l-TiCN layer (lower partial layer) in which the tensile stress remains, the deposition conditions are changed. As a result, a compressive stress of 5 to 20 kgf / mm remains without impairing the vertically elongated crystal structure of the lower partial layer, that is, while maintaining the vertically elongated crystal structure of the lower partial layer. -The ability to form a TiCN layer (upper partial layer).

【0006】(c)上記の5〜20kgf/mmの圧縮
応力が残留したl−TiCN層(上方部分層)は、まず
通常の条件、すなわち、 反応ガス組成(容量%で、以下同じ)−TiCl4 :1
〜3%、N2:20〜40%、CH3CN:0.1〜1
%、H2 :残り、 雰囲気温度:800〜920℃、 雰囲気圧力:50〜150Torr、 の条件で30〜70kgf/mmの残留引張応力が存在
するl−TiCN層(下方部分層)を所定層厚になるま
で化学蒸着形成した後で、蒸着条件を、 反応ガス組成−TiCl4 :0.1〜1%、N2:30
〜50%、CH3CN:0.1〜1%、H2 :残り、 雰囲気温度:940〜1000℃、 雰囲気圧力:50〜200Torr、 に変え、所定時間化学蒸着を行うことにより形成できる
こと。
(C) The above-mentioned l-TiCN layer (upper partial layer) in which the compressive stress of 5 to 20 kgf / mm remains remains under normal conditions, that is, the reaction gas composition (% by volume, the same applies hereinafter) -TiCl 4 : 1
~3%, N 2: 20~40% , CH 3 CN: 0.1~1
%, H 2 : remaining, ambient temperature: 800 to 920 ° C., atmospheric pressure: 50 to 150 Torr, and a predetermined thickness of the l-TiCN layer (lower partial layer) having a residual tensile stress of 30 to 70 kgf / mm. After the formation by chemical vapor deposition, the deposition conditions were as follows: reaction gas composition—TiCl 4 : 0.1-1%, N 2 : 30
~50%, CH 3 CN: 0.1~1 %, H 2: remainder, ambient temperature: from 940 to 1,000 ° C., atmospheric pressure: 50~200Torr, to change, can be formed by performing a predetermined time chemical vapor deposition.

【0007】(d)また、上記の被覆超硬工具の硬質被
覆層を構成するTi化合物層のうちのTiN層に関して
も、粒状結晶組織を有するTiN層は、 反応ガス組成−TiCl4 :2〜10%、N2:20〜
40%、H2 :残り、 雰囲気温度:900〜1050℃、 雰囲気圧力:50〜300Torr、 の条件で形成されるが、この化学蒸着条件に比して、反
応ガスにおけるTiN形成成分の濃度を相対的に低く
し、かつ反応雰囲気圧力を高くした条件、すなわち、 反応ガス組成−TiCl4 :0.2〜1%、N2:5〜
10%、H2 :残り、 雰囲気温度:900〜1050℃、 雰囲気圧力:400〜600Torr、 とした条件でTiN層の化学蒸着を行うと、上記のl-
TiCN層と実質的に同じ破面組織および光学顕微鏡組
織を有する縦長成長結晶組織のTiN層が形成されるよ
うになること。
(D) Further, regarding the TiN layer of the Ti compound layer constituting the hard coating layer of the coated cemented carbide tool, the TiN layer having a granular crystal structure has a reaction gas composition of -TiCl 4 : 2 10%, N 2: 20~
40%, H 2 : remaining, ambient temperature: 900 to 1050 ° C., atmospheric pressure: 50 to 300 Torr. Compared to the chemical vapor deposition conditions, the concentration of the TiN forming component in the reaction gas is relatively small. to depressed, and reaction atmosphere pressure raised condition, i.e., the reaction gas composition -TiCl 4: 0.2~1%, N 2 : 5~
When the TiN layer is subjected to chemical vapor deposition under the following conditions: 10%, H 2 : remaining, ambient temperature: 900 to 1050 ° C., atmospheric pressure: 400 to 600 Torr, the above l-
A TiN layer having a vertically grown crystal structure having substantially the same fracture structure and light microscopic structure as the TiCN layer is formed.

