JP2001082454A - Hydraulic bearing - Google Patents
Hydraulic bearingInfo
- Publication number
- JP2001082454A JP2001082454A JP25953299A JP25953299A JP2001082454A JP 2001082454 A JP2001082454 A JP 2001082454A JP 25953299 A JP25953299 A JP 25953299A JP 25953299 A JP25953299 A JP 25953299A JP 2001082454 A JP2001082454 A JP 2001082454A
- Authority
- JP
- Japan
- Prior art keywords
- clearance
- shaft
- radial
- bearing
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、情報機器や音響・
映像機器用の流体軸受に係り、特に、磁気ディスク装置
(HDD)や光ディスク装置等に最適な流体軸受の改良
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a fluid bearing for video equipment, and more particularly to an improvement of a fluid bearing which is optimal for a magnetic disk device (HDD), an optical disk device and the like.
【0002】[0002]
【従来の技術】従来のこの種の流体軸受としては、例え
ば特許−02512020号に開示されている図4
(a),(b)に示すようなものが知られている。この
従来の流体軸受は、軸1とその軸1と共働するスリ一ブ
2との間に、二個のラジアル流体軸受R,Rを備えてい
るが、それら二つの流体軸受R,Rに挟まれた軸1の円
筒状の外周面1gとスリーブ2の同じく円筒状の内周面
2nとを相互に偏心させている。そして、両円筒壁の間
のすきまのせまい部分CS に油やグリース等の潤滑流体
を保持するリザーバ3が形成され、すきまの広い部分C
H には通気穴4を開口させている。このように、両円筒
壁1g,2nを偏心させて形成されたすきま小の部分C
S に、潤滑流体溜りとしてのリザーバの機能を持たせる
ことにより流体軸受の長期の使用に対処している。2. Description of the Related Art A conventional fluid bearing of this type is disclosed, for example, in FIG.
(A) and (b) are known. This conventional fluid bearing is provided with two radial fluid bearings R, R between a shaft 1 and a sleeve 2 cooperating with the shaft 1, and these two fluid bearings R, R The cylindrical outer peripheral surface 1g of the pinched shaft 1 and the cylindrical inner peripheral surface 2n of the sleeve 2 are mutually eccentric. A reservoir 3 for holding a lubricating fluid such as oil or grease is formed in a narrow portion C S of the clearance between the two cylindrical walls.
H has a ventilation hole 4 opened. As described above, the small clearance portion C formed by eccentrically arranging the two cylindrical walls 1g and 2n.
By giving S the function of a reservoir as a lubricating fluid reservoir, long-term use of fluid bearings is addressed.
【0003】なお、リザーバとしてのすきま小の部分C
S のすきまの大きさは、すきまの広い部分CH と同じく
ラジアル流体軸受Rの近傍において軸方向にテーパ状に
変化し、次第に狭くなりつつラジアル流体軸受Rに連通
している。一方、すきま大の部分CH で空気室を形成
し、そこに開口させた通気穴4を外気に連通させて、潤
滑流体中に残留する気泡の分離排出を促すようにしてい
る。これにより、流体軸受使用中の周囲温度の変化や、
あるいは流体軸受を航空機で輸送する際の外気圧力の変
化に伴う軸受内空気の膨張で潤滑流体が外部に押し出さ
れるのを防止するものである。[0003] A small clearance C as a reservoir
The size of the clearance of S changes in the taper shape in the axial direction in the vicinity of the radial fluid bearing R similarly to the wide portion C H of the clearance, and communicates with the radial fluid bearing R while gradually narrowing. On the other hand, an air chamber is formed by the portion C H having a large clearance, and the ventilation hole 4 opened therethrough is communicated with the outside air to promote separation and discharge of air bubbles remaining in the lubricating fluid. As a result, changes in the ambient temperature during use of the fluid bearing,
Alternatively, the lubricating fluid is prevented from being pushed out to the outside by the expansion of the air in the bearing caused by a change in the outside air pressure when the fluid bearing is transported by aircraft.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の偏心流体軸受は、軸の外周面1gとスリーブ
の内周面1nとが相互に偏心していて回転対称ではな
い。そのため、高速回転になると隙間の狭い部分CS に
送りこまれる潤滑流体のくさび作用が強くなる結果、狭
いすきまの反対方向(すなわち空気室CH の方向)に軸
心が僅かに移動する欠点を有することが判明した。However, in such a conventional eccentric fluid bearing, the outer peripheral surface 1g of the shaft and the inner peripheral surface 1n of the sleeve are mutually eccentric and are not rotationally symmetric. Therefore, as a result of the wedging action of the lubricating fluid is fed to the narrow portion C S clearance becomes high-speed rotation becomes stronger, have opposite directions (that is, the direction of the air chamber C H) shortcomings axis to the slightly moving the narrow gap It has been found.
