JPH0464709A - Device for rotating dynamic pressure fluid bearing - Google Patents

Device for rotating dynamic pressure fluid bearing

Info

Publication number
JPH0464709A
JPH0464709A JP17442490A JP17442490A JPH0464709A JP H0464709 A JPH0464709 A JP H0464709A JP 17442490 A JP17442490 A JP 17442490A JP 17442490 A JP17442490 A JP 17442490A JP H0464709 A JPH0464709 A JP H0464709A
Authority
JP
Japan
Prior art keywords
dynamic pressure
sleeve
pressure generating
gravity
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17442490A
Other languages
Japanese (ja)
Inventor
Mikio Nakasugi
幹夫 中杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17442490A priority Critical patent/JPH0464709A/en
Publication of JPH0464709A publication Critical patent/JPH0464709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the vibration at the time of high speed rotation, and restrict generation of the heat, and improve the stability by providing at least two dynamic pressure generating parts along an axial line, and forming a clearance and a length of one of the two dynamic pressure generating parts, which is closer to a center of gravity of a rotating body, wider and longer than that of the other dynamic pressure generating part. CONSTITUTION:A first and a second herringbone shallow channels 141, 142 are provided in the outer peripheral surface of a rotating shaft 1, which is supported by a sleeve 21 freely to rotate, opposite to the inner peripheral surface of the sleeve 21. An axial length of the first herringbone shallow channel 141 in a center of gravity G side of a rotating member and a clearance between the rotating shaft 1 and the sleeve 21 is made longer and wider than that of the second herringbone shallow channel 142. Consequently, even if whirling of the rotating body is large at the time of high speed rotation, a touch of the first herringbone shallow channel 141 can be prevented, and increase of an eccentricity quantity and a loss by the viscosity of the fluid are prevented without lowering the dynamic pressure, and scoring is prevented to reduce the generated heat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は動圧流体軸受回転装置に関し、例えばレーザビ
ームプリンタ等に使用される偏向走査装置に使用される
回転装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrodynamic bearing rotating device, and more particularly to a rotating device used in a deflection scanning device used in a laser beam printer or the like.

[従来の技術] 近年、高速および高精度の回転装置に関する要求が高ま
り、このため特にレーザビームプリンタ等では非接触で
回転する動圧流体軸受が用いられている。第4図は従来
の動圧流体軸受を用いたし〜ザビームプリンタの偏向走
査装置の回転装置を示す。
[Prior Art] In recent years, demands for high-speed and high-precision rotating devices have increased, and for this reason, hydrodynamic bearings that rotate without contact are being used, particularly in laser beam printers and the like. FIG. 4 shows a rotation device of a deflection scanning device of a THE BEAM printer using a conventional hydrodynamic bearing.

回転軸1とスリーブ2は相互に回転可能に嵌合され、ス
リーブ2の下端部にはスラスト板3か固定板4とともに
装着される。スリーブ2は固定板4とともに外筒5に固
定されている。回転軸1の上部にはフランジ6が固定さ
れる。フランジ6の上側には回転多面fi7が固定され
る。フランジ6の下面には駆動用マグネット8を固定し
たヨーク9が固定される。駆動用マグネット8と対向す
る内面側の位置には、外筒5に固定されたステータ10
が配置されている。スラスト板3には回転軸1の下端部
と対向する面に浅溝11が刻設され、こねにより動圧ス
ラスト軸受を形成する。また回転軸1の外周面にはスリ
ーブ2の内周面と対向する位置にヘリングボーン状の浅
溝14が上下2ケ所に刻設され、これにより、動圧ラジ
アル軸受を形成する。スリーブ2の開口部(上部)近傍
には、動圧スラスト軸受方向に潤滑流体が流れるように
スパイラル状の浅溝15が刻設されている。
The rotating shaft 1 and the sleeve 2 are rotatably fitted to each other, and a thrust plate 3 or a fixed plate 4 is attached to the lower end of the sleeve 2. The sleeve 2 is fixed to the outer cylinder 5 together with the fixing plate 4. A flange 6 is fixed to the upper part of the rotating shaft 1. A rotating polygon fi7 is fixed to the upper side of the flange 6. A yoke 9 to which a driving magnet 8 is fixed is fixed to the lower surface of the flange 6. A stator 10 fixed to the outer cylinder 5 is located on the inner side facing the drive magnet 8.
is located. A shallow groove 11 is cut into the thrust plate 3 on the surface facing the lower end of the rotary shaft 1, and a dynamic pressure thrust bearing is formed by kneading. Furthermore, shallow herringbone grooves 14 are formed on the outer circumferential surface of the rotating shaft 1 at two locations, upper and lower, at positions facing the inner circumferential surface of the sleeve 2, thereby forming a dynamic pressure radial bearing. A shallow spiral groove 15 is formed near the opening (upper part) of the sleeve 2 so that the lubricating fluid flows in the direction of the dynamic pressure thrust bearing.