【0008】(e)さらに、上記(d)で形成された縦
長成長結晶組織を有するTiN(以下、l−TiNで示
す)層にも、30〜70kgf/mmの残留引張応力が
存在するが、上記(c)で述べたl−TiCN層と同様
に、まず上記の(d)条件で30〜70kgf/mmの
残留引張応力が存在するl−TiN層(下方部分層)を
所定層厚になるまで化学蒸着形成した後で、蒸着条件
を、 反応ガス組成−TiCl4 :0.2〜1%、N2:5〜
10%、H2 :残り、 雰囲気温度:950〜1150℃、 雰囲気圧力:50〜300Torr、 に変え、所定時間化学蒸着を行うと、上記下方部分層の
もつ縦長成長結晶組織を損なわずに、すなわち前記下方
部分層のもつ縦長成長結晶組織と連続した縦長成長結晶
組織のままで、5〜20kgf/mmの圧縮応力が残留
したl−TiN層(上方部分層)を形成することができ
ること。
(E) Further, the TiN (hereinafter referred to as 1-TiN) layer having the vertically elongated crystal structure formed in (d) also has a residual tensile stress of 30 to 70 kgf / mm. Similarly to the l-TiCN layer described in the above (c), first, the l-TiN layer (lower partial layer) having a residual tensile stress of 30 to 70 kgf / mm under the above condition (d) has a predetermined layer thickness. after chemical vapor deposited up to the deposition conditions, the reaction gas composition -TiCl 4: 0.2~1%, N 2 : 5~
10%, H 2 : remaining, ambient temperature: 950 to 1150 ° C., atmospheric pressure: 50 to 300 Torr, and performing chemical vapor deposition for a predetermined time, without impairing the vertically elongated crystal structure of the lower partial layer, ie, An l-TiN layer (upper partial layer) in which a compressive stress of 5 to 20 kgf / mm remains can be formed with a vertically elongated crystal structure continuous with the vertically elongated crystal structure of the lower partial layer.

【0009】(f)上記(c)および(e)に示され
る、いずれも下方部分に残留引張応力が存在し、上方部
分に残留圧縮応力が存在した応力分布をもったl−Ti
CN層およびl−TiN層を上記硬質被覆層の構成層と
して存在させると、この結果の被覆超硬工具は、断続切
削を重切削条件で行う高衝撃付加切削に用いても、前記
硬質被覆層がすぐれた耐チッピング性をもつようになる
ことから、長期に亘ってすぐれた切削性能を発揮するこ
と。
(F) As shown in (c) and (e) above, l-Ti having a stress distribution in which a residual tensile stress exists in a lower portion and a residual compressive stress exists in an upper portion.
When the CN layer and the 1-TiN layer are present as constituent layers of the hard coating layer, the resulting coated carbide tool can be used for the high impact applied cutting in which the interrupted cutting is performed under heavy cutting conditions. Has excellent chipping resistance, and exhibits excellent cutting performance over a long period of time.

【0010】(g)上記硬質被覆層を構成するl−Ti
CN層およびl−TiN層での残留圧縮応力が存在する
上方部分層は、いずれも後述する理由により前記l−T
iCN層およびl−TiN層の平均層厚の20〜40%
に相当する層厚をもつことが必要であること。以上
(a)〜(g)に示される研究結果を得たのである。
(G) l-Ti constituting the hard coating layer
The upper partial layer where the residual compressive stress exists in the CN layer and the l-TiN layer is formed by the above-mentioned l-T for the reason described later.
20 to 40% of the average layer thickness of the iCN layer and the 1-TiN layer
It is necessary to have a layer thickness corresponding to. The research results shown in (a) to (g) above were obtained.

