JP2001079574A - Method for controlling ozone injection - Google Patents

Method for controlling ozone injection

Info

Publication number
JP2001079574A
JP2001079574A JP25653599A JP25653599A JP2001079574A JP 2001079574 A JP2001079574 A JP 2001079574A JP 25653599 A JP25653599 A JP 25653599A JP 25653599 A JP25653599 A JP 25653599A JP 2001079574 A JP2001079574 A JP 2001079574A
Authority
JP
Japan
Prior art keywords
ozone
water
treated
ozone injection
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25653599A
Other languages
Japanese (ja)
Inventor
Tetsufumi Watanabe
哲文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP25653599A priority Critical patent/JP2001079574A/en
Publication of JP2001079574A publication Critical patent/JP2001079574A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To rapidly inject ozone even if the quality of raw water is varied at the time of controlling the ozone injection so that the dissolved ozone concn. of an ozone contact basin is kept constant by measuring the UV absorbance and temp. of the water to be treated and then determining the ozone injection ratio based on a specified expression. SOLUTION: The UV absorbance A and temp. T of ozoneted water are measured by a UV meter UVT and a thermometer WT, and the absorbance A, temp. T and the controlled set valve C of dissolved ozone concn. are inputted to a controller CTRL 1 to determine the set ozone injection ratio D according to the expression D=aA+bT+cC+d. In the expression, a to d express a constant, respectively. Subsequently, the set injected ozone concn. O3CSP is determined based on the ozonated raw water flow rate from an ozonated raw water flowmeter FT1, the injected ozone gas flow rate from an injected ozone gas flowmeter FT2 and the D in a controller CTRL 3, and the injected ozone concn. in an ozone contact basin 4 is controlled to the O3CSP.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、有機物指標とし
て広く用いられ、かつオンサイト測定可能な紫外線吸光
度(以下UVと称す)をオゾン・活性炭処理の運転管理
用水質指標に適用したオゾン・活性炭処理プロセス用U
V計を使用したオゾン注入制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone / activated carbon treatment in which ultraviolet absorbance (hereinafter referred to as UV), which is widely used as an organic substance index and can be measured on site, is applied to a water quality index for operation management of the ozone / activated carbon treatment. U for process
The present invention relates to an ozone injection control method using a V meter.

【0002】[0002]

【従来の技術】近年、水道水源の水質悪化に伴い、高度
浄水処理が各所で導入されている。代表的な高度浄水処
理としてオゾン処理と活性炭処理の併用処理(以下、オ
ゾン・活性炭処理と称す)がある。オゾン・活性炭処理
の主な導入目的は、色度、異臭味の改善、細菌やウィル
スの除去、有機物質、微量汚染物質や溶解性金属の酸化
等といった従来の浄水処理では十分に対応できなかった
物質を処理し、安全で快適な水道水の供給を図ることで
ある。
2. Description of the Related Art In recent years, with the deterioration of water quality of tap water sources, advanced water purification treatments have been introduced in various places. As a typical advanced water purification treatment, there is a combined treatment of ozone treatment and activated carbon treatment (hereinafter referred to as ozone / activated carbon treatment). The main purpose of introducing ozone / activated carbon treatment was that conventional water purification treatments such as improvement of chromaticity, off-flavor, elimination of bacteria and viruses, oxidation of organic substances, trace contaminants and soluble metals, etc. could not be adequately handled. It is a matter of treating substances and providing safe and comfortable tap water.

【0003】そのため、オゾン・活性炭処理では、除去
対象物質が目的通り除去されているか、また原水の水質
変動に対して安定した処理水質が得られているか、とい
った除去対象物質の挙動を把握した上での運転管理が求
められている。さらに、オゾン処理では、除去対象物質
の除去効果を損なわない範囲でのオゾン注入率低減化
が、運転コストの節減、そして臭素酸イオン等のオゾン
処理副生成物の抑制の面から求められている。(参考文
献:第48回全国水道研究発表会講演集、512-513(199
7)「オゾン処理における臭素酸イオンの生成と抑制方
法」) これらの要望を実現するには、オゾン・活性炭処理工程
水中の除去対象物質の挙動をリアルタイムで監視し、そ
の監視結果をもとに処理の評価、オゾン注入制御を行
い、オゾン注入率の低減化を図ることが有効な手段であ
る。
Therefore, in the ozone / activated carbon treatment, the behavior of the substance to be removed, such as whether the substance to be removed is removed as intended, and whether the treated water quality is stable with respect to fluctuations in the quality of the raw water, is determined. Operation management is required. Furthermore, in the ozone treatment, a reduction in the ozone injection rate within a range that does not impair the removal effect of the removal target substance is required from the viewpoint of reducing operating costs and suppressing ozone treatment by-products such as bromate ions. . (References: Proceedings of the 48th National Water Supply Research Conference, 512-513 (199
7) "Methods for the generation and suppression of bromate ions in ozone treatment") To fulfill these demands, the behavior of the substances to be removed in the ozone / activated carbon treatment process water is monitored in real time, and based on the monitoring results. It is effective means to evaluate the treatment and control ozone injection to reduce the ozone injection rate.

【0004】しかし、実際には、除去対象物質の挙動を
直接把握した上でのオゾン・活性炭処理プロセスの監視
・制御はほとんど実施されていないのが現状である。そ
の理由は、除去対象物質をリアルタイムで監視すること
が難しいためである。除去対象物質の分析測定は可能で
あるが、簡便性に乏しく、リアルタイムで分析結果を得
ることができない。そのため、オゾン処理は、リアルタ
イムで測定可能な排オゾン濃度や溶存オゾン濃度を測定
し、これらのオゾン濃度指標から除去対象物質の処理状
況を間接的に把握することを前提に監視・制御されてい
るのが現状である。このようなオゾン濃度指標を用いた
オゾン処理制御方法として代表的なものに、排オゾン濃
度一定制御、溶存オゾン濃度一定制御等がある。
However, in practice, monitoring and control of the ozone / activated carbon treatment process based on directly grasping the behavior of the substance to be removed is hardly performed at present. The reason is that it is difficult to monitor the substance to be removed in real time. Analytical measurement of the substance to be removed is possible, but it is not easy to perform and cannot obtain an analysis result in real time. For this reason, ozone treatment is monitored and controlled on the premise that exhaust ozone concentration and dissolved ozone concentration, which can be measured in real time, are measured, and the treatment status of the substance to be removed is indirectly grasped from these ozone concentration indices. is the current situation. Typical examples of the ozone treatment control method using such an ozone concentration index include an exhaust ozone concentration constant control and a dissolved ozone concentration constant control.

【0005】[0005]

【発明が解決しようとする課題】排オゾン濃度や溶存オ
ゾン濃度といったオゾン濃度指標をもとにしたオゾン処
理の監視・制御方法は、除去対象物質の処理状況を直接
把握しておらず、除去対象物質が本当に目的どおり処理
されているかが分からない。特に、対象原水中の除去対
象物質に対して、オゾンが過剰注入状態なのか、注入不
足なのかの判断ができない。従って、オゾン濃度指標を
もとにした監視制御方法では、適正なオゾン注入率での
オゾン処理、オゾン注入率の低減化が難しい。
The method of monitoring and controlling ozone treatment based on ozone concentration indexes such as exhaust ozone concentration and dissolved ozone concentration does not directly grasp the state of treatment of the substance to be removed. I don't know if the substance is really being treated as intended. In particular, it is impossible to determine whether ozone is excessively injected or insufficiently injected with respect to the substance to be removed in the target raw water. Therefore, with the monitoring control method based on the ozone concentration index, it is difficult to perform ozone treatment at an appropriate ozone injection rate and reduce the ozone injection rate.

【0006】省エネルギが求められている現在、オゾン
処理においても、目的の処理効果を維持し、かつオゾン
製造に伴う電力消費量も出来る限り低減化されなければ
ならない。しかし、オゾン濃度指標をもとにした監視制
御方法では、省エネルギを前提としたプラントの運用が
期待できないのが現状の問題である。
At present, when energy saving is required, even in ozone treatment, it is necessary to maintain a desired treatment effect and to reduce the power consumption accompanying ozone production as much as possible. However, the current problem is that the monitoring and control method based on the ozone concentration index cannot be expected to operate the plant on the premise of energy saving.