また、スリーブ2には前記上側のへリングボーン状の浅
溝14とスパイラル状の浅溝15の間の位置に凹部16
を設けるとともに、この凹部16に連通する小径孔17
を設ける。これにより潤滑流体に液体(油、グリース等
)を用いた動圧流体軸受の安定性が高まる。
The sleeve 2 also has a recess 16 located between the upper herringbone-shaped shallow groove 14 and the spiral shallow groove 15.
A small diameter hole 17 communicating with this recess 16 is provided.
will be established. This increases the stability of hydrodynamic bearings that use liquid (oil, grease, etc.) as the lubricating fluid.

[発明が解決しようとする課題] しかしながら、上記従来例では動圧流体軸受回転装置を
高速回転で用いる場合、 回転体(回転軸1)の動的バランスの不釣合いによって
振れ回りが大きくなり、回転体重心側の動圧発生部で回
転軸とスリーブとが接触していわゆるかじりを生じる場
合があった。また、回転軸とスリーブ間に介在する流体
の粘性による抵抗損失から熱を発生し、流体の温度が高
まり流体の粘度を低下させていた。このため外部からの
振動等の影響を受け、回転が不安定となっていた。
[Problems to be Solved by the Invention] However, in the conventional example described above, when the hydrodynamic fluid bearing rotating device is used for high-speed rotation, the whirling becomes large due to the imbalance in the dynamic balance of the rotating body (rotating shaft 1), and the rotation There have been cases where the rotating shaft and the sleeve come into contact with each other at the dynamic pressure generating portion on the center of gravity side, resulting in so-called galling. Furthermore, heat is generated due to resistance loss due to the viscosity of the fluid interposed between the rotating shaft and the sleeve, increasing the temperature of the fluid and lowering the viscosity of the fluid. As a result, rotation became unstable due to the influence of external vibrations.

本発明は上記従来技術の欠点に鑑みなされたものであっ
て、高速回転時の振動を防止し安定した回転を得るとと
もに熱の発生を抑えて潤滑流体の粘性低下を防止し回転
の安定性を高めた動圧流体軸受回転装置の提供を目的と
する。
The present invention was developed in view of the above-mentioned drawbacks of the prior art, and it prevents vibrations during high-speed rotation to obtain stable rotation, suppresses heat generation, prevents a decrease in the viscosity of the lubricating fluid, and improves rotational stability. The purpose of the present invention is to provide a hydrodynamic bearing rotation device with increased hydrodynamic pressure.

[課題を解決するための手段および作用]前記目的を達
成するため、本発明によれはラジアル軸受を形成する複
数個の動圧発生部のうち、回転体重心側の動圧発生部か
他の動圧発生部に比べ、軸受隙間を広くしかつ動圧発生
部の軸方向長さを長くすることにより、高速回転時にお
けるかじりの発生を防止するとともに熱発生を少なくし
た。
[Means and effects for solving the problem] In order to achieve the above-mentioned object, the present invention provides that among the plurality of dynamic pressure generating parts forming a radial bearing, the dynamic pressure generating part on the side of the center of gravity of rotation or the other By widening the bearing gap and increasing the axial length of the dynamic pressure generating section compared to the dynamic pressure generating section, galling during high speed rotation is prevented and heat generation is reduced.