【0005】すなわち、低速で使用しているぶんには何
ら問題にならないが、近年、流体軸受を搭載したHDD
等の装置の高速化が顕著になりつつあり、これに伴って
流体軸受自体も必然的に高速回転で使用される傾向があ
る。その回転数の上昇で軸心が僅かに移動し、回転が不
安定になる現象がはじめて明らかになり、対策と改善が
求められている。That is, although there is no problem for use at low speed, in recent years, HDDs equipped with fluid bearings have been used.
The speeding up of such devices is becoming remarkable, and accordingly, the hydrodynamic bearing itself tends to be used at a high speed. A phenomenon in which the shaft center moves slightly due to the increase in the rotation speed and the rotation becomes unstable becomes apparent for the first time, and measures and improvements are required.
【0006】また、従来の偏心流体軸受の場合、軸方向
に離れた二ヵ所のラジアル流体軸受R,Rに潤滑流体を
充填する作業は、両軸受R,Rの中間部から給油する
か、もしくは二ヵ所の軸受R,Rに別々に給油するかの
いずれかであった。このことは偏心流体軸受の組み立て
作業上、非常に不都合であった。そこで本発明は、この
ような従来の偏心流体軸受の未解決の課題に着目してな
されたものであり、高速回転でも軸心が移動せず安定し
た回転が得られ、かつ潤滑流体の供給も容易であり、長
期の使用が可能な流体軸受を提供することを目的とす
る。[0006] In the case of a conventional eccentric fluid bearing, the operation of filling a lubricating fluid into two axially separated radial fluid bearings R, R is performed by supplying oil from an intermediate portion between the two bearings R, R, or Either the two bearings R, R were separately lubricated. This is very inconvenient in the work of assembling the eccentric fluid bearing. Therefore, the present invention has been made by focusing on the unsolved problems of such conventional eccentric fluid bearings, whereby stable rotation can be obtained without moving the shaft center even at high speed rotation, and supply of lubricating fluid is also achieved. An object of the present invention is to provide a fluid bearing which is easy and can be used for a long time.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る本発明は、軸と、これに軸受すき
まを介して対向するスリーブとの間にラジアル流体軸受
部を備え、軸とスリーブとの相対回転に伴い前記流体軸
受部の潤滑流体に圧力を発生する流体軸受において、前
記ラジアル流体軸受部以外の個所における少なくとも一
部の軸外周面とスリーブ内周面との間のすきまの大きさ
を周方向に不均一とし、そのすきまの小さい部分を、ラ
ジアル軸受すきまとほぼ等しい大きさにして当該ラジア
ル軸受すきまに連通させるとともに軸心に対しほぼ回転
対称に配したことを特徴とする。In order to achieve the above object, the present invention according to claim 1 comprises a radial fluid bearing between a shaft and a sleeve opposed to the shaft via a bearing clearance. In a fluid bearing that generates pressure in the lubricating fluid of the fluid bearing portion in accordance with relative rotation between the shaft and the sleeve, at least a portion of the shaft outer peripheral surface and the sleeve inner peripheral surface at locations other than the radial fluid bearing portion. The size of the clearance is made non-uniform in the circumferential direction, and the portion with the small clearance is made to be approximately the same size as the radial bearing clearance, communicated with the radial bearing clearance, and arranged almost rotationally symmetric with respect to the axis. Features.
【0008】本発明によれば、このように軸外周面とス
リーブ内周面との間のすきまのうち、潤滑流体を保持す
るリザーバとして機能する小さい方のすきま部分を、軸
心に対しほぼ回転対称に配したため、高速回転でリザー
バに送りこまれる潤滑流体のくさび作用が強くなって
も、対称位置で打ち消し合う。よって、軸心の移動はな
く、安定回転が確保される。According to the present invention, the smaller one of the clearances between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, which functions as a reservoir for holding the lubricating fluid, is substantially rotated with respect to the axis. Due to the symmetrical arrangement, even if the wedge action of the lubricating fluid sent to the reservoir at high speed rotation becomes stronger, they cancel each other out at the symmetrical position. Therefore, there is no movement of the shaft center, and stable rotation is ensured.
