JP2001082704A - Device and method for burning solid waste - Google Patents

Device and method for burning solid waste

Info

Publication number
JP2001082704A
JP2001082704A JP25543699A JP25543699A JP2001082704A JP 2001082704 A JP2001082704 A JP 2001082704A JP 25543699 A JP25543699 A JP 25543699A JP 25543699 A JP25543699 A JP 25543699A JP 2001082704 A JP2001082704 A JP 2001082704A
Authority
JP
Japan
Prior art keywords
rdf
furnace
combustion
combustion air
solid waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25543699A
Other languages
Japanese (ja)
Inventor
Kenji Kiyama
研滋 木山
Keiji Ishii
敬二 石井
Shunichi Tsumura
俊一 津村
Kimiharu Kuramasu
公治 倉増
Takehiro Kobayashi
武弘 小林
Toshikazu Nakajima
敏和 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP25543699A priority Critical patent/JP2001082704A/en
Publication of JP2001082704A publication Critical patent/JP2001082704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion device to completely decompose dioxin generated due to combustion of RDF(refure derived fuel), minimize dropping of an RDF component to a furnace bottom, and besides perform uniform combustion of the RDF. SOLUTION: By using a combustion device formed such that mixture fluid of fuel and air is fed to a burner 4 and combustion air to completely burn incomplete combustion gas of fuel by the burner 4 is charged through an air charge port 13 for two-stage combustion, crushed RDF(refure derived fuel) is fed to an air charge port 13 for two-stage combustion by air 26 for conveyance. Since the RDF charged in a furnace 5 through the air charge port 13 is burnt at a combustion temperature high enough to decompose dioxin, no dioxin is discharged to the outside of a system. Since the height level of the air charge port 13 is a region where the ascending flow speed of combustion gas in the furnace 5 is highest, a ratio of the crushed RDF falling on a furnace bottom is decreased to the minimum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固形廃棄物燃料
(RDF)の燃焼装置とその燃焼方法に係り、特に固形
廃棄物燃料の高効率・低公害な燃焼を可能とするボイラ
などの燃焼設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for burning solid waste fuel (RDF) and a method for burning the same, and in particular, to a combustion facility such as a boiler capable of burning solid waste fuel with high efficiency and low pollution. About.

【0002】[0002]

【従来の技術】都市ゴミ発生量の増加に伴い、その処理
方法の開発が大きな課題になっている。一つのゴミ処理
方法として、ゴミを所定の処理を施したRDFとして、
エネルギー再利用に活用する動きがある。RDFは大き
さがセンチメートルオーダの固まりに成形されるため、
もっぱら小型の流動層燃焼炉で焼却され、その燃焼エネ
ルギーの一部を蒸気または電気として回収される手段が
採用されることが多い。
2. Description of the Related Art With the increase in the amount of urban refuse generated, the development of a treatment method has become a major issue. As one garbage disposal method, garbage is treated as RDF with a predetermined treatment.
There is a movement to utilize it for energy reuse. Since the RDF is formed into a mass of the order of centimeters,
In many cases, a means is used which is incinerated exclusively in a small fluidized bed combustion furnace and a part of the combustion energy is recovered as steam or electricity.

【0003】RDFの性状例を表1に示す。表1に示す
ようにRDFは揮発分が高く、着火性及び燃焼性が高
い。しかしながらRDFは塩素含有率が高いため、ダイ
オキシンの発生や伝熱管の腐食に注意する必要がある。
[0003] Examples of the properties of RDF are shown in Table 1. As shown in Table 1, RDF has a high volatile content, and has high ignitability and combustibility. However, since RDF has a high chlorine content, it is necessary to pay attention to generation of dioxin and corrosion of heat transfer tubes.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【発明が解決しようとする課題】小型燃焼炉でのRDF
の燃焼は以下の点で改善すべき根本的課題が存在する。 a)燃焼温度が低いため、塩素を多く含むRDFを燃焼
させる際に発生するダイオキシンの量を制御するには限
界がある。 b)小型燃焼炉を用いる蒸気生成法は生成する蒸気温度
・圧力が低く、熱効率が低いため、経済運転の面で不利
であると共に、回収エネルギーあたりのCO発生量が
多く、環境悪化の原因にもなる。
SUMMARY OF THE INVENTION RDF in a small combustion furnace
There is a fundamental problem that needs to be improved in the following points. a) Since the combustion temperature is low, there is a limit in controlling the amount of dioxin generated when burning RDF containing a large amount of chlorine. b) The steam generation method using a small combustion furnace is disadvantageous in terms of economic operation because the generated steam temperature and pressure are low and the thermal efficiency is low, and the amount of CO 2 generated per recovered energy is large, which causes environmental degradation. Also.