[実施例] 第1図は本発明の一実施例を表わす図面である。第4図
と同一部材で機能が同じものは同一番号を付し説明を省
略する。回転軸1はスリーブ21と相互に回転可能に嵌
合される。回転軸1の図中上方にフランジ6が固定され
る。フランジ6の上側には回転多面鏡7が固定されてい
る。回転軸1の外周面とスリーブ21の内周面が対向す
る位置には第1のへリングボーン状の浅溝141と第2
のへリングボーン状の浅溝142が回転軸1とスリーブ
21のいずれか一方(実施例では回転軸側)に刻設され
ている。回転体の重心G(図中X印)側(上側)の第1
のへリングボーン状の浅溝141は下側の第2のへリン
グボーン状の浅溝142に比べ軸方向長さが長い。また
回転軸1とスリーブ21の隙間については、第1のへリ
ングボーン状の浅溝141が刻設された上側の動圧発生
部の隙間211は、第2のへリングボーン状の浅溝14
2が刻設された下側の動圧発生部の隙間212に比べて
広い。
[Embodiment] FIG. 1 is a drawing showing an embodiment of the present invention. Components that are the same as those in FIG. 4 and have the same functions are designated by the same numbers and their explanations will be omitted. The rotating shaft 1 and the sleeve 21 are rotatably fitted together. A flange 6 is fixed above the rotating shaft 1 in the drawing. A rotating polygon mirror 7 is fixed above the flange 6. A first herringbone-shaped shallow groove 141 and a second shallow groove 141 are provided at a position where the outer circumferential surface of the rotating shaft 1 and the inner circumferential surface of the sleeve 21 face each other.
A herringbone-shaped shallow groove 142 is carved in either one of the rotating shaft 1 or the sleeve 21 (in the embodiment, on the rotating shaft side). The first one on the side (upper side) of the center of gravity G (marked by X in the figure) of the rotating body.
The herringbone-shaped shallow groove 141 has a longer axial length than the lower second herringbone-shaped shallow groove 142. Regarding the gap between the rotating shaft 1 and the sleeve 21, the gap 211 in the upper dynamic pressure generating part in which the first herringbone-shaped shallow groove 141 is carved is the second herringbone-shaped shallow groove 14.
It is wider than the gap 212 of the lower dynamic pressure generating part where 2 is carved.

スリーブ21の開口部(上端部)近傍には、潤滑流体が
開口部から流出することを防止するため図中下側に潤滑
流体が流れるようにスパイラル状の浅溝15が刻設され
る。この部分の隙間213は第1のへリングボーン状の
浅溝141の刻設部分の隙間212に比べ同じかそれよ
りも広いことが望ましい。
Near the opening (upper end) of the sleeve 21, a shallow spiral groove 15 is formed so that the lubricating fluid flows downward in the figure in order to prevent the lubricating fluid from flowing out from the opening. It is desirable that the gap 213 in this part be the same as or wider than the gap 212 in the carved part of the first herringbone-shaped shallow groove 141.

上記構成の回転装置を高速駆動した場合、回転体の動バ
ランスの不釣合いによって振れ回りか大きくなったり、
外部からの振動が加わったとしても、偏心量の増加は防
止される。これは以下の理由による。すなわち、回転体
の重心(図中X軸)に加わるモーメント力を2つのラジ
アル軸受部で支持するために第1のへリングボーン状の
浅溝141によるラジアル軸受に加わる力か犬きくなる
とともに、偏心量が大きくなろうとする。しかしながら
本発明の構成では第1のへリングボーン状の浅漬141
によるラジアル軸受の隙間を広くし、広くしたことによ
る動圧発生力の低下分を軸方向長さを長くすることによ
り動圧発生力を同等またはそれ以上にでき、これにより
動圧を低下させずに偏心量が大きくなることを防ぐこと
ができる。また隙間が広いために接触が防止され回転体
重心に近い側の第1のへリングボーン状の浅溝141に
よるラジアル軸受部のかじりが防止される。
When a rotating device with the above configuration is driven at high speed, the amount of whirling may increase due to an imbalance in the dynamic balance of the rotating body.
Even if external vibrations are applied, an increase in eccentricity is prevented. This is due to the following reasons. That is, in order to support the moment force applied to the center of gravity of the rotating body (X-axis in the figure) with the two radial bearing parts, the force applied to the radial bearing by the first herringbone-shaped shallow groove 141 becomes stronger, and The amount of eccentricity tends to increase. However, in the configuration of the present invention, the first herringbone-shaped shallow dipping 141
By widening the gap in the radial bearing and increasing the axial length to compensate for the decrease in dynamic pressure generation force due to the widening, the dynamic pressure generation force can be equalized or exceeded. This can prevent the amount of eccentricity from increasing. Further, since the gap is wide, contact is prevented, and galling of the radial bearing portion by the first herringbone-shaped shallow groove 141 on the side closer to the rotational center of gravity is prevented.

さらに、隙間を広くしたことにより、隙間211に介在
する流体の粘性による損失が少なくなるため、流体の温
度上昇を抑えることができ、流体の粘度が低下つまりは
軸受剛性の低下を防ぐことが可能となる。したがって、
外部からの振動等による影響が抑えられ安定な回転動作
か達成される。
Furthermore, by widening the gap, the loss due to the viscosity of the fluid intervening in the gap 211 is reduced, so it is possible to suppress the temperature rise of the fluid, and it is possible to prevent the viscosity of the fluid from decreasing, which in turn prevents a decrease in bearing rigidity. becomes. therefore,
The influence of external vibrations, etc. is suppressed and stable rotational operation is achieved.