【0007】この発明は、上記の事情に鑑みてなされた
もので、難分解性有機物の指標である紫外線吸光度を用
いて、オゾン・活性炭処理水の除去対象物質である難分
解性有機物を把握し、フィードフォワード制御とフィー
ドバック制御によりオゾン注入率を制御するオゾン注入
制御方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and uses the ultraviolet absorbance, which is an index of a hardly decomposable organic substance, to ascertain the hardly decomposable organic substance to be removed from the ozone / activated carbon treated water. It is another object of the present invention to provide an ozone injection control method for controlling an ozone injection rate by feedforward control and feedback control.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、被処理水をオゾン接触
池でオゾン注入処理する際に、オゾン接触池の溶存オゾ
ン濃度が一定となるようにオゾン注入率を制御する方法
において、前記被処理水の紫外線吸光度と水温を計測し
た後、前記オゾン注入率D(mg/L)を、下記式に被処
理水の紫外線吸光度A(abs/50mm)、被処理水の水温
T(℃)と溶存オゾン濃度一定制御設定値C(mg/L)
を代入して決定することを特徴とするものである。
According to the present invention, in order to achieve the above-mentioned object, a first aspect of the present invention provides a method for injecting ozone into an ozone-contacting pond, wherein the concentration of dissolved ozone in the ozone-contacting pond is reduced. In the method of controlling the ozone injection rate so as to be constant, after measuring the ultraviolet absorbance and the water temperature of the water to be treated, the ozone injection rate D (mg / L) is calculated by the following formula. (Abs / 50mm), water temperature T (° C) of treated water and dissolved ozone concentration constant control set value C (mg / L)
Is determined by substituting.

【0009】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第2発明は、前記オゾン注入率決定式で決定したオゾン
注入率を用いて、オゾン注入処理をフィードフォワード
制御することを特徴とするものである。
D = a.A + b.T + c.C + d where a, b, c, and d are constants. According to a second aspect of the present invention, the ozone injecting process is performed in a feedforward manner by using the ozone injecting rate determined by the formula for determining the ozone injecting rate. It is characterized by controlling.

【0010】第3発明は、第1発明で求めたオゾン注入
率を、オゾン接触池出口の溶存オゾン濃度と溶存オゾン
濃度一定制御設定値を用いてフィードバック補正するこ
とを特徴とするものである。
The third invention is characterized in that the ozone injection rate obtained in the first invention is feedback-corrected using the dissolved ozone concentration at the outlet of the ozone contact pond and the dissolved ozone concentration constant control set value.

【0011】第4発明は、前記オゾン注入率を用いたフ
ィードフォワード制御とフィードバック制御によりオゾ
ンを注入することを特徴とするものである。
According to a fourth aspect of the invention, ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0012】第5発明は、被処理水をオゾン接触池でオ
ゾン注入処理する際に、オゾン処理水の紫外線吸光度が
一定となるようにオゾン注入率を制御する方法におい
て、前記被処理水の紫外線吸光度と水温を計測した後、
下記式に被処理水の紫外線吸光度A(abs/50mm)、被
処理水の水温T(℃)と溶存オゾン濃度一定制御設定値
C(mg/L)としてC=0を代入して決定したオゾン注
入率D(mg/L)を、オゾン処理水紫外線吸光度とオゾ
ン処理水紫外線吸光度一定制御設定値を用いてフィード
バック補正で決定することを特徴とするものである。
A fifth invention is a method for controlling the ozone injection rate so that the ultraviolet ray absorbance of the ozone-treated water becomes constant when the water-to-be-treated is subjected to ozone injection in an ozone contact pond. After measuring the absorbance and water temperature,
Ozone determined by substituting C = 0 as the ultraviolet absorbance A (abs / 50 mm), the water temperature T (° C.) of the water to be treated, and the dissolved ozone concentration constant control set value C (mg / L) in the following formula: The injection rate D (mg / L) is determined by feedback correction using the ozone-treated water UV absorbance and the ozone-treated water UV absorbance constant control set value.

【0013】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第6発明は、前記フィードバック補正に際して溶存オゾ
ン濃度上限設定を付加したことを特徴とするものであ
る。
D = a.A + b.T + c.C + d where a, b, c, and d are constants. The sixth invention is characterized in that an upper limit of dissolved ozone concentration is added in the feedback correction.

【0014】第7発明は、前記オゾン注入率を用いたフ
ィードフォワード制御とフィードバック制御によりオゾ
ンを注入することを特徴とするものである。
According to a seventh aspect of the present invention, ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0015】第8発明は、被処理水をオゾン接触池でオ
ゾン注入処理する際に、オゾン処理水の過マンガン酸カ
リウム(KMnO4)消費量が一定となるようにオゾン
注入率を制御する方法において、前記被処理水の紫外線
吸光度と水温を計測した後、下記式に被処理水の紫外線
吸光度A(abs/50mm)、被処理水の水温T(℃)と溶
存オゾン濃度一定制御設定値C(mg/L)としてC=0
を代入して決定したオゾン注入率D(mg/L)を、オゾ
ン処理水KMnO4消費量推定値とKMnO4消費量一定
制御設定値を用いてフィードバック補正で決定すること
を特徴とするものである。
An eighth invention is a method for controlling the ozone injection rate such that the consumption of potassium permanganate (KMnO 4 ) in the ozone-treated water becomes constant when the water to be treated is subjected to ozone injection in an ozone contact pond. In the above, after measuring the ultraviolet absorbance and the water temperature of the water to be treated, the ultraviolet absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C are calculated by the following equations. (Mg / L) C = 0
Ozone injection rate D determined by substituting (mg / L), characterized in that to determine the feedback correction using the ozonated water KMnO 4 consumption estimate and the KMnO 4 consumption constant control setpoint is there.

【0016】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第9発明は、前記過マンガン酸カリウム(KMnO4
消費量推定値を、下記KMnO4消費量推定式KMを用
いて求めたことを特徴とするものである。
D = a.A + b.T + c.C + d, where a, b, c and d are constants. The ninth invention is directed to the potassium permanganate (KMnO 4 )
The estimated consumption value is obtained by using the following KMnO 4 consumption estimation formula KM.

【0017】 KM=a・A2+b・{1−(A2/A1)}+c 但し、A1:被処理水紫外線吸光度、A2:オゾン処理水
紫外線吸光度、a,b,c:定数 第10発明は、前記KMnO4消費量推定式と、リアル
タイム測定可能な被処理水紫外線吸光度とオゾン処理水
紫外線吸光度とを用いて、オゾン処理水KMnO4消費
量をリアルタイムに推定することを特徴とするものであ
る。
KM = a · A 2 + b · {1- (A 2 / A 1 )} + c, where A 1 : UV absorbance of water to be treated, A 2 : UV absorbance of ozone treated water, a, b, c: constants tenth invention, and the KMnO 4 consumption estimation equation, by using the real-time measurable treated water ultraviolet absorbance and ozone treated water UV absorbance, and wherein estimating the ozonated water KMnO 4 consumption in real time Is what you do.

【0018】第11発明は、前記オゾン処理水KMnO
4消費量を推定値としてリアルタイムで把握し、この推
定値をオゾン注入の制御指標として用いることを特徴と
するものである。
The eleventh invention is directed to the ozone-treated water KMnO.
(4) The method is characterized in that the consumption is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.

【0019】第12発明は、前記フィードバック補正に
際して、オゾン処理水溶存オゾン濃度上限設定を付加し
たことを特徴とするものである。
The twelfth invention is characterized in that an upper limit setting of the concentration of ozone-treated water-soluble ozone is added in the feedback correction.

【0020】第13発明は、前記オゾン注入率を用いた
フィードフォワード制御とフィードバック制御によりオ
ゾンを注入することを特徴とするものである。
A thirteenth invention is characterized in that ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0021】第14発明は、被処理水をオゾン接触池で
オゾン注入処理する際に、オゾン処理水のトリハロメタ
ン生成能(THMFP)が一定となるようにオゾン注入
率を制御する方法において、前記被処理水の紫外線吸光
度と水温を計測した後、下記式に被処理水の紫外線吸光
度A(abs/50mm)、被処理水の水温T(℃)と溶存オ
ゾン濃度一定制御設定値C(mg/L)としてC=0を代
入して決定したオゾン注入率D(mg/L)を、オゾン処
理水THMFP推定値とTHMFP一定制御設定値を用
いてフィードバック補正で決定することを特徴とするも
のである。
According to a fourteenth aspect, in the method for controlling the ozone injection rate so that the trihalomethane forming ability (THMFP) of the ozonized water becomes constant when the water to be treated is subjected to the ozone injection treatment in the ozone contact pond. After measuring the UV absorbance and the water temperature of the treated water, the UV absorbance A (abs / 50 mm) of the treated water, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C (mg / L) are calculated by the following formulas. ), The ozone injection rate D (mg / L) determined by substituting C = 0 is determined by feedback correction using the estimated value of the ozone-treated water THMFP and the THMFP constant control set value. .

【0022】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第15発明は、前記オゾン処理水THMFP推定値を、
下記THMFP推定式THを用いて求めたことを特徴と
するものである。
D = aA + bT + cC + d where a, b, c, and d are constants. The fifteenth aspect of the present invention relates to
It is characterized by using the following THMFP estimation equation TH.

【0023】TH=a・A+b・T+c 但し、A:オゾン処理水の紫外線吸光度、T:オゾン処
理水の水温、a,b,c:定数 第16発明は、前記THMFP推定式と、リアルタイム
測定可能なオゾン処理水紫外線吸光度、水温を用いて、
オゾン処理水THMFPをリアルタイムに推定すること
を特徴とするものである。
TH = a · A + b · T + c where A: UV absorbance of ozonized water, T: water temperature of ozonated water, a, b, c: constants. The sixteenth aspect of the invention is based on the THMFP estimation formula and real-time measurement. Ozone treated water using UV absorbance, water temperature,
The ozone-treated water THMFP is estimated in real time.