【0009】ここに、上記請求項1に係る発明である流
体軸受において、前記小さい方のすきま部分を、ラジア
ル流体軸受部間の軸方向全体にわたりラジアル軸受すき
まとほぼ等しい大きさとして、両方のラジアル軸受すき
まに連通せしめたものとすることができる。このように
形成することにより、両端側にラジアル流体軸受がある
場合、一方の軸受に潤滑流体を注入すると、小さい方の
すきまを通して他方の軸受にも同時に潤滑流体が充填さ
れる。Here, in the fluid bearing according to the first aspect of the present invention, the smaller clearance portion has a size substantially equal to the radial bearing clearance over the entire axial direction between the radial fluid bearing portions, so that both radial bearings have the same size. It can be made to communicate with the bearing clearance. With this configuration, when the radial fluid bearings are provided at both ends, when the lubricating fluid is injected into one of the bearings, the other bearing is simultaneously filled with the lubricating fluid through the smaller clearance.
【0010】また、前記ラジアル流体軸受部以外の個所
の軸外周面とスリーブ内周面との間のすきまの大きさ
を、ラジアル流体軸受部に向かって徐々に狭くするテー
パ面をスリーブ内周面の少なくとも一部に形成し、当該
テーパ面が軸線となす角度を30°以下としてラジアル
流体軸受部に連通させたものとすることができる。この
ようにすると、前記小さい方のすきま部分に保持されて
いる潤滑流体を、その表面張力を利用して確実にラジア
ル流体軸受部へ供給することができる。In addition, the taper surface which gradually narrows the clearance between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve at a portion other than the radial fluid bearing portion is gradually reduced toward the radial fluid bearing portion. And the angle formed by the tapered surface with the axis is 30 ° or less, and the tapered surface communicates with the radial fluid bearing portion. In this case, the lubricating fluid held in the smaller clearance can be reliably supplied to the radial fluid bearing portion by utilizing the surface tension.
【0011】また、軸外周面とスリーブ内周面との間の
すきまの大きい部分に空気室を設けるとともに、該空気
室に外気に連通する通気穴を開口させたものとすること
ができる。このように、空気室に外気と連通する通気穴
を開口させることで、リザーバ部分に保持された潤滑流
体や複数の流体軸受と円筒壁とに挟まれる軸受内部空間
に残留する気泡の分離排出が容易に行える。The air chamber may be provided in a portion having a large clearance between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, and the air chamber may be provided with a vent hole communicating with the outside air. In this way, by opening the ventilation holes communicating with the outside air in the air chamber, the separation and discharge of the lubricating fluid held in the reservoir portion and the air bubbles remaining in the bearing internal space sandwiched between the plurality of fluid bearings and the cylindrical wall are prevented. Easy to do.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1は本発明の流体軸受の正面
図、図2はその側面の断面図、図3(a)〜(d)はそ
れぞれ図2のIII −III 線断面図である。先ず構成を説
明すると、この流体軸受は軸回転で使用されるタイプ
で、回転する軸11を支承するスリーブ12は、その内
周面12nの軸方向両端部に、それぞれラジアル流体軸
受部R,Rを備えている。このラジアル流体軸受部R,
Rの円筒状の内周面には、動圧発生用溝Mが設けられて
いる。図示の溝パターンは、外側の溝が内側溝に比べて
長い非対称のヘリングボーン状されており、軸11の回
転に伴い潤滑流体をスリーブ内側に送給し、外部への飛
散を防ぐのに有効である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of a fluid bearing of the present invention, FIG. 2 is a sectional view of a side surface thereof, and FIGS. 3 (a) to 3 (d) are sectional views taken along line III-III of FIG. First, the structure will be described. This fluid bearing is a type used for shaft rotation. A sleeve 12 for supporting a rotating shaft 11 has radial fluid bearing portions R, R at both axial ends of an inner peripheral surface 12n thereof. It has. This radial fluid bearing part R,
A groove M for generating dynamic pressure is provided on the cylindrical inner peripheral surface of R. The illustrated groove pattern has an asymmetric herringbone shape in which the outer groove is longer than the inner groove, and is effective for supplying the lubricating fluid to the inner side of the sleeve with the rotation of the shaft 11 and preventing scattering to the outside. It is.