第2図は本発明の第2の実施例を表わす図面である。回
転軸1はスリーブ22と相互に回転可能に嵌合される。
FIG. 2 is a drawing showing a second embodiment of the present invention. The rotating shaft 1 is rotatably fitted to the sleeve 22.

回転軸1の外周面とスリーブ22の内周面か対向する位
置には第1の変形へリングボーン状の浅溝143と第2
のへリングボーン状の浅溝142が回転軸1とスリーブ
22のいずれか一方(実施例では回転軸側)に刻設され
ている。回転体の重心G(図中X印)側の第1の変形へ
リングボーン状の浅溝143は、重心に近い方(上側)
の浅溝部143aの軸方向長さか反対側(下側)の浅溝
部143bの軸方向長さに比へて長い。隙間については
第1のへリングホーン状の浅溝143の重心に近い方の
浅溝部143aが刻設された動圧発生部の隙間221は
、第1の変形へリングボーン状の浅溝143の重心から
遠い側の浅溝部143bおよび第2のへリングホーン状
の浅11!142が刻設された動圧発生部の隙間222
に比べて広い。
A first modified herringbone-shaped shallow groove 143 and a second shallow groove 143 are provided at positions where the outer circumferential surface of the rotating shaft 1 and the inner circumferential surface of the sleeve 22 face each other.
A herringbone-shaped shallow groove 142 is carved in either the rotating shaft 1 or the sleeve 22 (in the embodiment, on the rotating shaft side). The first deformed herringbone-shaped shallow groove 143 on the side of the center of gravity G (marked by X in the figure) of the rotating body is the one closer to the center of gravity (upper side)
The axial length of the shallow groove portion 143a is longer than the axial length of the shallow groove portion 143b on the opposite side (lower side). As for the gap, the gap 221 of the dynamic pressure generating part in which the shallow groove part 143a near the center of gravity of the first herringbone-shaped shallow groove 143 is carved is the gap 221 of the first modified herringbone-shaped shallow groove 143. A gap 222 in the dynamic pressure generating part in which a shallow groove part 143b on the side far from the center of gravity and a second Heringhorn-shaped shallow part 11!142 are carved.
It is wider than .

このような構成により、高速駆動時の振れや外部からの
振動等によるモーメント力による第1の変形へリングホ
ーン状の浅溝143の偏心量か大きくなることが防止さ
れる。また重心側動圧発生部の隙間か広いため軸受部の
かじりか防止される。さらに、第1の変形へリングボー
ン状の浅溝部143の軸方向長さは第1の実施例に比べ
短くすることができるため損失を小さくすることが可能
となるとともに、回転装置の薄型化も可能である。
Such a configuration prevents the eccentricity of the first deformed Herringhorn-shaped shallow groove 143 from increasing due to moment force due to runout during high-speed driving, vibration from the outside, or the like. Additionally, the gap between the dynamic pressure generating section on the center of gravity side is wide, which prevents galling of the bearing. Furthermore, since the axial length of the first modified herringbone-shaped shallow groove portion 143 can be made shorter than that of the first embodiment, it is possible to reduce loss and also to make the rotating device thinner. It is possible.

第3図は本発明の第3の実施例を表わす図面である。回
転軸1はスリーブ23と相互に回転可能に嵌合される。
FIG. 3 is a diagram showing a third embodiment of the present invention. The rotating shaft 1 is rotatably fitted to the sleeve 23.