【0024】第17発明は、前記オゾン処理水THMF
Pを推定値としてリアルタイムで把握し、この推定値を
オゾン注入の制御指標として用いることを特徴とするも
のである。
The seventeenth invention is directed to the ozone-treated water THMF.
P is grasped in real time as an estimated value, and this estimated value is used as a control index for ozone injection.

【0025】第18発明は、前記フィードバック補正に
際して、オゾン処理水溶存オゾン濃度上限設定を付加し
たことを特徴とするものである。
An eighteenth aspect of the present invention is characterized in that an upper limit setting of the concentration of ozone-treated water-soluble ozone is added in the feedback correction.

【0026】第19発明は、前記オゾン注入率を用いた
フィードフォワード制御とフィードバック制御によりオ
ゾンを注入することを特徴とするものである。
The nineteenth invention is characterized in that ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0027】第20発明は、被処理水をオゾン接触池で
オゾン注入処理する際に、活性炭処理水の紫外線吸光度
が一定となるようにオゾン注入率を制御する方法におい
て、前記被処理水の紫外線吸光度と水温を計測した後、
下記式に被処理水の紫外線吸光度A(abs/50mm)、被
処理水の水温T(℃)と溶存オゾン濃度一定制御設定値
C(mg/L)としてC=0を代入して決定したオゾン注
入率D(mg/L)を、活性炭処理水紫外線吸光度と紫外
線吸光度一定制御設定値を用いてフィードバック補正で
決定することを特徴とするものである。
According to a twentieth aspect of the present invention, there is provided a method for controlling the ozone injection rate so that the ultraviolet absorption of the activated carbon treated water becomes constant when the treated water is subjected to the ozone injection in the ozone contact pond. After measuring the absorbance and water temperature,
Ozone determined by substituting C = 0 as the ultraviolet absorbance A (abs / 50 mm), the water temperature T (° C.) of the water to be treated, and the dissolved ozone concentration constant control set value C (mg / L) in the following formula: The injection rate D (mg / L) is determined by feedback correction using the ultraviolet ray absorbance of the activated carbon treated water and the ultraviolet ray absorbance constant control set value.

【0028】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第21発明は、前記フィードバック補正に際して、オゾ
ン処理水溶存オゾン濃度上限設定を付加したことを特徴
とするものである。
D = a.A + b.T + c.C + d where a, b, c, and d are constants. The twenty-first invention is characterized in that an upper limit setting of the ozone concentration in the aqueous solution of ozone treatment is added in the feedback correction. It is.

【0029】第22発明は、前記オゾン注入率を用いた
フィードフォワード制御とフィードバック制御によりオ
ゾンを注入することを特徴とするものである。
A twenty-second invention is characterized in that ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0030】第23発明は、被処理水をオゾン接触池で
オゾン注入処理する際に、活性炭処理水の過マンガン酸
カリウム(KMnO4)消費量が一定となるようにオゾ
ン注入率を制御する方法において、前記被処理水の紫外
線吸光度と水温を計測した後、下記式に被処理水の紫外
線吸光度A(abs/50mm)、被処理水の水温T(℃)と
溶存オゾン濃度一定制御設定値C(mg/L)としてC=
0を代入して決定したオゾン注入率D(mg/L)を、活
性炭処理水KMnO4消費量推定値とKMnO4消費量一
定制御設定値を用いてフィードバック補正で決定するこ
とを特徴とするものである。
A twenty-third aspect of the present invention is a method for controlling the ozone injection rate so that the consumption of potassium permanganate (KMnO 4 ) of the activated carbon treated water becomes constant when the water to be treated is subjected to ozone injection in an ozone contact pond. In the above, after measuring the ultraviolet absorbance and the water temperature of the water to be treated, the ultraviolet absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C are calculated by the following equations. (Mg / L) as C =
Ozone injection rate was determined by substituting D (mg / L) 0, which is characterized by determining at the feedback correction using the activated carbon treated water KMnO 4 consumption estimate and the KMnO 4 consumption constant control setpoint It is.

【0031】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第24発明は、前記活性炭処理水KMnO4消費量推定
値を、下記活性炭処理水KMnO4消費量推定式KM1
を用いて求めたことを特徴とするものである。
D = a · A + b · T + c · C + d where a, b, c and d are constants. In the twenty-fourth invention, the above-mentioned estimated value of the KMnO 4 consumption of the activated carbon treated water is calculated by the following equation for estimating the KMnO 4 consumption of the activated carbon treated water. KM1
It is characterized by having been obtained by using.

【0032】KM1=a・A1+b 但し、A1:活性炭処理水の紫外線吸光度、a,b:定
数 第25発明は、前記活性炭処理水KMnO4消費量推定
式と、リアルタイム測定可能な活性炭処理水の紫外線吸
光度を用いて、活性炭処理水KMnO4消費量をリアル
タイムに推定することを特徴とするものである。
KM1 = a · A1 + b where A1: UV absorbance of activated carbon treated water, a, b: constant The twenty-fifth invention is based on the above equation for estimating KMnO 4 consumption of activated carbon treated water and the ultraviolet ray of activated carbon treated water which can be measured in real time. It is characterized in that the consumption of activated carbon-treated water KMnO 4 is estimated in real time using the absorbance.

【0033】第26発明は、前記活性炭処理水KMnO
4消費量を推定値としてリアルタイムで把握し、この推
定値をオゾン注入の制御指標として用いることを特徴と
するものである。
The twenty-sixth invention is directed to the activated carbon treated water KMnO.
(4) The method is characterized in that the consumption is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.

【0034】第27発明は、前記フィードバック補正に
際して、オゾン処理水溶存オゾン濃度上限設定を付加し
たことを特徴とするものである。
A twenty-seventh aspect of the present invention is characterized in that an upper limit setting of the ozone concentration in the aqueous solution of ozone treatment is added in the feedback correction.

【0035】第28発明は、前記オゾン注入率を用いた
フィードフォワード制御とフィードバック制御によりオ
ゾンを注入することを特徴とするものである。
The twenty-eighth invention is characterized in that ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0036】第29発明は、被処理水をオゾン接触池で
オゾン注入処理する際に、活性炭処理水のトリハロメタ
ン生成能(THMFP)が一定となるようにオゾン注入
率を制御する方法において、前記被処理水の紫外線吸光
度と水温を計測した後、下記式に被処理水の紫外線吸光
度A(abs/50mm)、被処理水の水温T(℃)と溶存オ
ゾン濃度一定制御設定値C(mg/L)としてC=0を代
入して決定したオゾン注入率D(mg/L)を、活性炭処
理水THMFP推定値とTHMFP一定制御設定値を用
いてフィードバック補正で決定することを特徴とするも
のである。
A twenty-ninth aspect of the present invention relates to a method for controlling the ozone injection rate so that the trihalomethane generation ability (THMFP) of the activated carbon treated water becomes constant when the water to be treated is subjected to ozone injection in an ozone contact pond. After measuring the UV absorbance and the water temperature of the treated water, the UV absorbance A (abs / 50 mm) of the treated water, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C (mg / L) are calculated by the following formulas. ), The ozone injection rate D (mg / L) determined by substituting C = 0 is determined by feedback correction using the THMFP estimated value of the activated carbon treated water and the THMFP constant control set value. .

【0037】D=a・A+b・T+c・C+d 但し、a,b,c,dは定数 第30発明は、前記活性炭処理水THMFP推定値を、
下記活性炭処理水THMFP推定式TH1を用いて求め
たことを特徴とするものである。
D = a · A + b · T + c · C + d where a, b, c, and d are constants.
It is characterized by being obtained using the following activated carbon treated water THMFP estimation formula TH1.

【0038】TH1=a・A2+b・T2+c 但し、A2:活性炭処理水の紫外線吸光度、T2:活性
炭処理水の水温、a,b,c:定数 第31発明は、活性炭処理水THMFP推定式と、リア
ルタイム測定可能な活性炭処理水の紫外線吸光度と水温
を用いて、活性炭処理水THMFPをリアルタイムに推
定することを特徴とするものである。
TH1 = a.A2 + b.T2 + c where A2 is the ultraviolet absorbance of the activated carbon treated water, T2 is the temperature of the activated carbon treated water, a, b, and c are constants. The present invention is characterized in that the activated carbon treated water THMFP is estimated in real time using the measurable ultraviolet absorbance and the water temperature of the activated carbon treated water.

【0039】第32発明は、前記活性炭処理水THMF
Pを推定値としてリアルタイムで把握し、この推定値を
オゾン注入の制御指標として用いることを特徴とするも
のである。
A thirty-second invention is directed to the activated carbon treated water THMF.
P is grasped in real time as an estimated value, and this estimated value is used as a control index for ozone injection.

【0040】第33発明は、前記フィードバック補正に
際して、オゾン処理水溶存オゾン濃度上限設定を付加し
たことを特徴とするものである。
A thirty-third aspect of the present invention is characterized in that an ozone treatment aqueous ozone concentration upper limit setting is added in the feedback correction.