【0006】大型の燃焼装置でRDFを燃焼させる手段
として石炭等を主燃料として、これと混合させる方法が
あるが、この方法には以下のような技術的課題がある。 a)石炭粉砕機に石炭と共にRDFを供給して粉砕させ
る方法をとった場合、RDFは粘着性を有するため、粉
砕機では簡単に粉砕できず、むしろ粉砕機の壁面に付着
残存し、高揮発分の特性に起因する自然発火や爆発の危
険性を増加させる。
[0006] As a means for burning RDF in a large-sized combustion device, there is a method in which coal or the like is used as a main fuel and mixed therewith. However, this method has the following technical problems. a) When the method of supplying RDF together with coal to the coal pulverizer and pulverizing it is used, RDF has an adhesive property and cannot be easily pulverized by the pulverizer. Increases the risk of spontaneous ignition and explosion due to the properties of the minute.

【0007】b)上記問題を解決するために予め所定の
細かさに粉砕したRDFを微粉固体燃料供給流路に注入
することが考えられるが、RDFに粘着性があることか
らRDFを破砕して小粒径化することには限界がある。
そのため、火炉内の上昇ガス流速が低いバーナ領域から
火炉へRDFを投入すると、RDF粒が炉底へ落下す
る。炉底落下物の中で、未燃分が炉底下部に設けられた
水封部に没するか、又は同じく灰コンベア部に堆積す
る。このとき、例えばバーナ領域の400〜500℃程
度の部位から炉底入口の300℃の部位へ落下した粒は
ダイオキシンを発生する可能性が高く、水封部の水や灰
コンベア上の灰となって排水や廃棄物中に存在する可能
性が高くなり、環境面での改善につながらない。
[0007] b) In order to solve the above problem, it is conceivable to inject RDF pulverized to a predetermined fineness into a fine powder solid fuel supply channel. However, since RDF is sticky, RDF is crushed. There is a limit to reducing the particle size.
Therefore, when the RDF is charged into the furnace from the burner region where the rising gas flow rate in the furnace is low, the RDF particles fall to the furnace bottom. The unburned matter in the falling object at the bottom of the furnace sinks into a water seal section provided at the lower part of the furnace bottom or accumulates on the ash conveyor section. At this time, for example, particles that have fallen from a region of about 400 to 500 ° C. in the burner region to a region of 300 ° C. at the furnace bottom entrance have a high possibility of generating dioxin, and become water in the water seal portion and ash on the ash conveyor. It is more likely to be present in wastewater and waste, and does not lead to environmental improvements.

【0008】多段バーナを備えた火炉の比較的火炉内上
昇ガス流速が高い上段側バーナから主燃料と共にRDF
を火炉へ投入することにより、上記b)の問題は緩和さ
れるが、バーナ使用段は運用によって変化するため、R
DFの投入バーナ段を固定すると火炉運用面での制約が
生じる。この運用面での制約は無くすために、全てのバ
ーナにRDF供給配管を接続し,RDFを供給するバー
ナを運用に応じて切り替えることもできる。しかし、こ
のような構成で下段側のバーナへRDFを供給する場
合、上記したRDF粒の炉底への落下の問題が発生す
る。
[0008] RDF together with the main fuel from the upper burner of the furnace equipped with the multi-stage burner, where the gas flow rate in the furnace is relatively high
The problem of b) above is alleviated by charging the furnace into the furnace, but the burner stage varies depending on the operation.
If the burner stage of the DF is fixed, there is a restriction on the furnace operation. In order to eliminate the restrictions on the operation, it is also possible to connect RDF supply pipes to all the burners and to switch the burners for supplying the RDF in accordance with the operation. However, when the RDF is supplied to the lower burner in such a configuration, the above-described problem of the RDF particles falling to the furnace bottom occurs.

【0009】また、特定のバーナにRDFを供給する方
法を用いると、火炉内で石炭などの主燃料とRDFが一
様に混合しないため、燃焼ガスが局部的に高い塩素濃度
となって、これが熱回収用の伝熱管の腐食を増加させる
原因となる。
Further, when the method of supplying RDF to a specific burner is used, the main fuel such as coal and RDF are not uniformly mixed in the furnace, so that the combustion gas locally has a high chlorine concentration. It causes corrosion of the heat transfer tube for heat recovery to increase.