【0011】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、(a) いず
れも0.1〜5μmの平均層厚および粒状結晶組織を有
し、かつ残留引張応力が存在する、TiC層、TiN
層、TiCN層、TiCO層、TiNO層、およびTi
CNO層のうちの1種または2種以上からなるTi化合
物層と、(b) 2〜15μmの平均層厚を有し、残留
圧縮応力が存在する上方部分層と残留引張応力が存在す
る下方部分層からなり、前記上方部分層と前記下方部分
層は相互に連続した縦長成長結晶組織を有し、かつ前記
上方部分層は、前記2〜15μmの平均層厚の20〜4
0%に相当する層厚を有するl−TiCN層と、(c)
2〜15μmの平均層厚を有し、残留圧縮応力が存在
する上方部分層と残留引張応力が存在する下方部分層か
らなり、前記上方部分層と前記下方部分層は相互に連続
した縦長成長結晶組織を有し、かつ前記上方部分層は、
前記2〜15μmの平均層厚の20〜40%に相当する
層厚を有するl−TiN層と、(d) 0.5〜10μ
mの平均層厚および粒状結晶組織を有し、かつ残留引張
応力が存在するAl23 層と、で構成された硬質被覆
層を5〜25μmの全体平均層厚で化学蒸着してなる、
断続重切削で硬質被覆層がすぐれた耐チッピング性を発
揮する被覆超硬工具に特徴を有するものである。
The present invention has been made based on the above research results, and (a) all have an average layer thickness of 0.1 to 5 μm and a granular crystal structure on the surface of a cemented carbide substrate, TiC layer, TiN with residual tensile stress
Layer, TiCN layer, TiCO layer, TiNO layer, and Ti
(B) an upper partial layer having an average layer thickness of 2 to 15 μm and having a residual compressive stress and a lower part having a residual tensile stress. The upper partial layer and the lower partial layer have a mutually continuous vertically grown crystal structure, and the upper partial layer has an average layer thickness of 20 to 4 μm of 2 to 15 μm.
An l-TiCN layer having a layer thickness corresponding to 0%, (c)
An upper partial layer having an average layer thickness of 2 to 15 μm and having a residual compressive stress and a lower partial layer having a residual tensile stress, wherein the upper partial layer and the lower partial layer are mutually continuous vertically grown crystals. Having tissue and the upper partial layer comprises:
An l-TiN layer having a layer thickness corresponding to 20 to 40% of the average layer thickness of 2 to 15 μm, and (d) 0.5 to 10 μm.
An Al 2 O 3 layer having an average layer thickness and a granular crystal structure of m, and having a residual tensile stress, and a hard coating layer constituted by chemical vapor deposition with a total average layer thickness of 5 to 25 μm.
The present invention is characterized by a coated carbide tool in which a hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting.

【0012】なお、この発明の被覆超硬工具の硬質被覆
層を構成するl−TiCN層およびl−TiN層の上方
部分層の層厚については、両者の上方部分層のうちのい
ずれかの層厚でもその平均層厚の20%未満になると、
硬質被覆層における残留圧縮応力の残留引張応力に対す
る相対的割合が低くなるばかりでなく、硬質被覆層全体
の残留応力分布のバランスがくずれ、これが原因で切刃
にチッピングが発生し易くなり、一方いずれの層厚も前
記l−TiCN層およびl−TiN層の平均層厚の40
%を越えると、縦長成長結晶組織に粒状結晶組織が混入
し、縦長成長結晶組織によってもたらされるすぐれた靭
性が損なわれるようになるという理由から、その平均層
厚の20〜40%と定めたのである。
The thickness of the upper partial layer of the 1-TiCN layer and the 1-TiN layer constituting the hard coating layer of the coated carbide tool of the present invention is determined by any one of the upper partial layers. If the thickness is less than 20% of the average layer thickness,
Not only the relative ratio of the residual compressive stress to the residual tensile stress in the hard coating layer becomes lower, but also the balance of the residual stress distribution in the entire hard coating layer is lost, and as a result, chipping easily occurs on the cutting edge. Is 40 times the average layer thickness of the l-TiCN layer and the l-TiN layer.
%, The average thickness is determined to be 20 to 40% of the average layer thickness because the grain structure is mixed with the vertically-grown crystal structure and the excellent toughness provided by the vertically-grown crystal structure is impaired. is there.

【0013】さらに、この発明の被覆超硬工具の硬質被
覆層における構成層の平均層厚は以下の理由により定め
たものである。すなわち、Ti化合物層のそれぞれに
は、共通する性質として構成層相互間の層間密着性を向
上させる作用があり、したがってその平均層厚が0.1
μm未満では、所望のすぐれた層間密着性を確保するこ
とができず、一方その平均層厚がいずれかでも5μmを
越えると、切刃にチッピングが発生し易くなることか
ら、その平均層厚を0.1〜5μmと定めた。
Further, the average thickness of the constituent layers in the hard coating layer of the coated carbide tool of the present invention is determined for the following reason. That is, each of the Ti compound layers has a function of improving interlayer adhesion between constituent layers as a common property, and therefore, the average layer thickness is 0.1%.
If it is less than μm, it is not possible to secure the desired excellent interlayer adhesion. On the other hand, if the average layer thickness exceeds 5 μm, the chipping is likely to occur on the cutting edge. It was determined as 0.1 to 5 μm.