【0041】第34発明は、前記オゾン注入率を用いた
フィードフォワード制御とフィードバック制御によりオ
ゾンを注入することを特徴とするものである。
A thirty-fourth invention is characterized in that ozone is injected by feedforward control and feedback control using the ozone injection rate.

【0042】[0042]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明する。図1は、湖沼を水源とするオゾン
・活性炭処理実証プラントにプロセス用∪V計(紫外線
吸光度計)を設置した構成説明図で、この図1によりオ
ゾン・活性炭処理工程水の紫外線吸光度UVを連続測定
する。その測定後、∪Vによるリアルタイムでのオゾン
・活性炭処理工程水の水質の把握、それを活用した制御
による処理の最適化を図ることを目的として、除去対象
である過マンガン酸カリウム消費量、トリハロメタン生
成能といった難分解性有機物指標のUVを用いた推定
と、そのUVを用いたオゾン注入制御式について、実証
プラントでのUV測定データをもとに、検討を行った結
果を以下に示す。
Embodiments of the present invention will be described below with reference to the drawings. Fig. 1 is an explanatory diagram showing the construction of an ozone / activated carbon treatment demonstration plant using a lake as a water source and a process ∪V meter (ultraviolet absorbance meter) installed. Measure. After the measurement, in order to grasp the water quality of the ozone / activated carbon treatment process water in real time using ΔV, and to optimize the treatment by using the control, the consumption of potassium permanganate and trihalomethane The results of a study on the estimation of the insoluble organic index such as the production ability using UV and the ozone injection control formula using the UV based on the UV measurement data at the demonstration plant are shown below.

【0043】まず、図1について述べるに、1は湖水等
からの原水が導入される原水槽で、この原水槽1の原水
は凝集沈殿池2に導かれる。このとき、原水は凝集剤
(PAC)を通して凝集沈殿池2に導かれる。凝集沈殿池
2の処理水は前砂ろ過池3に供給されてろ過される。ろ
過水は、図示しないオゾン発生器からオゾンが供給され
るオゾン接触池4に導入される。このオゾン接触池4
は、第1オゾン接触槽4a、第2オゾン接触槽4b、第
1滞留槽4cおよび第2滞留槽4dから構成されてい
る。オゾン接触池4でオゾン処理された処理水は、活性
炭接触池5に導かれた後、混和池6を経て後砂ろ過池7
に供給された後に、水道水となる。なお、混和池6に
は、NaClOが供給される。
First, referring to FIG. 1, reference numeral 1 denotes a raw water tank into which raw water from lake water or the like is introduced. Raw water in the raw water tank 1 is guided to a coagulation sedimentation tank 2. At this time, the raw water is guided to the coagulation sedimentation basin 2 through the coagulant (PAC). The treated water of the coagulation sedimentation basin 2 is supplied to the front sand filtration basin 3 and filtered. The filtered water is introduced into an ozone contact pond 4 to which ozone is supplied from an ozone generator (not shown). This ozone contact pond 4
Is composed of a first ozone contact tank 4a, a second ozone contact tank 4b, a first retention tank 4c, and a second retention tank 4d. The treated water subjected to ozone treatment in the ozone contact pond 4 is guided to the activated carbon contact pond 5, passes through the mixing pond 6, and then passes through the back sand filter pond 7.
After being supplied to the city, it becomes tap water. The mixing pond 6 is supplied with NaClO.

【0044】図1において、前砂ろ過池3の流出口に
は、プロセス用UV計(低濃度UV計(50mmセル))U
V1が設けられ、活性炭接触池5の流出口には、プロセ
ス用UV計(低濃度UV計(100mmセル))UV2が設
けられる。UVO3はプロセス用UV計(オゾン処理水
用UV計(100mmセル))で、このUVO3は図中〜
で示す部位を選択して測定するものである。部位は第
2オゾン接触槽4bの出口、部位は第1滞留槽4cの
出口、部位は第2滞留槽4dの出口付近である。
In FIG. 1, a process UV meter (low concentration UV meter (50 mm cell)) U
A process UV meter (low-concentration UV meter (100 mm cell)) UV2 is provided at the outlet of the activated carbon contact pond 5. UVO 3 is a process for UV meter (ozone treatment of water for UV meter (100 mm cell)), the UVO 3 during drawing-
Is selected and measured. The part is the outlet of the second ozone contact tank 4b, the part is the outlet of the first retention tank 4c, and the part is near the outlet of the second retention tank 4d.

【0045】上記のように構成された実証プラントでの
UV測定データをもとに検討した結果を次に述べる。
The results of a study based on the UV measurement data in the demonstration plant configured as described above will be described below.

【0046】結果1:UVを用いた有機物指標の推定 オゾン処理原水(砂ろ過水)、オゾン処理水、活性炭処
理水の各工程水の過マンガン酸カリウム消費量(以下K
Mn04消費量と称す)、トリハロメタン生成能(以下
THMFPと称す)の推定式が得られた。その推定式を
以下に示す。UVは波長253.7nmの吸光度であり、プロ
セス用UV計で測定した。
Result 1: Estimation of organic matter index using UV The consumption amount of potassium permanganate (hereinafter referred to as K) in each process water of ozone-treated raw water (sand filtration water), ozone-treated water and activated carbon-treated water
Estimation formulas for MnO 4 consumption) and trihalomethane generating ability (hereinafter referred to as THMFP) were obtained. The estimation formula is shown below. UV is the absorbance at a wavelength of 253.7 nm and was measured with a process UV meter.

【0047】 <KMn04消費量の推定式> C1=a1・A1+b1 (1) C2=a2・A2+b2・{1−(A2/A1)}+c2 (2) C3=a3・A3+b3 (3) ここで、 C1 :オゾン処理原水のKMn04消費量(mg/L) A1 :オゾン処理原水のUV(abs/50mm) C2 :オゾン処理水のKMn04消費量(mg/L) A2 :オゾン処理水のUV(abs/50mm) C3 :活性炭処理水のKMn04消費量(mg/L) A3 :活性炭処理水のUV(abs/50mm) a1,a2,a3,b1,b2,b3,c2 :定数 <THMFPの推定式> C4=a4・A4+b4・T4+c4・B4+d4 (4) C5=a5・A5+b5・T5+c5 (5) ここで、 C4 :オゾン処理原水のTHMFP(μg/L) A4 :オゾン処理原水のUV(abs/50mm) T4 :オゾン処理原水の水温(℃) B4 :臭化物イオン(Br-)濃度(mg/L) C5 :オゾン処理水、活性炭処理水のTHMFP(μg
/L) A5 :オゾン処理水、活性炭処理水のUV(abs/50m
m) T5 :オゾン処理水、活性炭処理水の水温(℃) a4,b4、c4,d4,a5,b5,c5 :定数 以上の推定式はいずれも相関係数(もしくは重相関係
数)が高く、UV、水温、臭化物イオン濃度といった説
明変数を用いた上記式(1)から式(5)を用いて、オ
ゾン・活性炭処理工程水の過マンガン酸カリウム消費
量、トリハロメタン生成能といった難分解性有機物指標
が精度よく推定できることが分かった。
[0047] <KMn0 4 consumption estimation formula> C 1 = a 1 · A 1 + b 1 (1) C 2 = a 2 · A 2 + b 2 · {1- (A 2 / A 1)} + c 2 ( 2) C 3 = a 3 · a 3 + b 3 (3) wherein, C 1: KMn0 4 consumption of ozone treatment raw water (mg / L) a 1: ozone treatment raw water UV (abs / 50mm) C 2 : KMn0 4 consumption of ozone treated water (mg / L) a 2: ozone treated water UV (abs / 50mm) C 3 : KMn0 4 consumption of the activated carbon-treated water (mg / L) a 3: activated carbon treated water UV (Abs / 50 mm) a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 2 : constant <Estimation formula of THMFP> C 4 = a 4 · A 4 + b 4 · T 4 + c 4 · B 4 + d 4 (4) C 5 = a 5 · A 5 + b 5 · T 5 + c 5 (5) where C 4 : THMFP (μg / L) of ozonized raw water A 4 : UV (abs) of ozonized raw water / 50mm) T 4: ozone treatment Raw water temperature (℃) B 4: bromide ion (Br -) Concentration (mg / L) C 5: ozonated water, the activated carbon treated water THMFP ([mu] g
/ L) A 5: ozone treated water, the activated carbon-treated water UV (abs / 50m
m) T 5 : Water temperature (° C.) of ozone-treated water and activated carbon-treated water a 4 , b 4 , c 4 , d 4 , a 5 , b 5 , c 5 : constants The above estimation formulas are all correlation coefficients ( Or multiple correlation coefficients), and using the above-described equations (1) to (5) using explanatory variables such as UV, water temperature, and bromide ion concentration, the potassium permanganate consumption of the ozone / activated carbon treatment process water, It was found that the index of hardly decomposable organic matter such as trihalomethane formation ability can be estimated with high accuracy.