回転軸1の外周面と対向するスリーブは、回転体の重心
(図中X印)側に近いほど回転軸1との隙間232が広
くなるように上側に広がるテーパとなっている。一方、
回転軸1の外周面とスリーブ23の内周面が対向する位
置には、第1の変形へリングボーン状の浅溝144と第
2の変形へリングボーン状の浅溝145が回転軸1とス
リーブ23のいずれか一方(実施例では回転軸側)に刻
設されている。回転体の重心側の第1の変形へリングボ
ーン状の浅溝144は重心に近い方の浅漬部144aの
軸方向長さが反対側の浅溝部144bの軸方向長さに比
べて長い。また、第2の変形へリングボーン状の浅溝1
45は、第1の変形へリングホーン状の浅溝144a、
144bよりも軸方向長さが短く、さらに重心に近い方
の浅溝145aの軸方向長さは反対側の浅溝部145b
よりも長い。このような構成によっても第1、第2の実
施例と同様な効果を得ることかできる。またスリーブ2
3の内周面の加工が容易となるためコスト的に安価とな
る。
The sleeve facing the outer peripheral surface of the rotating shaft 1 is tapered upward so that the closer it is to the center of gravity of the rotating body (marked by X in the figure), the wider the gap 232 with the rotating shaft 1 becomes. on the other hand,
At a position where the outer circumferential surface of the rotating shaft 1 and the inner circumferential surface of the sleeve 23 face each other, a first modified herringbone-shaped shallow groove 144 and a second modified herringbone-shaped shallow groove 145 are provided. It is engraved on either one of the sleeves 23 (in the embodiment, on the rotating shaft side). In the first modified herringbone-shaped shallow groove 144 on the side of the center of gravity of the rotating body, the axial length of the shallow groove portion 144a closer to the center of gravity is longer than the axial length of the shallow groove portion 144b on the opposite side. In addition, a second deformed herringbone-shaped shallow groove 1
45 is a first modified Herringhorn-shaped shallow groove 144a;
The axial length of the shallow groove 145a that is shorter than that of the shallow groove 144b and closer to the center of gravity is that of the shallow groove 145b on the opposite side.
longer than Even with such a configuration, the same effects as those of the first and second embodiments can be obtained. Also sleeve 2
Since the inner circumferential surface of No. 3 can be easily processed, the cost is low.

尚、動圧発生溝を回転軸1に設けた構成について説明し
たがスリーブに設けても同様な効果か得られる。
Although the description has been given of a configuration in which the dynamic pressure generating groove is provided on the rotating shaft 1, the same effect can be obtained by providing the dynamic pressure generating groove on the sleeve.

また、軸が固定でスリーブが回転する動圧流体軸受回転
装置であっても同様である。
Further, the same applies to a dynamic pressure fluid bearing rotating device in which the shaft is fixed and the sleeve rotates.

[発明の効果] 以上説明したように、ラジアル軸受を形成する複数個の
動圧発生部のうち、回転体の重心側の動圧発生部が他の
動圧発生部に比べ、軸受隙間を広くしかつ動圧発生部の
軸方向長さを長くしたことにより、高速回転時における
かじりの発生を防止するとともに熱発生を少なくすると
いう効果かある。
[Effects of the Invention] As explained above, among the plurality of dynamic pressure generating parts forming a radial bearing, the dynamic pressure generating part on the center of gravity side of the rotating body has a wider bearing gap than the other dynamic pressure generating parts. In addition, by increasing the axial length of the dynamic pressure generating portion, there is an effect of preventing galling during high speed rotation and reducing heat generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を表わす構成図、82図は本
発明の第2の実施例を表わす構成図、 第3図は本発明の第3の実施例を表わす構成図、 第4図は従来の動圧軸受回転装置を示す構成図である。 1・・・回転軸、 2 21 22 23・・・スリーブ、14.141,
142,143,144,145・・・浅溝、211.
212,221,222,232・・・隙間。 特許 出 願人 キャノン株式会社
1 is a block diagram showing one embodiment of the present invention, FIG. 82 is a block diagram showing a second embodiment of the present invention, FIG. 3 is a block diagram showing a third embodiment of the present invention, The figure is a configuration diagram showing a conventional hydrodynamic bearing rotating device. 1... Rotating shaft, 2 21 22 23... Sleeve, 14.141,
142, 143, 144, 145...shallow groove, 211.
212, 221, 222, 232... Gap. Patent applicant Canon Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)相互に回転可能に嵌合する軸とスリーブとを有し
、該軸およびスリーブが対向する位置の軸およびスリー
ブのいずれか一方の側に設けた浅溝群からなる動圧発生
部を該軸方向に沿って少なくとも2か所設け、前記軸と
ともに回転する該軸を含む回転体の重心に近い側の前記
動圧発生部の軸およびスリーブ間の隙間が他の動圧発生
部の軸およびスリーブ間の隙間より広く、かつ軸方向の
長さが他の動圧発生部より長いことを特徴とする動圧流
体軸受回転装置。
(1) It has a shaft and a sleeve that are rotatably fitted to each other, and has a dynamic pressure generating section consisting of a group of shallow grooves provided on one side of the shaft and the sleeve at a position where the shaft and the sleeve face each other. At least two locations are provided along the axial direction, and the gap between the shaft and the sleeve of the dynamic pressure generating section on the side closer to the center of gravity of the rotating body including the shaft that rotates with the shaft is equal to the axis of the other dynamic pressure generating section. and a dynamic pressure fluid bearing rotating device characterized in that the gap is wider than the gap between the sleeves and the length in the axial direction is longer than other dynamic pressure generating parts.
(2)前記スリーブの内径に段差を設けて該内径を拡大
することにより前記重心に近い側の動圧発生部の軸およ
びスリーブ間の隙間を広くしたことを特徴とする特許請
求の範囲第1項記載の動圧流体軸受回転装置。
(2) The gap between the sleeve and the shaft of the dynamic pressure generating section on the side closer to the center of gravity is widened by providing a step in the inner diameter of the sleeve to enlarge the inner diameter. Dynamic pressure fluid bearing rotating device as described in .
(3)前記スリーブの内径を前記重心方向に連続的に広
がるテーパ状に形成することにより、前記重心に近い側
の動圧発生部の軸およびスリーブ間の隙間を広くしたこ
とを特徴とする特許請求の範囲第1項記載の動圧流体軸
受回転装置。
(3) A patent characterized in that the inner diameter of the sleeve is formed into a tapered shape that continuously expands in the direction of the center of gravity, thereby widening the gap between the shaft of the dynamic pressure generating section on the side closer to the center of gravity and the sleeve. A dynamic pressure fluid bearing rotating device according to claim 1.
JP17442490A 1990-07-03 1990-07-03 Device for rotating dynamic pressure fluid bearing Pending JPH0464709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17442490A JPH0464709A (en) 1990-07-03 1990-07-03 Device for rotating dynamic pressure fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17442490A JPH0464709A (en) 1990-07-03 1990-07-03 Device for rotating dynamic pressure fluid bearing