【0010】本発明の課題は、RDFの燃焼により発生
するダイオキシンを完全に分解し、炉底へのRDF成分
が落下することを最小限に抑えて、しかもRDFを一様
に燃焼させることが可能なRDFの燃焼装置とRDFの
二段燃焼法を提供することである。
[0010] An object of the present invention is to completely decompose dioxin generated by the combustion of RDF, minimize the drop of RDF components to the furnace bottom, and uniformly burn RDF. It is an object of the present invention to provide an RDF combustion apparatus and an RDF two-stage combustion method.

【0011】[0011]

【課題を解決するための手段】本発明の上記の課題は、
火炉と、該火炉壁に設けられる微粉炭などの固体燃料と
燃焼用空気の混合流体が供給されるバーナと、該バーナ
から火炉内に供給される燃料の不完全燃焼ガスに対して
完全燃焼させるための燃焼用空気を供給する二段燃焼用
空気流路と、火炉壁に設けた二段燃焼用空気流路から二
段燃焼用空気投入口を備えた二段燃焼用燃焼装置におい
て、破砕したRDFを気体により搬送する気体搬送流路
を二段燃焼用空気投入口部分に接続したRDFの燃焼装
置により解決できる。
SUMMARY OF THE INVENTION The above-mentioned object of the present invention is as follows.
A furnace, a burner provided with a mixed fluid of solid fuel such as pulverized coal and combustion air provided on the furnace wall, and complete combustion of incomplete combustion gas of fuel supplied into the furnace from the burner Crushed in a two-stage combustion air flow path for supplying combustion air and a two-stage combustion combustion device provided with a two-stage combustion air inlet from the two-stage combustion air flow path provided in the furnace wall. The problem can be solved by an RDF combustion device in which a gas transfer passage for transferring RDF by gas is connected to a two-stage combustion air inlet.

【0012】破砕したRDFの気体搬送流路を二段燃焼
用空気流路に接続して破砕したRDFを二段燃焼用空気
と混合した後に火炉出口に搬送するか、またはRDFの
気体搬送の流路の出口部を二段燃焼用空気投入口部分に
設け、破砕したRDFを搬送用気体の周囲から供給され
る二段燃焼用空気と共に火炉内へ導入する。
The crushed RDF gas transport passage is connected to the two-stage combustion air passage to mix the crushed RDF with the two-stage combustion air and then transported to the furnace outlet, or the RDF gas transport flow. An outlet of the passage is provided at the two-stage combustion air inlet, and the crushed RDF is introduced into the furnace together with the two-stage combustion air supplied from around the carrier gas.

【0013】[0013]