【0048】結果2:UVを用いたオゾン注入制御式 接触槽と滞留槽から構成されるオゾン接触池において、
接触槽出口の溶存オゾン濃度一定制御で運転したオゾン
注入率Dは、オゾン処理原水UV、水温と溶存オゾン濃
度を用いた重回帰式(重相関係数=0.99)で表すことが
出来た。
Result 2: In an ozone contact pond composed of an ozone injection control type contact tank using UV and a retention tank,
The ozone injection rate D operated at the constant dissolved ozone concentration control at the outlet of the contact tank could be expressed by a multiple regression equation (multiple correlation coefficient = 0.99) using the ozone-treated raw water UV, the water temperature, and the dissolved ozone concentration.

【0049】 D=a5.5・A5.5+b5.5・T5.5+c5.5・C5.5+d5.5 (5.5) D :オゾン注入率(mg/L) A5.5 :オゾン処理原水のUV(abs/50mm) T5.5 :オゾン処理原水の水温(℃) C5.5 :接触槽出口の溶存オゾン濃度(mg/L) a5.5,b5.5,c5.5,d5.5 :定数 上記式(5.5)は溶存オゾン濃度の項であるC5.5を溶
存オゾン濃度一定制御設定値に置き換えることにより、
オゾン注入率フィードフォワード制御として使用するこ
とができる。その制御式を下記に示す。
D = a 5.5 · A 5.5 + b 5.5 · T 5.5 + c 5.5 · C 5.5 + d 5.5 (5.5) D: Ozone injection rate (mg / L) A 5.5 : UV of the ozonized raw water (abs / 50 mm) T 5.5 : Water temperature of ozonized raw water (° C) C 5.5 : Dissolved ozone concentration at the outlet of the contact tank (mg / L) a 5.5 , b 5.5 , c 5.5 , d 5.5 : constant The above equation (5.5) is the dissolved ozone concentration By replacing C 5.5 , which is a term, with the dissolved ozone concentration constant control set value,
Ozone injection rate can be used as feed forward control. The control formula is shown below.

【0050】 D=a6・A6+b6・T6+c6・C6+d6 (6) D :オゾン注入率(mg/L) A6 :オゾン処理原水のUV(abs/50mm) T6 :オゾン処理原水の水温(℃) C6 :溶存オゾン濃度一定制御設定値(mg/L) a6,b6,c6,d6 :定数 上記式(6)に、オゾン処理原水のUV、水温の計測値
と、溶存オゾン濃度一定制御設定値を代入することによ
り、フィードフォワード制御用オゾン注入率が分かる。
D = a 6 · A 6 + b 6 · T 6 + c 6 · C 6 + d 6 (6) D: Ozone injection rate (mg / L) A 6 : UV (abs / 50 mm) of ozonized raw water T 6 : Water temperature of ozonized raw water (° C) C 6 : Dissolved ozone concentration constant control set value (mg / L) a 6 , b 6 , c 6 , d 6 : constant By substituting the measured value of the water temperature and the set value of the dissolved ozone concentration constant control, the ozone injection rate for feedforward control can be determined.

【0051】上記結果に基づいたこの発明は、難分解性
有機物の指標として広く用いられている紫外線吸光度を
用いて、オゾン・活性炭処理水の除去対象物質のひとつ
である難分解性有機物を把握して、オゾン注入率を制御
する方法である。
The present invention based on the above results uses the ultraviolet absorbance, which is widely used as an index of the hardly decomposable organic matter, to identify the hardly decomposable organic matter which is one of the substances to be removed from the ozone / activated carbon treated water. This is a method of controlling the ozone injection rate.

【0052】従来は、オゾン処理水と活性炭処理水の処
理水一定制御についてのものであり、フィードバック制
御のみによるものであった。今回の発明は、上記実施結
果に基づきフィードフォワード制御とフィードバック制
御の組み合せ制御である点が従来とは異なるものであ
る。
Conventionally, it is about the constant control of the treated water of the ozonized water and the activated carbon treated water, and is based only on the feedback control. The present invention is different from the prior art in that the present invention is based on a combination of feedforward control and feedback control based on the above-described implementation results.

【0053】以下この発明の実施の形態について説明す
る。
Hereinafter, embodiments of the present invention will be described.

【0054】<第1形態:UVを用いたオゾン注入率フ
ィードフォワード制御>この第1形態の制御は、オゾン
処理原水のUV、水温と溶存オゾン濃度設定値と上記式
(6)を用いて、オゾン注入率を決定する方法(フィー
ドフォワード(FF)制御)である。
<First Embodiment: Feed Forward Control of Ozone Injection Rate Using UV> The control of this first embodiment is based on the UV, water temperature, dissolved ozone concentration set value of the ozonized raw water, and the above equation (6). This is a method for determining the ozone injection rate (feed forward (FF) control).

【0055】図2は第1形態の構成説明図で、この第1
形態においては、第1、第2オゾン接触槽4a,4bと
第1、第2滞留槽4c,4dで構成されるオゾン接触池
4が次のように制御される。なお、図2において、CT
RL1〜3は調節器、O3Gはオゾン発生器、O3CTは
注入オゾン濃度計、FT2は注入オゾンガス流量計、U
VTはUV計、WTは温度計、FT1はオゾン処理原水
流量計である。
FIG. 2 is an explanatory view of the structure of the first embodiment.
In the embodiment, the ozone contact pond 4 including the first and second ozone contact tanks 4a and 4b and the first and second retention tanks 4c and 4d is controlled as follows. In FIG. 2, CT
RL1~3 is controller, O 3 G ozone generator, O 3 CT is injected ozone densitometer, FT2 is injected ozone gas flow meter, U
VT is a UV meter, WT is a thermometer, and FT1 is an ozonated raw water flow meter.

【0056】上記のように構成された第1形態におい
て、∪V計UVTと温度計WTでオゾン処理原水のU
V、水温をそれぞれ連続測定する。このように連続測定
することによって、第1形態の制御は、式(6)のよう
に、高精度にオゾン注入率が推定できる場合において適
用できるようになる。
In the first embodiment configured as described above, the ozone-treated raw water U is measured by the ΔV meter UVT and the thermometer WT.
V and the water temperature are each continuously measured. By performing the continuous measurement in this manner, the control of the first embodiment can be applied in a case where the ozone injection rate can be estimated with high accuracy as shown in Expression (6).

【0057】上記第1形態の制御は次のように行われ
る。まず、オゾン処理原水UV、水温の原水水質計測信
号と溶存オゾン濃度一定制御設定値DO3SPが調節器
CTRL1に入力信号として与えられ、式(6)により
オゾン注入率設定値DSPが決定される。その後、調節
器CTRL2では、FT1からのオゾン処理原水流量、
FT2からの注入オゾンガス流量、CTRL1で決定さ
れたDSPから注入オゾン濃度設定値O3CSPが決定
される。そして、オゾン接触池4の注入オゾン濃度が、
CTRL2で決定された注入オゾン濃度設定値O3CS
Pになるように制御される。オゾン接触池4に流入する
オゾン処理原水の水質を用いたオゾン注入率FF制御を
適用することによって、原水水質の変動に対しても迅速
なオゾン注入が可能となる。
The control of the first embodiment is performed as follows. First, the ozone-treated raw water UV, the raw water quality measurement signal of the water temperature, and the dissolved ozone concentration constant control set value DO 3 SP are given as input signals to the controller CTRL1, and the ozone injection rate set value DSP is determined by equation (6). . After that, in the controller CTRL2, the flow rate of the ozonized raw water from the FT1,
The injection ozone concentration set value O 3 CSP is determined from the flow rate of the injected ozone gas from the FT 2 and the DSP determined by the CTRL 1. Then, the injected ozone concentration of the ozone contact pond 4 becomes
Injection ozone concentration set value O 3 CS determined by CTRL2
It is controlled to be P. By applying the ozone injection rate FF control using the water quality of the ozonized raw water flowing into the ozone contact pond 4, rapid ozone injection can be performed even when the raw water quality changes.

【0058】上記のように第1形態では、流入するオゾ
ン処理原水のUV、水温といった水質項目と溶存オゾン
濃度設定値、そしてこれらを説明変数とするオゾン注入
率決定式を用いて、必要なオゾン注入率が識別可能にな
る。また、原水水質の変動に対しても迅速なオゾン注入
が可能となる利点がある。
As described above, in the first embodiment, the necessary ozone is obtained by using the water quality items such as the UV and the water temperature of the inflowing ozone-treated raw water, the dissolved ozone concentration set value, and the ozone injection rate determination formula using these as explanatory variables. The injection rate becomes identifiable. In addition, there is an advantage that the ozone can be quickly injected even when the raw water quality changes.

【0059】<第2形態:溶存オゾン濃度一定制御>第
2形態は、オゾン処理原水のUV、水温と溶存オゾン濃
度一定制御設定値と上記式(6)を用いて、オゾン注入
率を決定する方法(フィードフォワード(FF)制御)
と、オゾン処理水溶存オゾン濃度と溶存オゾン濃度一定
制御設定値を比較して、オゾン注入率を修正する方法
(フィードバック(FB)制御)の組み合わせによる制
御である。
<Second Embodiment: Dissolved Ozone Concentration Constant Control> In the second embodiment, the ozone injection rate is determined using the UV, water temperature, dissolved ozone concentration constant control set value of the ozonized raw water, and the above equation (6). Method (feed forward (FF) control)
The control is a combination of a method (feedback (FB) control) for correcting the ozone injection rate by comparing the ozone treatment aqueous ozone concentration with the dissolved ozone concentration constant control set value.