Publications (1)

Publication Number Publication Date
JPH0464709A true JPH0464709A (en) 1992-02-28

Family

ID=15978306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17442490A Pending JPH0464709A (en) 1990-07-03 1990-07-03 Device for rotating dynamic pressure fluid bearing

Country Status (1)

Country Link
JP (1) JPH0464709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840066A (en) * 1995-10-26 1998-11-24 Tokai Kobunshi Kagaku Kabushikigaisha Infusion catheter
JP2007107555A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Motor with hydrodynamic pressure bearing device
JP2009002827A (en) * 2007-06-22 2009-01-08 Mitsubishi Electric Corp Rotation angle detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840066A (en) * 1995-10-26 1998-11-24 Tokai Kobunshi Kagaku Kabushikigaisha Infusion catheter
JP2007107555A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Motor with hydrodynamic pressure bearing device
JP4600240B2 (en) * 2005-10-11 2010-12-15 パナソニック株式会社 Motor equipped with a hydrodynamic bearing device
JP2009002827A (en) * 2007-06-22 2009-01-08 Mitsubishi Electric Corp Rotation angle detection device

Similar Documents

Publication Publication Date Title
JP3395524B2 (en) Vertical type hydrodynamic bearing device
JPH04235522A (en) Rotating mirror optical scanner with grooved grease bearing
US5906440A (en) Dynamic pressure type fluid bearing device
KR100196929B1 (en) Fluid bearing with a clearance error compensation
JPH0464709A (en) Device for rotating dynamic pressure fluid bearing
KR100480758B1 (en) Dynamic pressure type fluid bearing device
EP0794344B1 (en) High speed rotor assembly
JP3983435B2 (en) Hydrodynamic bearing unit
JPH0651224A (en) Optical scanning device
JP2001116046A (en) Dynamic pressure bearing device
JP3431723B2 (en) Dynamic pressure bearing device
JPH04119216A (en) Dynamic pressure bearing device
JPH0337411A (en) Dynamic pressure bearing rotating device
JP3633992B2 (en) Hydrodynamic bearing device
KR19980030390A (en) Double Ended Support Pivot Thrust Bearing
JP3815929B2 (en) motor
KR940000809Y1 (en) Bearing device
JPH05118322A (en) Dynamic pressure bearing device
JP2004108546A (en) Hydrodynamic bearing device and spindle motor using the same
KR20010038339A (en) Spindle motor
JP2974514B2 (en) Scanning optical device
KR20010063009A (en) Spindle motor
JP3572796B2 (en) Hydrodynamic bearing
JP2560426Y2 (en) Hydrodynamic bearing device
KR100213908B1 (en) Journal bearing with a variable clearance