【作用】a)図4に示すように、二段燃焼用燃焼装置で
都市ごみなどのRDFを燃焼させることによりダイオキ
シンが分解するに十分な高い燃焼温度となるため、ダイ
オキシンの系外への排出を防止する上で有効である。 b)図4に示すように二段燃焼用燃焼装置の二段燃焼用
空気投入口が配置される高さの位置が、当該燃焼装置の
火炉内での燃焼ガスの上昇流速が最も高い箇所であるた
め、破砕されたRDFが炉底へ落下する比率を最も低く
できる。 c)二段燃焼用燃焼装置に導入される二段燃焼用空気
は、火炉が稼動中は常に供給されていることが一般的で
あり、RDF燃焼の運用面での制限がない。 d)火炉内に供給される二段燃焼用空気がバーナから上
昇してくる燃焼ガスと一様に混合するように二段燃焼用
燃焼装置は設計されているため、RDFから発生する燃
焼ガスも火炉内で一様に分布することになり、燃焼ガス
中の局部的高濃度の塩素に起因する伝熱管の腐食の問題
も解決される。
A) As shown in FIG. 4, the combustion temperature of the RDF such as municipal waste is increased by a two-stage combustion combustion device to a high enough combustion temperature to decompose dioxin, so that dioxin is discharged out of the system. It is effective in preventing. b) As shown in FIG. 4, the position of the height at which the two-stage combustion air inlet of the two-stage combustion combustion device is arranged is the position where the rising flow velocity of the combustion gas in the furnace of the combustion device is the highest. Therefore, the ratio of the crushed RDF falling to the furnace bottom can be minimized. c) In general, the two-stage combustion air introduced into the two-stage combustion combustion device is always supplied while the furnace is in operation, and there is no restriction on the operation of RDF combustion. d) Since the combustion device for two-stage combustion is designed so that the air for two-stage combustion supplied into the furnace is uniformly mixed with the combustion gas rising from the burner, the combustion gas generated from the RDF is also reduced. The uniform distribution in the furnace also solves the problem of heat transfer tube corrosion due to localized high concentrations of chlorine in the combustion gases.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態について図面
とともに説明する。図1には破扮されたRDFを微粉炭
焚きボイラの二段燃焼用空気供給のための気体流路を経
由して二段燃焼用空気投入口13から火炉5内に供給す
る例を示す。主燃料である微粉炭はミル3で粉砕された
後、バーナ4に導かれ、火炉5に投入される。また燃料
搬送用の一次空気は一次空気ファン(PAF)1から空
気予熱器2を通りミル3内の微粉炭と共にバーナ4に供
給され、二段燃焼用空気は押込空気ファン(FDF)6
から空気予熱器2を通り、風道7を経由して、その一部
はバーナ用風箱9から、残りは二段燃焼用風箱12から
火炉5に供給される。二段燃焼用空気は風道7に設けら
れたダンパ8、11により供給量が調整されて、風箱
9、12にそれぞれ送られる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which the distorted RDF is supplied from the two-stage combustion air inlet 13 into the furnace 5 through the gas passage for the two-stage combustion air supply of the pulverized coal-fired boiler. The pulverized coal, which is the main fuel, is pulverized by the mill 3, guided to the burner 4 and charged into the furnace 5. The primary air for fuel transport is supplied from the primary air fan (PAF) 1 through the air preheater 2 to the burner 4 together with the pulverized coal in the mill 3, and the two-stage combustion air is supplied to the forced air fan (FDF) 6.
Through the air preheater 2 and the wind path 7, a part of which is supplied to the furnace 5 from a burner wind box 9 and the rest from a two-stage combustion wind box 12. The supply amount of the two-stage combustion air is adjusted by dampers 8 and 11 provided in the wind path 7 and sent to the wind boxes 9 and 12, respectively.

【0015】RDFはRDF塊貯蔵バンカ21から供給
器22により破砕機23に供給され、所定の粒径に破扮
された後、一旦、RDF粒貯蔵バンカ24へ貯蔵され
る。供給器22及び破砕機23はRDF粒貯蔵バンカ2
4のレベルを所定の範囲とするよう連続或いはバッチで
運転される。RDF粒貯蔵バンカ24内のRDF粒は計
量供給機25から搬送用空気26により二段燃焼用風道
7に導かれ、二段燃焼用空気と混合した後、二段燃焼用
風箱12を通して二段燃焼用空気投入口13から火炉5
へと投入される。
The RDF is supplied from a RDF lump storage bunker 21 to a crusher 23 by a supply device 22 and is broken into a predetermined particle size, and then temporarily stored in an RDF particle storage bunker 24. The feeder 22 and the crusher 23 are used for the RDF grain storage bunker 2.
The operation is performed continuously or batchwise so that level 4 is within a predetermined range. The RDF particles in the RDF particle storage bunker 24 are guided from the metering device 25 to the two-stage combustion air path 7 by the conveying air 26, mixed with the two-stage combustion air, and then passed through the two-stage combustion wind box 12. From the stage combustion air inlet 13 to the furnace 5
It is thrown into.

【0016】図1に示す微粉炭焚きボイラでは、RDF
粒が搬送中に着火しないよう、二段燃焼用空気と混合す
る前後の搬送空気温度はRDF着火温度以下であること
及びRDF粒が風道7や風箱12に堆積しないよう、流
速や構造面の配慮が必要である。
In the pulverized coal-fired boiler shown in FIG.
The transport air temperature before and after mixing with the two-stage combustion air must be lower than the RDF ignition temperature so that the particles do not ignite during transportation, and the flow velocity and structural surface must be such that the RDF particles do not accumulate on the wind path 7 or wind box 12. Consideration is necessary.