【0060】図3は第2形態の構成説明図で、第1形態
と同一部分には同一符号を付して説明する。図3におい
て、第2形態は、オゾン接触池4、調節器CTRL1,
2,3、オゾン発生器O3G、注入オゾン濃度計O3
T、注入オゾンガス流量計FT2、UV計UVT、温度
計WT、オゾン処理原水流量計FT1、溶存オゾン濃度
計DO3Tで構成される。UV計UVT、温度計WT
で、オゾン処理原水のUV、水温をそれぞれ連続測定す
る。溶存オゾン濃度計DO3Tでオゾン処理水の溶存オ
ゾン濃度を連続測定する。
FIG. 3 is an explanatory view of the configuration of the second embodiment. The same parts as those of the first embodiment are denoted by the same reference numerals and described. In FIG. 3, the second mode is an ozone contact pond 4, a controller CTRL 1,
2,3, ozone generator O 3 G, injecting ozone densitometer O 3 C
T, injection ozone gas flow meter FT2, UV meter UVT, thermometer WT, ozone-treated raw water flow meter FT1, and dissolved ozone concentration meter DO 3 T. UV meter UVT, thermometer WT
Then, UV and water temperature of the ozonized raw water are continuously measured. The dissolved ozone concentration is continuously measured with a dissolved ozone concentration meter DO 3 T.

【0061】調節器CTRL1のFF制御部では、オゾ
ン処理原水UV、水温の水質計測信号と溶存オゾン濃度
一定制御設定値DO3SPが入力信号として与えられ、
式(6)によりFF制御用オゾン注入率(以下、D1と
する)が決定される。一方、調節器CTRL1のFB制
御部では、溶存オゾン濃度一定制御設定値DO3SPと
オゾン処理水溶存オゾン濃度の計測信号が入力信号とし
て与えられ、それらの偏差からFB制御用オゾン注入率
(以下、D2とする)が決定される。
The FF controller of the controller CTRL1 receives as input signals the ozone-treated raw water UV, the water temperature measurement signal of the water temperature, and the dissolved ozone concentration constant control set value DO 3 SP,
The ozone injection rate for FF control (hereinafter, referred to as D1) is determined by equation (6). On the other hand, in the FB control unit of the controller CTRL1, a dissolved ozone concentration constant control set value DO 3 SP and a measurement signal of the ozone concentration of the dissolved ozone solution are given as input signals. , D2) are determined.

【0062】FF制御部の出力D1とFB制御部の出力
D2を加えて、組み合わせ制御によるオゾン注入率設定
値DSPが決定される。調節器CTRL2では、オゾン
処理原水流量、注入オゾンガス流量、CTRL1で決定
されたDSPから注入オゾン濃度O3CSPが決定され
る。そして、オゾン接触池4の注入オゾン濃度が、CT
RL2で決定されたO3CSPになるように制御され
る。
The output D1 of the FF control unit and the output D2 of the FB control unit are added to determine the ozone injection rate set value DSP by the combination control. In the controller CTRL2, the injected ozone concentration O 3 CSP is determined from the ozone-treated raw water flow rate, the injected ozone gas flow rate, and the DSP determined by CTRL1. Then, the concentration of ozone injected into the ozone contact pond 4 is CT
It is controlled so as to become O 3 CSP determined by RL2.

【0063】FB制御に、流入するオゾン処理原水の水
質を用いたオゾン注入率FF制御を組み合わせることに
よって、原水水質の変動に対しても迅速なオゾン注入が
可能となり、FB制御単独時に比べて処理の安定性向上
が期待できるようになる。
By combining the FB control with the ozone injection rate FF control using the quality of the inflowing ozone-treated raw water, rapid ozone injection can be performed even when the quality of the raw water is fluctuated. Can be expected to improve stability.

【0064】上記第2形態では、次のような効果が得ら
れる。 (a) 流入するオゾン処理原水のUV、水温といった
水質項目と溶存オゾン濃度設定値、そしてこれらを説明
変数とするオゾン注入率決定式(式(6))を用いて、
オゾン処理原水の水質に必要なオゾン注入率がわかる。 (b)式(6)を用いたオゾン注入率に基づき、原水水
質の変動に対しても迅速なオゾン注入が可能となる。 (c)式(6)を用いたオゾン注入率を、現溶存オゾン
濃度測定値に基づいたフィードバック制御項を用いて補
正することにより、安定したオゾン処理を実現するオゾ
ン注入率が決定できる。 (d)溶存オゾン濃度一定フィードバック制御に、流入
するオゾン処理原水の水質を用いたオゾン注入率フィー
ドフォワード制御を組み合わせたオゾン注入フィードフ
ォワード・フィードバック組み合わせ制御によって、原
水水質の変動に対しても迅速なオゾン注入が可能とな
り、かつフィードバック制御単独時に比べて処理の安定
性向上が期待できるようになる。
In the second embodiment, the following effects can be obtained. (A) Using the water quality items such as UV and water temperature of the incoming ozonized raw water, the dissolved ozone concentration set value, and the ozone injection rate determination formula (formula (6)) using these as explanatory variables,
The ozone injection rate necessary for the quality of the ozonized raw water can be found. (B) Based on the ozone injection rate using the equation (6), quick ozone injection can be performed even when the raw water quality changes. (C) By correcting the ozone injection rate using the equation (6) using a feedback control term based on the measured value of the present dissolved ozone concentration, the ozone injection rate that realizes stable ozone treatment can be determined. (D) Ozone injection feed-forward combined feed-forward control combining the dissolved ozone concentration constant feedback control with the ozone injection rate feed-forward control using the quality of the inflowing ozone-treated raw water enables rapid response to fluctuations in raw water quality. Ozone injection can be performed, and improvement in processing stability can be expected as compared with the case where feedback control is performed alone.

【0065】<第3形態:オゾン処理水UV一定制御
(溶存オゾン濃度上限設定付き)>第3形態は、オゾン
処理原水のUV、水温と溶存オゾン濃度一定制御設定値
と上記式(6)を用いて、オゾン注入率を決定する方法
(フィードフォワード(FF)制御)とオゾン処理水U
V一定制御設定値とオゾン処理水UVを比較して、オゾ
ン注入率を修正する方法(フィードバック(FB)制
御)の組み合わせ制御である。
<Third Embodiment: Ozonized Water UV Constant Control (with Dissolved Ozone Concentration Upper Limit Setting)> In the third embodiment, the UV, water temperature, dissolved ozone concentration constant control set value of the ozonized raw water and the above equation (6) are calculated. To determine the ozone injection rate (feed forward (FF) control)
This is a combination control of a method (feedback (FB) control) of correcting the ozone injection rate by comparing the V constant control set value with the ozone-treated water UV.

【0066】図4は第3形態を示す構成説明図で、第1
形態と同一部分には同一符号を付して説明する。図4に
おいて、第3形態は、オゾン接触池4、調節器CTRL
1,2,3、オゾン発生器O3G、注入オゾン濃度計O3
CT、注入オゾンガス流量計FT2、オゾン処理原水用
UV計UVT、温度計WT、オゾン処理原水流量計FT
1、溶存オゾン濃度計DO3T、オゾン処理水用UV計
UVO3Tで構成される。
FIG. 4 is a structural explanatory view showing a third embodiment.
The same parts as those in the embodiment will be described with the same reference numerals. In FIG. 4, a third mode is an ozone contact pond 4, a controller CTRL.
1, 2, 3, ozone generator O 3 G, injected ozone concentration meter O 3
CT, injection ozone gas flow meter FT2, ozone-treated raw water UV meter UVT, thermometer WT, ozone-treated raw water flow meter FT
1. It consists of a dissolved ozone concentration meter DO 3 T and a UV meter UVO 3 T for ozonated water.

【0067】オゾン処理原水用UV計UVT、温度計W
Tでオゾン処理原水のUV、水温をそれぞれ連続測定す
る。オゾン処理水用UV計UVT、溶存オゾン濃度計D
3Tでオゾン処理水のUV、溶存オゾン濃度をそれぞ
れ連続測定する。
Ozone-treated raw water UV meter UVT, thermometer W
At T, the UV and the water temperature of the ozonized raw water are continuously measured. UV meter for ozonated water UVT, dissolved ozone concentration meter D
O 3 T is used to continuously measure the UV and the dissolved ozone concentration of the ozonated water.