【0014】また、Al23 層には、硬質被覆層の耐
摩耗性を向上させる作用があるが、その平均層厚が0.
5μm未満では、所望のすぐれた耐摩耗性を確保するこ
とができず、一方その平均層厚が10μmを越えると切
刃にチッピングが発生し易くなることから、その平均層
厚を0.5〜10μmと定めた。
The Al 2 O 3 layer has an effect of improving the abrasion resistance of the hard coating layer.
When the average layer thickness is less than 5 μm, the desired excellent wear resistance cannot be secured. On the other hand, when the average layer thickness exceeds 10 μm, chipping easily occurs on the cutting edge. It was determined to be 10 μm.

【0015】さらに、l−TiCN層およびl−TiN
層には、上記の通り共に硬質被覆層に縦長成長結晶組織
によるすぐれた靭性を付与し、かつそれぞれの上方部分
層のもつ残留圧縮応力によって硬質被覆層における残留
引張応力と残留圧縮応力の相対的応力分布を良好な状態
に維持する作用があり、この結果硬質被覆層の耐チッピ
ング性が向上するようになるが、その平均層厚がそれぞ
れ2μm未満では、前記作用に所望の効果が得られず、
一方その平均層厚がいずれも15μmを越えると切刃に
欠けやチッピングが発生し易くなることから、その平均
層厚をいずれも2〜15μmと定めた。また、硬質被覆
層の全体平均層厚を5〜25μmとしたのは、その平均
層厚が5μm未満では、所望の耐摩耗性を確保すること
ができず、一方その平均層厚が25μmを越えると、切
刃に欠けやチッピングが発生し易くなるという理由から
である。
Further, an l-TiCN layer and an l-TiN
Both layers give the hard coating layer excellent toughness due to the elongated growth crystal structure as described above, and the residual compressive stress of each upper partial layer causes the relative tensile stress and residual compressive stress in the hard coating layer to be relatively high. There is an effect of maintaining the stress distribution in a good state, and as a result, the chipping resistance of the hard coating layer is improved. However, if the average layer thickness is less than 2 μm, the desired effect cannot be obtained. ,
On the other hand, if the average layer thickness exceeds 15 μm, chipping and chipping easily occur in the cutting edge. Therefore, the average layer thickness is set to 2 to 15 μm. In addition, the reason why the total average layer thickness of the hard coating layer is set to 5 to 25 μm is that if the average layer thickness is less than 5 μm, the desired wear resistance cannot be secured, while the average layer thickness exceeds 25 μm. This is because the chipping and chipping of the cutting edge are likely to occur.