【0017】図2には、破砕されたRDFを微粉炭焚き
ボイラのRDF搬送専用の空気搬送流路27を経由して
二段燃焼用空気投入口13から火炉5内に供給する例を
示す。図2に示す微粉炭焚きボイラの燃焼系統で図1に
示すものと同じ装置、部材は同一番号を付してその説明
は省略する。
FIG. 2 shows an example in which the crushed RDF is supplied from the two-stage combustion air inlet 13 into the furnace 5 through the air transfer passage 27 dedicated to the RDF transfer of the pulverized coal-fired boiler. In the combustion system of the pulverized coal-fired boiler shown in FIG. 2, the same devices and members as those shown in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

【0018】図2に示す微粉炭焚きボイラにおいては図
1に示すものと同じRDF粒を二段燃焼用風道7に導く
代わりに、搬送用空気26によりRDF投入口27を経
由させて二段燃焼用空気投入口13まで直接導き、RD
F投入口27から火炉5へと投入している。
In the pulverized coal-fired boiler shown in FIG. 2, instead of guiding the same RDF particles as those shown in FIG. Directly lead to combustion air inlet 13, RD
It is thrown into the furnace 5 from the F inlet 27.

【0019】本例では搬送用空気の温度を制御するだけ
で流路にRDFが堆積するのを防止できるので、風道7
や風箱12は従来技術の設計思想を適用できる。また、
本例は新設ボイラのみでなく、従来の微粉炭焚きボイラ
を改造するだけで簡単に適用可能である。
In this embodiment, it is possible to prevent the RDF from accumulating in the flow path only by controlling the temperature of the conveying air.
The wind box 12 can apply the design concept of the prior art. Also,
This example can be easily applied simply by modifying not only a new boiler but also a conventional pulverized coal-fired boiler.

【0020】図3に図2のボイラに適用される二段燃焼
用空気投入口13まわりの構造例を示す。本例では二段
燃焼用空気は風箱12内で外周空気と内周空気に分けれ
て火炉5へと供給される。RDF投入口27は内周空気
流路14の中心部に設置され、RDF粒は二段燃焼用空
気に周囲を包まれて火炉5へと投入される。図3に示す
例では外周空気流路15に空気旋回器16が設けられて
いる。
FIG. 3 shows a structural example around the two-stage combustion air inlet 13 applied to the boiler of FIG. In this example, the two-stage combustion air is supplied to the furnace 5 in the wind box 12 while being divided into outer air and inner air. The RDF inlet 27 is provided at the center of the inner peripheral air flow path 14, and the RDF particles are charged into the furnace 5 while being surrounded by the two-stage combustion air. In the example shown in FIG. 3, an air swirler 16 is provided in the outer peripheral air passage 15.

【0021】上記の図1〜図3に示す実施の形態におい
て、二段燃焼用空気投入口13からRDFを供給するこ
とによる優位性等についてさらに説明を加える。
In the embodiment shown in FIGS. 1 to 3 described above, the advantage of supplying RDF from the two-stage combustion air inlet 13 will be further described.

【0022】二段燃焼法は低NOx燃焼のために燃焼用
空気をバーナ4とその後流の二段燃焼用空気投入口13
とに分割して供給し、バーナ4と燃焼用空気投入口13
からそれぞれ火炉5内に投入する燃料の燃焼方法であ
る。このとき、燃焼用空気投入口13から火炉5内に投
入される二段燃焼用空気はバーナ4から上昇してくる未
燃ガスを完全燃焼させるために、その流速及び投入位置
の最適設計がなされる。結果として、火炉5の出口では
二段燃焼用空気は一様な分布となる。
In the two-stage combustion method, combustion air is supplied to the burner 4 and the downstream two-stage combustion air inlet 13 for low NOx combustion.
And burner 4 and combustion air inlet 13
This is a method for burning the fuel to be charged into the furnace 5 from. At this time, in order to completely burn the unburned gas rising from the burner 4, the two-stage combustion air introduced into the furnace 5 from the combustion air inlet 13 is designed optimally in its flow rate and injection position. You. As a result, the two-stage combustion air has a uniform distribution at the outlet of the furnace 5.

【0023】RDFを二段燃焼用空気の流れに載せて火
炉5内へ投入することにより、RDFにも一様な分布を
火炉5内で持たせることができる。また、二段燃焼用空
気投入口13から火炉5の出口までは計画石炭の中で最
も燃えにくい性状の石炭に対して十分な距離が確保され
るため、着火温度が200℃と低く、燃焼性に優れたR
DFの完全燃焼のためには、二段燃焼用空気投入口13
から火炉5の出口までの長さは十分な長さである。
By placing the RDF in the flow of the air for two-stage combustion and putting it into the furnace 5, the RDF can also have a uniform distribution in the furnace 5. In addition, since a sufficient distance from the two-stage combustion air inlet 13 to the outlet of the furnace 5 is secured for the least combustible coal among the planned coals, the ignition temperature is as low as 200 ° C. Excellent R
For complete combustion of the DF, the two-stage combustion air inlet 13
The length from to the exit of the furnace 5 is a sufficient length.