【0068】FF制御部では、オゾン処理原水UV、水
温の水質計測信号を入力信号として与え、式(6)によ
りFF制御用オゾン注入率D1を決定する。式(6)の
溶存オゾン濃度一定制御設定値は「0」(mg/L)と設
定する。この設定により、変動するオゾン処理原水水質
に対応し、さらにオゾン処理水のUVで溶存オゾン濃度
が検出されない程度のオゾン注入率D1が決定される。
In the FF control section, water quality measurement signals of the ozone-treated raw water UV and the water temperature are given as input signals, and the ozone injection rate D 1 for FF control is determined by equation (6). The dissolved ozone concentration constant control set value of the equation (6) is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality that varies, further ozone injection rate D 1 of the degree to which the dissolved ozone concentration is not detected by UV ozone treated water is determined.

【0069】FB制御部では、オゾン処理水のUVとオ
ゾン処理水溶存オゾン濃度の2つの計測信号、そしてオ
ゾン処理水UV値一定制御設定値(UVSP)と溶存オ
ゾン濃度上限設定値(DO3ULSP)の2つの設定値
を入力信号として与え、以下に示す式でオゾン注入率D
2を演算し、決定する。
In the FB control unit, two measurement signals of the UV of the ozonized water and the concentration of the dissolved ozone in the ozone-treated water, the set value of the UV-constant water UV value constant control (UVSP) and the set value of the dissolved ozone concentration upper limit (DO 3 ULSP) ) Are given as input signals, and the ozone injection rate D is calculated by the following equation.
Calculate and determine 2 .

【0070】 D2=k7・(UVsp−UV) (DO3<DO3ulspの場合) (7) D2=k8・(DO3ulsp−DO3)(DO3≧DO3ulspの場合) (8) ここで、 UVsp:オゾン処理水UV一定制御設定値(abs/50m
m) UV:オゾン処理水UV(abs/50mm) DO3ulsp:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3:オゾン処理水の溶存オゾン濃度(mg/L) k7,k8:定数 FB制御部は、UV一定制御に溶存オゾン濃度上限制御
を組み合わせたものとした。溶存オゾン濃度上限制御
は、処理水UVがUV一定制御設定値まで低減されない
場合に起こりうるオゾン注入と溶存オゾン濃度の増大を
回避するためのものである。溶存オゾンが高くなりすぎ
ると、注入したオゾンが無駄になるばかりでなく、後段
の活性炭処理(生物活性炭)に悪影響を及ぼす可能性が
ある。溶存オゾン濃度上限設定値はこれを勘案して設定
する。溶存オゾン濃度が上限設定を超えない場合は、式
(7)を用いて処理水UVをもとにD2の決定を行い、
溶存オゾン濃度が上限設定を超えた場合は、式(8)を
用いてこれ以上のオゾン注入を回避するため、溶存オゾ
ン濃度をもとにD2の決定を行う。
D 2 = k 7 · (UV sp −UV ) (when DO 3 <DO 3 ulsp ) (7) D 2 = k 8 · (DO 3ulsp −DO 3 ) (when DO 3 ≧ DO 3ulsp ) 8) Here, UV sp : Ozone treated water UV constant control set value (abs / 50m
m) UV: ozone treated water UV (abs / 50mm) DO 3ulsp : Dissolved ozone concentration upper limit set value of the ozone treated water (mg / L) DO 3: Dissolved ozone concentration of the ozone treated water (mg / L) k 7, k 8 : Constant The FB controller combined UV constant control with dissolved ozone concentration upper limit control. The dissolved ozone concentration upper limit control is for avoiding an ozone injection and an increase in dissolved ozone concentration that may occur when the treated water UV is not reduced to the UV constant control set value. If the dissolved ozone is too high, the injected ozone is not only wasted, but also may adversely affect the subsequent activated carbon treatment (biological activated carbon). The dissolved ozone concentration upper limit set value is set in consideration of this. When the dissolved ozone concentration does not exceed the upper limit setting performs determination of D 2 on the basis of the treated water UV using Equation (7),
If the dissolved ozone concentration exceeds the upper limit set to avoid any more ozone injected using the equation (8), the determination of D 2 based on the dissolved ozone concentration.

【0071】FF制御部の出力D1と、FB制御部の出
力D2を加えて、組み合わせ制御のオゾン注入率DSP
が決定される。調節器CTRL2では、オゾン処理原水
流量、注入オゾンガス流量、調節器CTRL1で決定さ
れたオゾン注入率DSPから注入オゾン濃度O3CSP
が決定される。そして、オゾン接触池4の注入オゾン濃
度が、調節器CTRL2で決定された注入オゾン濃度O
3CSPになるように制御される。本制御方法はオゾン
処理水の水質をUV値で直接把握し、それに応じたオゾ
ン注入を行う方法であるため、溶存オゾン濃度制御のよ
うに間接的に水質を把握した制御方法よりも、さらにオ
ゾン注入率の低減化が期待できる。
[0071] and the output D 1 of the FF controller, in addition to the output D 2 of the FB control unit, an ozone injection rate combination control DSP
Is determined. In the controller CTRL2, the injected ozone concentration O 3 CSP is obtained from the ozone treated raw water flow rate, the injected ozone gas flow rate, and the ozone injection rate DSP determined by the controller CTRL1.
Is determined. Then, the injected ozone concentration of the ozone contact pond 4 is determined by the injected ozone concentration O determined by the controller CTRL2.
3 Controlled to be CSP. Since this control method is a method of directly grasping the water quality of the ozonized water by the UV value and injecting ozone in accordance with the UV value, the ozone treatment is more intense than the control method of indirectly grasping the water quality, such as dissolved ozone concentration control. The injection rate can be reduced.

【0072】また、FF制御部により原水の水質変動に
対する処理の安定化も期待できる。本処理水水質一定制
御の実現は、原水の水質変動に対して安定した処理水質
が得られると同時に、オゾン過剰注入が防止でき、効率
のよいオゾン処理が可能となる。
Further, it is expected that the FF control unit can stabilize the processing for the fluctuation of the raw water quality. The realization of the constant control of the quality of the treated water can provide a stable treated water with respect to fluctuations in the quality of the raw water, and at the same time, can prevent excessive injection of ozone and enable efficient ozone treatment.

【0073】上記第3形態の効果を次に示す。The effects of the third embodiment will be described below.

【0074】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV, water temperature, and water quality items such as UV and water temperature of the inflowing ozone-treated raw water, and the ozone injection rate determination formula (Equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0075】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using equation (6), it becomes possible to inject ozone quickly even with fluctuations in the quality of raw water.

【0076】(c)フィードバック制御項の制御量とし
て、オゾン処理水水質であるオゾン処理水UVを直接用
いることにより、オゾン濃度指標を制御量とした制御方
法よりも、より水質に基づいたオゾン注入が可能とな
る。
(C) By directly using ozone-treated water UV, which is the quality of ozone-treated water, as the control amount in the feedback control term, ozone injection based on water quality can be achieved more than in a control method using an ozone concentration index as a control amount. Becomes possible.

【0077】(d)式(6)を用いたオゾン注入率を、
オゾン処理水UV測定値に基づいたフィードバック制御
項を用いて補正することにより、安定したオゾン処理を
実現するオゾン注入率が決定できる。
(D) The ozone injection rate using the equation (6) is
By performing correction using a feedback control term based on the UV measurement value of the ozonated water, the ozone injection rate that realizes stable ozonation can be determined.

【0078】(e)オゾン処理水UV一定制御に溶存オ
ゾン濃度上限設定を組み合わせることにより、オゾン処
理水UVが目標値まで低減されない場合に発生すると考
えられるオゾン過剰注入、溶存オゾン濃度上昇を防止す
ることが出来る。
(E) By combining the constant control of the ozone-treated water UV with the upper limit setting of the dissolved ozone concentration, it is possible to prevent excessive ozone injection and an increase in the dissolved ozone concentration, which are considered to occur when the ozone-treated water UV is not reduced to the target value. I can do it.

【0079】(f)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御とオゾン処理
水UV一定(溶存オゾン濃度上限設定付き)フィードバ
ック制御を組み合わせたオゾン注入フィードフォワード
・フィードバック組み合わせ制御によって、原水水質の
変動に対しても迅速なオゾン注入が可能となり、かつフ
ィードバック制御単独時に比べて処理の安定性向上が期
待できる。
(F) An ozone injection feedforward / feedback feedback control combining an ozone injection rate feedforward control using the quality of the inflowing ozonized raw water and a feedback control of the ozone treated water UV constant (with an upper limit of dissolved ozone concentration). In addition, rapid ozone injection can be performed even when the raw water quality fluctuates, and the stability of the treatment can be expected to be improved as compared with the case where the feedback control is performed alone.