【0016】[0016]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、平
均粒径:1.5μmの細粒WC粉末、3.0μmの中粒
WC粉末、同1.2μmの(Ti,W)CN(重量比
で、以下同じ、TiC/TiN/WC=24/20/5
6)粉末、同1.3μmの(Ta,Nb)C(TaC/
NbC=90/10)粉末、同1.2μmのCr32
末、および同1.2μmのCo粉末を用意し、これら原
料粉末を表1に示される配合組成に配合し、ボールミル
で72時間湿式混合し、乾燥した後、この混合粉末をI
SO規格CNMG120412に則したスローアウエイ
チップ形状の圧粉体にプレス成形し、この圧粉体を10
-3torrの真空雰囲気中、1400〜1460℃の範
囲内の所定の温度に1時間保持の条件で真空焼結するこ
とにより超硬基体A〜Eをそれぞれ製造した。さらに、
上記超硬基体Eに対して、100torrのCH4ガス
雰囲気中、温度:1400℃に1時間保持後、徐冷の条
件で浸炭処理を施し、処理後超硬基体表面に付着するカ
ーボンとCoを酸およびバレル研磨で除去することによ
り、表面から11μmの位置で最大Co含有量:15.
9重量%、深さ:42μmのCo富化帯域を基体表面部
に形成した。また、いずれも焼結したままで、上記超硬
基体Cには表面部に表面から17μmの位置で最大Co
含有量:10.0重量%、深さ:23μmのCo富化帯
域、上記超硬基体Dには表面部に表面から22μmの位
置で最大Co含有量:14.5重量%、深さ:29μm
のCo富化帯域がそれぞれ形成されており、残りの超硬
基体AおよびBには前記Co富化帯域の形成はなく、全
体的に均一な組織をもつものであった。さらに、表1に
は上記超硬基体A〜Eの内部硬さ(ロックウエル硬さA
スケール)をそれぞれ示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. As raw material powder, fine-grained WC powder having an average particle size of 1.5 μm, medium-grained WC powder of 3.0 μm, and (Ti, W) CN of 1.2 μm (the same in weight ratio, hereinafter, TiC / TiN / WC) = 24/20/5
6) Powder (1.3 μm) of (Ta, Nb) C (TaC /
NbC = 90/10) powder, a 1.2 μm Cr 3 C 2 powder, and a 1.2 μm Co powder were prepared, and these raw material powders were blended into the blending composition shown in Table 1 and then subjected to ball milling for 72 hours. After wet mixing and drying, the mixed powder is mixed with I
It is press-formed into a green compact in the form of a throw-away tip in accordance with SO standard CNMG120412, and this green compact is
Carbide substrates A to E were manufactured by vacuum sintering in a vacuum atmosphere of -3 torr at a predetermined temperature in the range of 1400 to 1460 ° C. for 1 hour. further,
The cemented carbide substrate E was kept in a 100 Torr CH4 gas atmosphere at a temperature of 1400 ° C. for 1 hour, and then carburized under slow cooling conditions. After the treatment, carbon and Co adhering to the cemented carbide substrate surface were converted into an acid. And by removing by barrel polishing, the maximum Co content at a position 11 μm from the surface: 15.
A Co-enriched zone of 9% by weight and a depth of 42 μm was formed on the surface of the substrate. In addition, the sintered body was kept sintered and the surface of the cemented carbide substrate C had a maximum Co at a position 17 μm from the surface.
Content: 10.0% by weight, Depth: 23 μm, Co-enriched zone. The above-mentioned carbide substrate D has a maximum Co content of 14.5% by weight, depth: 29 μm on the surface at a position 22 μm from the surface.
Were formed, and the remaining carbide substrates A and B did not have the Co-enriched zone, and had a uniform structure as a whole. Further, Table 1 shows the internal hardness (Rockwell hardness A) of the above-mentioned carbide substrates A to E.
Scale).

【0017】ついで、これらの超硬基体A〜Eを、所定
の形状に加工およびホーニング加工した状態で、その表
面に、通常の化学蒸着装置を用い、表2に示される条件
にて、表3、4に示される目標組成および目標層厚(切
刃の逃げ面)の硬質被覆層を形成することにより、硬質
被覆層の構成層のうちのl−TiCN層およびl−Ti
N層が残留圧縮応力が存在する上方部分層と残留引張応
力が存在する下方部分層で構成された本発明被覆超硬工
具1〜10、並びに硬質被覆層の構成層のいずれにも残
留引張応力が存在する従来被覆超硬工具1〜10をそれ
ぞれ製造した。なお、この結果得られた各種の被覆超硬
工具について、硬質被覆層の構成層の組成および平均層
厚を電子プローブマイクロアナライザーおよび光学顕微
鏡を用いて測定し、またそれぞれの構成層の残留応力を
X線回折の測定結果に基づいて算出したところ、いずれ
も表3、4に示される目標組成および目標層厚と実質的
に同じ組成および平均層厚を示し、かつ目標残留応力と
実質的に同じ残留応力を示した。
Then, in a state where these super-hard substrates A to E are processed and honed into a predetermined shape, the surfaces thereof are formed on a surface thereof by using an ordinary chemical vapor deposition apparatus under the conditions shown in Table 2. By forming the hard coating layer having the target composition and the target layer thickness (the flank of the cutting edge) shown in FIG. 4, the l-TiCN layer and the l-Ti of the constituent layers of the hard coating layer are formed.
The residual tensile stress is applied to any of the coated cemented carbide tools 1 to 10 of the present invention in which the N layer is composed of an upper partial layer having a residual compressive stress and a lower partial layer having a residual tensile stress, and the constituent layers of the hard coating layer. Were produced, respectively. For each of the resulting coated carbide tools, the composition and average thickness of the constituent layers of the hard coating layer were measured using an electron probe microanalyzer and an optical microscope, and the residual stress of each constituent layer was measured. Calculated based on the measurement results of X-ray diffraction, each of them shows substantially the same composition and average layer thickness as the target composition and target layer thickness shown in Tables 3 and 4, and substantially the same as the target residual stress. Residual stress was indicated.