【0013】その流体軸受部R,Rを除くスリーブ12
の内周面12nは、その断面形状が図3(a)〜(d)
に示すように楕円状に形成されている。各断面における
楕円の短径は、ラジアル流体軸受部R,Rの円筒状内周
面の直径と同じ寸法にしている。一方、相手部材である
軸11の外周面11gの断面形状は円形である。そのた
め、両部材11,12の間のすきまは周方向に変化し、
その大きさが不均一になっている。当該すきまの大きさ
が各断面毎に最も小さい部分Cmin は楕円の短径部分に
位置し、軸心に対しほぼ回転対称に二ヵ所ずつある。い
ずれも両端部のラジアル流体軸受R,Rに挟まれた部分
における軸方向全長にわたり、ラジアル流体軸受Rの軸
受すきまRcとほぼ等しい大きさを有し、当該軸受すき
まRcに連通している。The sleeve 12 excluding the fluid bearing portions R, R
The inner peripheral surface 12n has a sectional shape shown in FIGS.
As shown in FIG. The minor axis of the ellipse in each section is the same as the diameter of the cylindrical inner peripheral surface of the radial fluid bearings R, R. On the other hand, the cross-sectional shape of the outer peripheral surface 11g of the shaft 11, which is the mating member, is circular. Therefore, the clearance between the two members 11, 12 changes in the circumferential direction,
Its size is not uniform. The portion C min where the size of the clearance is the smallest in each cross section is located at the minor diameter portion of the ellipse, and there are two portions almost rotationally symmetric with respect to the axis. Each of them has a size substantially equal to the bearing clearance Rc of the radial fluid bearing R over the entire length in the axial direction of a portion sandwiched between the radial fluid bearings R, R at both ends, and communicates with the bearing clearance Rc.
【0014】また、すきまの大きさが各断面毎に最も大
きい部分Cmax も、やはり軸心に対しほぼ回転対称に配
設されている。さらに、両部材11,12の間のこれら
のすきまが、周方向に変化すると同時に軸方向にも大き
さが変化するように、スリーブ内周面12nの楕円断面
の楕円比を、スリーブ両端のラジアル流体軸受R,Rの
端部からスリーブ中央部に向かい徐々に大きくしてあ
る。すなわち、スリーブ12の中央のIII c断面におけ
る楕円筒部〔図3(c)参照〕からラジアル流体軸受R
部へ至たるスリーブ内周面12nには、図3(b),
(a)に示すように楕円比を少しずつ変えることによっ
て、ラジアル軸受すきまRcに向かい軸11との間のす
きまが徐々に狭くなるテーパ面12tが一部形成され、
そのテーパ部の末端がラジアル流体軸受Rへ連通してい
る(図2参照)。このテーパ面12tと軸線とのなす角
度αは、30°以下に設計するのが好ましく、これによ
って表面張力によるラジアル流体軸受Rの軸受すきまR
cへの潤滑流体の供給が確実に行われる。The portion C max where the size of the clearance is largest for each cross section is also arranged substantially rotationally symmetric with respect to the axis. Further, the elliptic ratio of the elliptical cross section of the inner circumferential surface 12n of the sleeve is determined by changing the radial distance between both ends of the sleeve so that the clearance between the two members 11, 12 changes in the circumferential direction and at the same time in the axial direction. The diameter of the fluid bearings R, R is gradually increased from the end to the center of the sleeve. That is, the radial fluid bearing R extends from the elliptical cylindrical portion (see FIG. 3C) in the cross section IIIc at the center of the sleeve 12.
3 (b), the inner circumferential surface 12n of the sleeve reaching the portion.
By gradually changing the elliptical ratio as shown in FIG. 7A, a tapered surface 12t in which the clearance between the shaft 11 and the radial bearing clearance Rc gradually narrows is partially formed,
The end of the tapered portion communicates with the radial fluid bearing R (see FIG. 2). The angle α between the tapered surface 12t and the axis is preferably designed to be 30 ° or less, whereby the bearing clearance R of the radial fluid bearing R due to surface tension is reduced.
The supply of the lubricating fluid to c is reliably performed.