【0024】ここで、計画石炭について説明する。使用
するボイラの燃料として安定に石炭を供給するために、
複数の産炭国、産炭地から輸入した石炭を使用するが、
石炭の性状の相違により燃焼性に差があるので、この差
が大きいと前記使用しようとするボイラでは求める性能
が得られないことから、予め試運転を行い、複数の石炭
種の燃焼試験を行いボイラでの要求性能に合致すること
を確認する。この「複数の石炭種」が予め使用するよう
に計画されている「計画石炭」である。
Here, the planned coal will be described. In order to stably supply coal as fuel for the boiler used,
We use coal imported from multiple coal-producing countries and mines,
Since there is a difference in flammability due to the difference in the properties of coal, if the difference is large, the desired performance cannot be obtained with the boiler to be used, so a trial run is performed in advance, and a combustion test of a plurality of coal types is performed. Confirm that the required performance is met. The “plural coal types” are “planned coals” that are planned to be used in advance.

【0025】[0025]

【発明の効果】本発明によれば、RDF粒は高温で上昇
ガス流速の高い領域に一様に供給されるため、RDFの
燃焼により生成するダイオキシンが完全に分解し、系外
へのダイオキシンの排出を防止し、さらにRDFが炉底
へ落下することを最小限に抑えて、かつRDFを一様に
燃焼させることができる。
According to the present invention, the RDF particles are uniformly supplied to the region where the ascending gas flow rate is high at a high temperature, so that the dioxin generated by the combustion of the RDF is completely decomposed, and the dioxin is discharged outside the system. It is possible to prevent discharge, further minimize the fall of the RDF to the furnace bottom, and uniformly burn the RDF.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の固体廃棄物の燃焼装置
を示す図である。を示す。
FIG. 1 is a diagram showing a solid waste combustion apparatus according to an embodiment of the present invention. Is shown.

【図2】 本発明の実施の形態の固体廃棄物の燃焼装置
を示す図である。
FIG. 2 is a diagram showing a solid waste combustion apparatus according to an embodiment of the present invention.

【図3】 図2の燃焼装置の二段燃焼用空気投入口まわ
りの構造である。
FIG. 3 is a structure around a two-stage combustion air inlet of the combustion apparatus of FIG. 2;

【図4】 二段燃焼方式のボイラにおける火炉内のガス
温度と上昇ガス流速の例を示す図である。
FIG. 4 is a diagram showing an example of a gas temperature and a rising gas flow rate in a furnace in a two-stage combustion type boiler.

【符号の説明】[Explanation of symbols]

1 1次空気ファン 2 空気予熱器 3 ミル 4 バーナ 5 火炉 6 押込空気ファ
ン 7 風道 8 バーナ用空気
ダンパ 9 バーナ用風箱 11 二段燃焼用
空気ダンパ 12 二段燃焼用風箱 13 二段燃焼用
空気投入口 14 内周空気流路 15 外周空気流
路 16 外周空気旋回器 21 RDF塊貯
蔵バンカ 22 供給器 23 破砕機 24 RDF粒貯蔵バンカ 25 計量供給機 26 搬送用空気 27 RDF投入
DESCRIPTION OF SYMBOLS 1 Primary air fan 2 Air preheater 3 Mill 4 Burner 5 Furnace 6 Push-in air fan 7 Airway 8 Burner air damper 9 Burner wind box 11 Two-stage combustion air damper 12 Two-stage combustion wind box 13 Two-stage combustion Air inlet 14 Inner air passage 15 Outer air passage 16 Outer air swirler 21 RDF lump storage bunker 22 Feeder 23 Crusher 24 RDF particle storage bunker 25 Metering and feeding device 26 Transport air 27 RDF inlet