【0018】つぎに、上記本発明被覆超硬工具1〜10
および従来被覆超硬工具1〜10について、 被削材:JIS・SCM440の長さ方向等間隔4本縦
溝入り丸棒、 切削速度:180m/min.、 切り込み:3.5mm、 送り:0.35mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式断続高切り込み切削試験、並び
に、 被削材:JIS・SCr420H長さ方向等間隔4本縦
溝入り丸棒、 切削速度:210m/min.、 切り込み:1.3mm、 送り:0.6mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式断続高送り切削試験を行い、い
ずれの切削試験でも切刃の最大逃げ面摩耗幅を測定し
た。この測定結果を表5に示した。
Next, the coated carbide tools 1 to 10 according to the present invention will be described.
And the conventional coated carbide tools 1 to 10; Work material: JIS SCM440, longitudinally spaced round bar with four longitudinal grooves, cutting speed: 180 m / min. Infeed: 3.5 mm Feed: 0.35 mm / rev. Cutting time: 10 minutes, dry intermittent high-cut cutting test of alloy steel under the following conditions: Work material: JIS SCr420H Round bar with four longitudinal grooves at equal intervals in the longitudinal direction, Cutting speed: 210 m / min. Infeed: 1.3 mm Feed: 0.6 mm / rev. The cutting time: 10 minutes, a dry intermittent high feed cutting test of the alloy steel was performed under the following conditions, and the maximum flank wear width of the cutting edge was measured in each cutting test. Table 5 shows the measurement results.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【発明の効果】表2〜5に示される結果から、硬質被覆
層中に構成層として存在するl−TiCN層およびl−
TiN層が残留圧縮応力を有する上方部分層と残留引張
応力を有する下方部分層からなる本発明被覆超硬工具1
〜10は、いずれも前記硬質被覆層がすぐれた耐チッピ
ング性を具備することから、特に断続切削を高送りや高
切り込みなどの重切削条件で行っても切刃に欠けやチッ
ピングの発生なく、すぐれた耐摩耗性を長期に亘って発
揮するのに対して、硬質被覆層の構成層のいずれにも残
留引張応力が存在する従来被覆超硬工具1〜10におい
ては、いずれも高衝撃の加わる断続重切削ではチッピン
グが発生し、これが原因で比較的短時間で使用寿命に至
ることが明らかである。上述のように、この発明の被覆
超硬工具は、例えば鋼や鋳鉄などの連続切削や断続切削
は勿論のこと、高衝撃の加わる断続重切削にもすぐれた
耐チッピング性を発揮し、長期に亘ってすぐれた切削性
能を示すものであるから、切削装置のFA化、並びに切
削加工の省力化および省エネ化、さらに低コスト化に十
分満足に対応できるものである。
According to the results shown in Tables 2 to 5, the l-TiCN layer and the l-TiCN layer existing as constituent layers in the hard coating layer are shown.
The coated carbide tool 1 according to the present invention, in which the TiN layer comprises an upper partial layer having a residual compressive stress and a lower partial layer having a residual tensile stress.
10 to 10, since the hard coating layer has excellent chipping resistance, even without performing cutting or chipping on the cutting edge, even when performing intermittent cutting under heavy cutting conditions such as high feed or high cutting. The conventional coated carbide tools 1 to 10 exhibit excellent wear resistance over a long period of time, whereas the constituent layers of the hard coating layer have residual tensile stress. It is clear that intermittent heavy cutting causes chipping, which leads to a shorter service life in a relatively short time. As described above, the coated cemented carbide tool of the present invention exhibits excellent chipping resistance not only in continuous cutting and interrupted cutting of steel or cast iron, but also in interrupted heavy cutting in which high impact is applied, for a long time. Since it shows excellent cutting performance over a long period of time, it is possible to satisfactorily cope with the FA of the cutting device, the labor saving and energy saving of the cutting process, and the cost reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 見市 昌之 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C046 FF03 FF10 FF16 FF22 FF25 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masayuki Miichi 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. F-term in Mitsubishi Materials Corporation Tsukuba Works (reference)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、 (a) いずれも0.1〜5μmの平均層厚および粒状
結晶組織を有し、かつ残留引張応力が存在する、炭化チ
タン層、窒化チタン層、炭窒化チタン層、炭酸化チタン
層、および炭窒酸化チタン層のうちの1種または2種以
上からなるTi化合物層と、 (b) 2〜15μmの平均層厚を有し、残留圧縮応力
が存在する上方部分層と残留引張応力が存在する下方部
分層からなり、前記上方部分層と前記下方部分層は相互
に連続した縦長成長結晶組織を有し、かつ前記上方部分
層は、前記2〜15μmの平均層厚の20〜40%に相
当する層厚を有する炭窒化チタン層と、 (c) 2〜15μmの平均層厚を有し、残留圧縮応力
が存在する上方部分層と残留引張応力が存在する下方部
分層からなり、前記上方部分層と前記下方部分層は相互
に連続した縦長成長結晶組織を有し、かつ前記上方部分
層は、前記2〜15μmの平均層厚の20〜40%に相
当する層厚を有する窒化チタン層と、 (d) 0.5〜10μmの平均層厚および粒状結晶組
織を有する酸化アルミニウム層と、で構成された硬質被
覆層を5〜25μmの全体平均層厚で化学蒸着してな
る、断続重切削で硬質被覆層がすぐれた耐チッピング性
を発揮する表面被覆炭化タングステン基超硬合金製切削
工具。
1. A titanium carbide layer comprising: (a) a titanium carbide layer having an average layer thickness of 0.1 to 5 μm and a granular crystal structure, and having a residual tensile stress, on a surface of a tungsten carbide-based cemented carbide substrate; A titanium compound layer composed of one or more of a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride layer; and (b) having an average layer thickness of 2 to 15 μm, An upper partial layer in which residual compressive stress exists and a lower partial layer in which residual tensile stress exists, wherein the upper partial layer and the lower partial layer have a vertically-elongated crystal structure continuous with each other, and the upper partial layer is A titanium carbonitride layer having a layer thickness corresponding to 20 to 40% of the average layer thickness of 2 to 15 μm, and (c) an upper partial layer having an average layer thickness of 2 to 15 μm and having a residual compressive stress. And the lower sublayer with residual tensile stress? The upper partial layer and the lower partial layer have a vertically elongated crystal structure continuous with each other, and the upper partial layer has a layer thickness corresponding to 20 to 40% of the average layer thickness of 2 to 15 μm. And (d) an aluminum oxide layer having an average layer thickness of 0.5 to 10 μm and a granular crystal structure, and a hard coating layer formed by chemical vapor deposition with an overall average layer thickness of 5 to 25 μm. A cutting tool made of a surface-coated tungsten carbide-based cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting.
JP26827699A 1999-07-22 1999-09-22 Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining Withdrawn JP2001087907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26827699A JP2001087907A (en) 1999-07-22 1999-09-22 Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20759399 1999-07-22
JP11-207593 1999-07-22
JP26827699A JP2001087907A (en) 1999-07-22 1999-09-22 Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining

Publications (1)

Publication Number Publication Date
JP2001087907A true JP2001087907A (en) 2001-04-03

Family

ID=26516347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26827699A Withdrawn JP2001087907A (en) 1999-07-22 1999-09-22 Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining

Country Status (1)

Country Link
JP (1) JP2001087907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493845A1 (en) * 2003-06-16 2005-01-05 Seco Tools Ab CVD coated cutting tool insert
CN108883474A (en) * 2016-04-13 2018-11-23 京瓷株式会社 Cutting tip and cutting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493845A1 (en) * 2003-06-16 2005-01-05 Seco Tools Ab CVD coated cutting tool insert
CN108883474A (en) * 2016-04-13 2018-11-23 京瓷株式会社 Cutting tip and cutting element
CN108883474B (en) * 2016-04-13 2020-02-07 京瓷株式会社 Cutting insert and cutting tool

Similar Documents

Publication Publication Date Title
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3436169B2 (en) Surface-coated cemented carbide cutting tool with an aluminum oxide layer that forms the hard coating layer exhibits excellent toughness
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2001322008A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JPH10244405A (en) Cutting tool made of surface-covering cemented carbide with its hard covering layer having excellent abrasion resistance
JP2001087907A (en) Machining tool of cemented carbide based on surface- covered tungsten carbide with its hard covering layer exhibiting excellent chipping resistance in intermittent heavy duty machining
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2000158207A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP3230375B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP3371823B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JPH08187604A (en) Cutting tool of surface coated tungsten carbide based cemented carbide with its hard coating layer having excellent inter-layer adhesion
JP2000158208A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent chipping resistance
JP3371804B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP2000334605A (en) Cutting tool of cemented carbide surface-coated with hard coating layer of improved hfat insulation and interlayer adhesion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205