【0015】スリーブ12の断面楕円状の内周面12n
と、軸11の円形外周面11gとの間のすきまの大きさ
が各断面毎に最も大きい部分Cmax は楕円の長径部分に
位置し、その部分には外気と連通する通気穴14が開口
している。次に作用を述べる。上記のように構成した流
体軸受を組み立て、潤滑流体を充填するには、何れか一
方のラジアル流体軸受Rにスリーブ12の外部から潤滑
流体を注入すれば良い。すると、供給された潤滑流体は
ラジアル軸受すきまRcとほぼ等しい大きさを有する軸
外周面11gとスリーブ内周面12nとの間のすきま小
の部分Cmin を経て、他方側のラジアル流体軸受Rにも
供給されるからである。それ故、本発明の流体軸受への
潤滑流体の充填作業は、極めて容易である。An inner peripheral surface 12n of the sleeve 12 having an elliptical cross section.
The portion C max where the size of the clearance between the shaft 11 and the circular outer peripheral surface 11g is the largest for each cross section is located at the major diameter portion of the ellipse, and a vent hole 14 communicating with the outside air is opened in that portion. ing. Next, the operation will be described. In order to assemble and fill the lubricating fluid with the fluid bearing configured as described above, the lubricating fluid may be injected into one of the radial fluid bearings R from outside the sleeve 12. Then, the supplied lubricating fluid through the clearance small portion C min between the axis outer peripheral surface 11g of the sleeve inner circumferential surface 12n having substantially equal size as the radial bearing gap Rc, the radial fluid bearing R on the other side Is also supplied. Therefore, the operation of filling the fluid bearing of the present invention with the lubricating fluid is extremely easy.
【0016】この流体軸受を搭載した装置を駆動して、
軸11を回転させると、その回転中は、動圧発生用溝M
のポンピング作用でラジアル流体軸受Rの部分の潤滑流
体に動圧が発生して、軸11がラジアル方向に非接触に
支承される。一方、スリーブ12の両端のラジアル流体
軸受R,Rに挟まれた部分では、断面楕円状のスリーブ
内周面12nと断面円形の外周面11gとの間のすきま
が最も小さい部分Cmin に、潤滑流体の表面張力とくさ
び作用とにより潤滑流体が保持されてリザーバが形成さ
れる。軸11の回転が高速になる程、前記リザーバ部に
おけるくさび作用が促進されてその反力も増大する。し
かし本発明の場合、リザーバとして機能するすきま最小
部分Cmin は、相互に180°位相が異なる回転対称に
形成されているため、反力同士で釣り合うこととなり、
軸11の移動は生じない。よって安定した回転が得られ
る。By driving a device equipped with this fluid bearing,
When the shaft 11 is rotated, the dynamic pressure generating groove M is rotated during the rotation.
, A dynamic pressure is generated in the lubricating fluid in the portion of the radial fluid bearing R, and the shaft 11 is supported in a non-contact manner in the radial direction. On the other hand, in the portion between the radial fluid bearings R, R at both ends of the sleeve 12, lubrication is performed to a portion C min where the clearance between the inner peripheral surface 12n of the elliptical cross section and the outer peripheral surface 11g of the circular cross section is the smallest. The reservoir is formed by holding the lubricating fluid by the surface tension and wedge action of the fluid. As the rotation speed of the shaft 11 increases, the wedge action in the reservoir portion is promoted, and the reaction force increases. However, in the case of the present invention, minimum clearance portion C min that functions as a reservoir, since mutually 180 ° phase is formed in a different rotational symmetry, will be balanced by the reaction force between,
No movement of the shaft 11 occurs. Therefore, stable rotation can be obtained.
【0017】また、スリーブ内周面12nと断面円形の
外周面11gとの間のすきまが大きいCmax 部分は空気
室として機能し、流体軸受内部の空気や潤滑流体中に残
留した気泡が軸11の回転に伴ってそこに集められ、通
気穴14を介して外気に排出される。空気を除去されて
リザーバとその近傍に保持されている潤滑流体は、軸1
1とのすきまをラジアル流体軸受Rに向かって徐々にせ
まくしているテーパ面12tに導かれて表面張力の作用
でラジアル流体軸受R,Rへ確実に供給される。The Cmax portion having a large clearance between the inner peripheral surface 12n of the sleeve and the outer peripheral surface 11g having a circular cross section functions as an air chamber, and air remaining in the air inside the fluid bearing or the lubricating fluid is removed from the shaft 11 Is collected there with the rotation of and is discharged to the outside air through the ventilation holes 14. The lubricating fluid from which the air has been removed and which is retained in the reservoir and its vicinity is
1 is guided to the tapered surface 12t which gradually narrows toward the radial fluid bearing R, and is reliably supplied to the radial fluid bearings R, R by the action of surface tension.