フロントページの続き (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 倉増 公治 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 小林 武弘 東京都港区浜松町二丁目4番1号 バブコ ック日立株式会社内 (72)発明者 中島 敏和 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3K046 AA01 AA20 AB03 AC06 BA01 BA04 BA05 FA06 Continued on the front page (72) Inventor Shunichi Tsumura 6-9 Takaracho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Factory (72) Inventor Koji Masura 6-9 Takaramachi Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Factory (72) Inventor Takehiro Kobayashi Inside Babcock Hitachi, Ltd. 2-4-1 Hamamatsucho, Minato-ku, Tokyo (72) Inventor Toshikazu Nakajima 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. F Term (reference) 3K046 AA01 AA20 AB03 AC06 BA01 BA04 BA05 FA06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 火炉と、該火炉壁に設けられる固体燃料
と燃焼用空気の混合流体が供給されるバーナと、該バー
ナから火炉内に供給される燃料の不完全燃焼ガスに対し
て完全燃焼させるための燃焼用空気を供給する二段燃焼
用空気流路と、火炉壁に設けた二段燃焼用空気流路から
の二段燃焼用空気投入口を備えた燃焼装置において、 破砕した固形廃棄物燃料を気体により搬送する気体搬送
流路を二段燃焼用空気投入口部分に接続したことを特徴
とする固形廃棄物の燃焼装置。
1. A furnace, a burner provided on the furnace wall to which a mixed fluid of solid fuel and combustion air is supplied, and complete combustion of incomplete combustion gas of fuel supplied from the burner into the furnace. Crushed solid waste in a combustion device equipped with a two-stage combustion air flow path for supplying combustion air for blasting and a two-stage combustion air inlet from the two-stage combustion air flow channel provided on the furnace wall An apparatus for combusting solid waste, wherein a gas transport passage for transporting waste fuel by gas is connected to a two-stage combustion air inlet portion.
【請求項2】 破砕した固形廃棄物燃料の気体搬送流路
を、二段燃焼用空気流路を経由して、二段燃焼用空気投
入口部分に接続したことを特徴とする請求項1記載の固
形廃棄物の燃焼装置。
2. A gas conveying passage for crushed solid waste fuel is connected to a two-stage combustion air inlet through a two-stage combustion air passage. Solid waste combustion equipment.
【請求項3】 破砕した固形廃棄物燃料の気体搬送流路
の出口部を二段燃焼用空気投入口部分に設けたことを特
徴とする請求項1記載の固形廃棄物の燃焼装置。
3. The solid waste combustion apparatus according to claim 1, wherein an outlet of a gas transfer passage for the crushed solid waste fuel is provided at a two-stage combustion air inlet.
【請求項4】 請求項1記載の固形廃棄物の燃焼装置を
用いて、破砕した固形廃棄物燃料を二段燃焼用空気投入
口から火炉内へ投入することを特徴とする固形廃棄物燃
料の燃焼方法。
4. A solid waste fuel, characterized in that crushed solid waste fuel is introduced into a furnace from a two-stage combustion air inlet using the solid waste combustion apparatus according to claim 1. Burning method.
【請求項5】 破砕した固形廃棄物燃料を搬送用気体で
二段燃焼用空気供給流路まで搬送し、二段燃焼用空気と
混合させた後に火炉に供給することを特徴とする請求項
4記載の固形廃棄物燃料の燃焼方法。
5. The crushed solid waste fuel is transported to a two-stage combustion air supply channel by a carrier gas, mixed with the two-stage combustion air, and then supplied to a furnace. A method for burning a solid waste fuel according to the above.
【請求項6】 破砕した固形廃棄物燃料を搬送用気体で
二段燃焼用空気投入口まで搬送し、搬送用気体の周囲か
ら供給される二段燃焼用空気と共に火炉内へ導入するこ
とを特徴とする請求項4記載の固形廃棄物燃料の燃焼方
法。
6. The crushed solid waste fuel is transported to a two-stage combustion air inlet with a carrier gas, and is introduced into the furnace together with the two-stage combustion air supplied from around the carrier gas. The method for burning solid waste fuel according to claim 4, wherein:
JP25543699A 1999-09-09 1999-09-09 Device and method for burning solid waste Pending JP2001082704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25543699A JP2001082704A (en) 1999-09-09 1999-09-09 Device and method for burning solid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25543699A JP2001082704A (en) 1999-09-09 1999-09-09 Device and method for burning solid waste

Publications (1)

Publication Number Publication Date
JP2001082704A true JP2001082704A (en) 2001-03-30

Family

ID=17278752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25543699A Pending JP2001082704A (en) 1999-09-09 1999-09-09 Device and method for burning solid waste

Country Status (1)