【0018】かくして、本発明の流体軸受によれば、両
端のラジアル流体軸受部R,Rへの潤滑流体の給油が、
流体軸受を分解することなく軸受外部から簡単に行える
し、リザーバ部に保持された潤滑流体を確実にラジアル
流体軸受部Rに供給することができるから、長期間の運
転が可能である。なお、上記の実施の形態では、軸回転
タイプの流体軸受について説明したが、本発明をスリー
ブ回転タイプの流体軸受に適用することも可能である。
但しその場合は、スリ一ブを楕円にする代わりに静止側
となる軸の方を楕円にする。Thus, according to the fluid bearing of the present invention, lubrication of lubricating fluid to the radial fluid bearing portions R, R at both ends is achieved by:
The fluid bearing can be easily operated from the outside without disassembling the bearing, and the lubricating fluid held in the reservoir can be reliably supplied to the radial fluid bearing R, so that long-term operation is possible. In the above-described embodiment, the description has been given of the shaft rotation type fluid bearing. However, the present invention can be applied to a sleeve rotation type fluid bearing.
In this case, however, the axis on the stationary side is made elliptical instead of making the sleeve elliptical.
【0019】また、軸受スパンが短くて複数のラジアル
流体軸受と円筒壁とで囲まれる空間が狭くなり、そのた
めに気泡の残留が少なく且つ使用環境も厳しくない場合
には、空気室に開口する通気穴を省略することもでき
る。このように通気穴を設けない場合は、静止側のみで
なく回転側をも断面楕円形状にしてよい。また、本発明
の流体軸受を構成する軸またはスリーブの断面形状に関
しては、必ずしも楕円状あるいは小判形のような擬似楕
円状の形状に限定されることはなく、周方向にすきまが
変化するものであれば120°間隔にリザーバを設けた
三円弧や、その他の等間隔にリザーバを設けた多角形状
であってもよい。In the case where the bearing span is short and the space surrounded by the plurality of radial fluid bearings and the cylindrical wall is narrowed, so that the residual air bubbles are small and the use environment is not severe, the ventilation opening to the air chamber is required. Holes can be omitted. When the ventilation hole is not provided as described above, not only the stationary side but also the rotating side may have an elliptical cross section. Further, the cross-sectional shape of the shaft or sleeve constituting the fluid bearing of the present invention is not necessarily limited to a pseudo-elliptical shape such as an elliptical shape or an oval shape, and the clearance changes in the circumferential direction. If so, a triangular arc having reservoirs at 120 ° intervals or a polygonal shape having other reservoirs at equal intervals may be used.
【0020】また、流体軸受は2個に限らず1個の流体
軸受に隣接してリザーバを設けても、3個以上の流体軸
受の複数の軸受間にそれぞれリザーバを設けるようにし
てもよい。The number of fluid bearings is not limited to two, and a reservoir may be provided adjacent to one fluid bearing, or a reservoir may be provided between a plurality of bearings of three or more fluid bearings.
【0021】[0021]
【発明の効果】以上説明したように、請求項1に係る本
発明によれば、流体軸受部の近傍の軸とスリーブ間のす
きまを周方向に不均一にし、潤滑流体の保持・供給源と
なるリザーバとして機能するすきまが小さい部分を回転
対称に設けたため、回転数を高くしても軸心が移動せ
ず、その結果安定した回転が得られるという効果を奏す
る。As described above, according to the first aspect of the present invention, the clearance between the shaft and the sleeve in the vicinity of the fluid bearing portion is made non-uniform in the circumferential direction, and the lubricating fluid holding / supplying source is Since a portion having a small clearance functioning as a reservoir is provided in a rotationally symmetric manner, the axial center does not move even if the number of rotations is increased, and as a result, there is an effect that stable rotation can be obtained.
【図1】本発明の流体軸受の一実施形態例の正面図であ
る。FIG. 1 is a front view of an embodiment of a fluid bearing according to the present invention.
【図2】図1の側面断面図である。FIG. 2 is a side sectional view of FIG.
【図3】(a)は図2のIII a−III a線断面図、
(b)は図2のIII b−III b線断面図、(c)は図2
のIII c−III c線断面図、(d)は図2のIII d−II
Id線断面図である。3A is a sectional view taken along line IIIa-IIIa in FIG. 2,
2B is a cross-sectional view taken along the line IIIb-IIIb in FIG. 2, and FIG.