Country Link
JP (1) JP2001082704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011375A (en) * 2020-07-14 2020-12-01 中国人民解放军63919部队 Extraterrestrial base solid waste and in-situ material resource integrated utilization system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649803A (en) * 1979-08-24 1981-05-06 Babcock Hitachi Kk Combustion method with low nitroxide
JPS5682315A (en) * 1979-12-11 1981-07-06 Kubota Ltd Operating method of incinerator
JPS59195015A (en) * 1983-04-21 1984-11-06 Mitsubishi Heavy Ind Ltd Low nox and low sox combustion
JPS62175507A (en) * 1986-01-29 1987-08-01 Ishikawajima Harima Heavy Ind Co Ltd Method for igniting industrial waste material
JPS63118511A (en) * 1986-11-06 1988-05-23 Mitsubishi Heavy Ind Ltd Pulverized solid fuel burner
JPH04165204A (en) * 1990-10-30 1992-06-11 Babcock Hitachi Kk Burner
WO1996036837A1 (en) * 1995-05-17 1996-11-21 Hitachi Zosen Corporation Refuse incinerating method and equipment therefor
JPH11108324A (en) * 1997-10-02 1999-04-23 Chugoku Electric Power Co Inc:The Mixed burning method for waste
JP2912330B1 (en) * 1998-02-12 1999-06-28 九州電力株式会社 RDF combustion method and RDF combustion equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649803A (en) * 1979-08-24 1981-05-06 Babcock Hitachi Kk Combustion method with low nitroxide
JPS5682315A (en) * 1979-12-11 1981-07-06 Kubota Ltd Operating method of incinerator
JPS59195015A (en) * 1983-04-21 1984-11-06 Mitsubishi Heavy Ind Ltd Low nox and low sox combustion
JPS62175507A (en) * 1986-01-29 1987-08-01 Ishikawajima Harima Heavy Ind Co Ltd Method for igniting industrial waste material
JPS63118511A (en) * 1986-11-06 1988-05-23 Mitsubishi Heavy Ind Ltd Pulverized solid fuel burner
JPH04165204A (en) * 1990-10-30 1992-06-11 Babcock Hitachi Kk Burner
WO1996036837A1 (en) * 1995-05-17 1996-11-21 Hitachi Zosen Corporation Refuse incinerating method and equipment therefor
JPH11108324A (en) * 1997-10-02 1999-04-23 Chugoku Electric Power Co Inc:The Mixed burning method for waste
JP2912330B1 (en) * 1998-02-12 1999-06-28 九州電力株式会社 RDF combustion method and RDF combustion equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011375A (en) * 2020-07-14 2020-12-01 中国人民解放军63919部队 Extraterrestrial base solid waste and in-situ material resource integrated utilization system and method

Similar Documents

Publication Publication Date Title
JP5161255B2 (en) Burner system and method for mixing multiple solid fuels
JP3203255B2 (en) Method and apparatus for utilizing biofuel or waste material for energy production
US7833315B2 (en) Method and system for reducing mercury emissions in flue gas
JP5886031B2 (en) Biomass fuel combustion method
US20040141891A1 (en) Waste treatment apparatus and method
CN110425520B (en) Flameless combustion system for semi-coke type flame-retardant fuel
EP0432293B1 (en) Method for recovering waste gases from coal combustor
JP2007101083A (en) Coal and wood combination combustion method, combination burner, and combination combustion facility
JP4282069B2 (en) Biomass fuel combustion apparatus and method
JP2005291526A (en) Device and method for drying biomass fuel
JP2003130308A (en) Solid fuel combustion method and facility
JP2001082704A (en) Device and method for burning solid waste
RU2428632C2 (en) Flaring method of pulverised fuel and device for method's implementation
CN106801877A (en) Hazardous waste burn system and its method are put in a kind of room burner coexistence
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
CN212057310U (en) Domestic waste fuel feeding device
CN220061735U (en) Flue gas post-combustion device comprising more than one flue gas vortex combustion chamber
CN218645578U (en) Hazardous waste treatment system
CN219199181U (en) Boiler system capable of improving calcium carbide ash incineration effect
Pak et al. Innovative Technologies in the Repowering of the Nizhnekamsk CHPP by Upgrading the TGME-464 Boiler to Combust Pulverized Petroleum Coke
JP2001065804A (en) Repowering apparatus and repowering method for boiler
CN115978546A (en) Fluidized suspension composite incineration boiler for calcium carbide dust
JPH076609B2 (en) Circulating fluidized bed combustion method
CN117663116A (en) Biomass semi-carbonization particle integrated fluidized bed gasification system
JP2002106819A (en) Circulating fluidized bed combustion apparatus and its combustion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918