FIG. 3D is a sectional view taken along the line III c-III c, and FIG.
It is an Id line sectional view.
【図4】従来の流体軸受を示し、(a)は側面断面図、
(b)はそのb−b線断面図である。4A and 4B show a conventional fluid bearing, in which FIG.
(B) is the bb line sectional view.
1 軸 11 軸 2 スリーブ 12 スリーブ R ラジアル流体軸受部 Rc ラジアル流体軸受すきま Cmin すきまの小さい部分1 shaft 11 shaft 2 sleeve 12 sleeve R Radial fluid bearing Rc Radial fluid bearing clearance C min Small clearance
フロントページの続き (72)発明者 坂谷 郁紀 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3J011 AA04 BA02 CA01 CA02 CA04Continuation of the front page (72) Inventor Ikuki Sakatani 1-5-150 Kugenuma Shinmei, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 3J011 AA04 BA02 CA01 CA02 CA04
Claims (1)
るスリーブとの間にラジアル流体軸受部を備え、軸とス
リーブとの相対回転に伴い前記流体軸受部の潤滑流体に
圧力を発生する流体軸受において、 前記ラジアル流体軸受部以外の個所における少なくとも
一部の軸外周面とスリーブ内周面との間のすきまの大き
さを周方向に不均一とし、そのすきまの小さい部分を、
ラジアル軸受すきまとほぼ等しい大きさにして当該ラジ
アル軸受すきまに連通させるとともに軸心に対しほぼ回
転対称に配したことを特徴とする流体軸受。1. A radial fluid bearing portion is provided between a shaft and a sleeve opposed to the shaft via a bearing clearance, and a pressure is generated in a lubricating fluid of the fluid bearing portion as the shaft and the sleeve rotate relative to each other. In the fluid bearing, the size of the clearance between at least a part of the shaft outer peripheral surface and the sleeve inner peripheral surface in a portion other than the radial fluid bearing portion is made non-uniform in the circumferential direction, and the small clearance portion is
A fluid bearing having a size substantially equal to the radial bearing clearance, communicating with the radial bearing clearance, and being arranged substantially rotationally symmetric with respect to an axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25953299A JP2001082454A (en) | 1999-09-13 | 1999-09-13 | Hydraulic bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25953299A JP2001082454A (en) | 1999-09-13 | 1999-09-13 | Hydraulic bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001082454A true JP2001082454A (en) | 2001-03-27 |
Family
ID=17335422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25953299A Pending JP2001082454A (en) | 1999-09-13 | 1999-09-13 | Hydraulic bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001082454A (en) |
-
1999
- 1999-09-13 JP JP25953299A patent/JP2001082454A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1136710B1 (en) | Dynamic pressure bearing | |
CN1322257C (en) | Labyrinth seal between rotating parts | |
JPH1089363A (en) | Sliding bearing for shaft | |
JP2019113144A (en) | Halved thrust bearing | |
WO2019187023A1 (en) | Rotating machine and turbocharger | |
EP1249624A2 (en) | Roller bearing with a retainer having voids for grease container | |
JP2001082454A (en) | Hydraulic bearing | |
US6264368B1 (en) | Fluid bearing motor | |
JP2001234926A (en) | Dynamic pressure type fluid bearing device | |
KR100364406B1 (en) | A hydrodynamic bearing of the spindle motor | |
JP2543755Y2 (en) | Hydrodynamic bearing | |
JP2007263316A (en) | Highly efficient lubricating structure of rolling bearing | |
JP2001116046A (en) | Dynamic pressure bearing device | |
JPH11336753A (en) | Self-aligning roller bearing | |
JP2003113837A (en) | Dynamic pressure bearing device and spindle motor using it | |
JP2000320649A (en) | Gear with bearing | |
JP2560501Y2 (en) | Hydrodynamic bearing | |
JPH0464709A (en) | Device for rotating dynamic pressure fluid bearing | |
JP2000170749A (en) | Thrust dynamic pressure bearing | |
JP2003314543A (en) | Roller bearing with aligning ring | |
JPH0337411A (en) | Dynamic pressure bearing rotating device | |
JPH0257723A (en) | Static pressure gas bearing | |
JP2534872Y2 (en) | Hydrodynamic bearing | |
JPH0626516A (en) | Journal bearing | |
JPH04266615A (en) | Static pressure porous gas bearing |