【0080】<第4形態:オゾン処理水KMnO4消費
量一定制御(溶存オゾン濃度上限設定付き)>第4形態
は、オゾン処理原水のUV、水温と溶存オゾン濃度一定
制御設定値と上記式(6)を用いて、オゾン注入率を決
定する方法(フィードフォワード(FF)制御)と、オ
ゾン処理水KMnO4消費量一定制御設定値とオゾン処
理水KMnO4消費量推定値を比較して、オゾン注入率
を修正する方法(フィードバック(FB)制御)の組み
合わせ制御である。特に、第4形態では、オゾン処理水
KMnO4消費量推定値の算出に、式(2)を使用し、
式(2)のように連続測定可能な水質指標によって、高
精度にオゾン処理水のKMnO4消費量を推定できる場
合において適用できる。
<Fourth Embodiment: Constant Control of Consumption of Ozonated Water KMnO 4 (with Upper Limit Setting of Dissolved Ozone Concentration)> In a fourth embodiment, the set value of the constant control of UV, water temperature and dissolved ozone concentration of the ozonized raw water and the above equation ( 6), the ozone injection rate is determined (feed forward (FF) control), and the ozone-treated water KMnO 4 consumption constant control set value is compared with the ozone-treated water KMnO 4 consumption estimated value. This is a combination control of a method (feedback (FB) control) for correcting the injection rate. In particular, in the fourth embodiment, the equation (2) is used to calculate the estimated value of the consumption of ozonized water KMnO 4 ,
The present invention can be applied to a case where the KMnO 4 consumption amount of the ozonized water can be estimated with high accuracy by the water quality index that can be continuously measured as in the equation (2).

【0081】図5は第4形態を示す構成説明図で、第1
形態と同一部分には同一符号を付して説明する。図5に
おいて、第4形態は、オゾン接触池4、調節器CTRL
1,2,3、オゾン発生器O3G、注入オゾン濃度計O3
CT、注入オゾンガス流量計FT2、オゾン処理原水用
UV計UVT、温度計WT、オゾン処理原水流量計FT
1、溶存オゾン濃度計DO3T、オゾン処理水用UV計
UVO3Tから構成される。
FIG. 5 is an explanatory view showing the structure of the fourth embodiment.
The same parts as those in the embodiment will be described with the same reference numerals. In FIG. 5, the fourth mode is an ozone contact pond 4, a controller CTRL.
1, 2, 3, ozone generator O 3 G, injected ozone concentration meter O 3
CT, injection ozone gas flow meter FT2, ozone-treated raw water UV meter UVT, thermometer WT, ozone-treated raw water flow meter FT
1. It consists of a dissolved ozone concentration meter DO 3 T and a UV meter UVO 3 T for ozonated water.

【0082】オゾン処理原水用UV計UVT、温度計W
Tでオゾン処理原水のUV、水温をそれぞれ連続測定す
る。オゾン処理水用UV計UVT、溶存オゾン濃度計D
3Tでオゾン処理水のUV、溶存オゾン濃度をそれぞ
れ連続測定する。
Ozone-treated raw water UV meter UVT, thermometer W
At T, the UV and the water temperature of the ozonized raw water are continuously measured. UV meter for ozonated water UVT, dissolved ozone concentration meter D
O 3 T is used to continuously measure the UV and the dissolved ozone concentration of the ozonated water.

【0083】FF制御部では、オゾン処理原水UV、水
温の水質計測信号を入力信号として与え、式(6)によ
りFF制御用オゾン注入率D1を決定する。式(6)の
溶存オゾン濃度一定制御設定値は「0」(mg/L)と設
定する。この設定により、変動するオゾン処理原水水質
に対応し、さらにオゾン処理水で溶存オゾン濃度が検出
されない程度のオゾン注入率D1が決定される。
The FF control section supplies the water quality measurement signals of the ozone-treated raw water UV and the water temperature as input signals, and determines the FF control ozone injection rate D 1 according to equation (6). The dissolved ozone concentration constant control set value of the equation (6) is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality that varies, further ozone injection rate D 1 of the degree to which the dissolved ozone concentration is not detected by the ozonated water is determined.

【0084】FB制御部では、オゾン処理水のKMnO
4消費量推定値をオゾン処理原水UVとオゾン処理水U
Vから式(2)で算出し、その推定値とオゾン処理水溶
存オゾン濃度、そしてオゾン処理水KMnO4消費量一
定制御設定値C3SPと溶存オゾン濃度上限設定値DO3
ULSP値を入力信号として与え、以下に示す式でD2
を演算し決定する。
In the FB control unit, the KMnO of the ozonized water is
(4 ) Estimate the consumption value by using ozone-treated raw water UV and
V, the estimated value, the ozone-treated water-soluble ozone concentration, the ozone-treated water KMnO 4 consumption constant control set value C 3 SP, and the dissolved ozone concentration upper-limit set value DO 3
The ULSP value is given as an input signal, and D 2
Is calculated and determined.

【0085】 D2=k9・(C3sp−C3) (DO3<DO3ulspの場合) (9) D2=k10・(DO3ulsp−DO3) (DO3≧DO3ulspの場合)(10) ここで、 C3sp:オゾン処理水KMnO4消費量一定制御設定値
(mg/L) C3:オゾン処理水KMnO4消費量推定値(mg/L) DO3ulset:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3:オゾン処理水の溶存オゾン濃度(mg/L) k9,k10:定数 オゾン処理水のKMnO4消費量推定値は、オゾン処理
原水のUVとオゾン処理水のUVの2つの水質信号を用
いて、式(2)から算出する。推定値算出には、オゾン
処理原水とオゾン処理の結果から得られるオゾン処理水
の時間遅れ分を考慮する。この時間遅れは、オゾン処理
原水流量によって変化する。
D 2 = k 9 · (C 3sp -C 3 ) (when DO 3 <DO 3ulsp ) (9) D 2 = k 10 · (DO 3ulsp -DO 3 ) (when DO 3 ≧ DO 3ulsp ) (10) Here, C 3sp : Ozone-treated water KMnO 4 consumption constant control set value (mg / L) C 3 : Ozone-treated water KMnO 4 consumption estimated value (mg / L) DO 3ulset : Dissolution of ozone-treated water Ozone concentration upper limit setting value (mg / L) DO 3 : Dissolved ozone concentration of ozonized water (mg / L) k 9 , k 10 : Constant The estimated value of KMnO 4 consumption of ozonated water is the same as that of ozone-treated raw water. It is calculated from equation (2) using two water quality signals of UV of the ozonized water. The estimated value calculation takes into account the time delay of the ozonized water obtained from the ozone-treated raw water and the result of the ozone treatment. This time delay changes depending on the flow rate of the ozonized raw water.

【0086】FB制御部は、オゾン処理水KMnO4
費量一定制御に溶存オゾン濃度上限制御を組み合わせた
ものとした。溶存オゾン濃度上限制御は、オゾン処理水
KMnO4消費量(推定値)がKMnO4消費量一定制御
設定値まで低減されない場合に起こりうるオゾン注入と
溶存オゾン濃度の増大を回避するためのものである。
The FB control unit is a combination of constant control of the consumption of ozone-treated water KMnO 4 and upper limit control of the dissolved ozone concentration. The dissolved ozone concentration upper limit control is for avoiding ozone injection and an increase in dissolved ozone concentration, which can occur when the consumption (estimated value) of the ozone-treated water KMnO 4 is not reduced to the KMnO 4 consumption constant control set value. .

【0087】溶存オゾンが高くなりすぎると、注入した
オゾンが無駄になるばかりでなく、後段の活性炭処理
(生物活性炭)に悪影響を及ぼす可能性がある。溶存オ
ゾン濃度上限設定値はこれを勘案して設定する。溶存オ
ゾン濃度が上限設定を超えない場合は、式(9)を用い
てオゾン処理水KMnO4消費量推定値をもとにD2の決
定を行い、溶存オゾン濃度が上限設定を超えた場合は、
式(10)を用いてこれ以上のオゾン注入を回避するた
め、溶存オゾン濃度をもとにD2の決定を行う。
If the dissolved ozone is too high, not only is the injected ozone wasted, but it may adversely affect the subsequent activated carbon treatment (biological activated carbon). The dissolved ozone concentration upper limit set value is set in consideration of this. If the dissolved ozone concentration does not exceed the upper limit setting, D 2 is determined based on the estimated value of the consumption of ozonized water KMnO 4 using equation (9), and if the dissolved ozone concentration exceeds the upper limit setting, ,
To avoid further ozone injected using the equation (10), the determination of D 2 based on the dissolved ozone concentration.

【0088】FF制御部の出力D1とFB制御部の出力
2を加えて、組み合わせ制御のオゾン注入率DSPが
決定される。調節器CTRL2では、オゾン処理原水流
量、注入オゾンガス流量、CTRL1で決定されたDS
Pから注入オゾン濃度O3CSPが決定される。そし
て、オゾン接触池4の注入オゾン濃度が、CTRL2で
決定されたO3CSPになるように制御される。
[0088] In addition the output D 2 outputs D 1 and FB control unit of the FF controller, the ozone injection rate of the combination control DSP is determined. In the controller CTRL2, the ozone-treated raw water flow rate, the injected ozone gas flow rate, and the DS determined by CTRL1 are used.
The injection ozone concentration O 3 CSP is determined from P. Then, the injection ozone concentration of the ozone contact pond 4 is controlled so as to be O 3 CSP determined by CTRL2.

【0089】オゾン処理の除去対象物質の一つであるK
MnO4消費量は、リアルタイムで測定できる手段がな
く(分析方法はあるが、簡便でなく、時間も労力もかか
る)、その測定値をオゾン注入制御に適用できない。オ
ンサイト測定可能なUVはリアルタイムで結果が得られ
るため、式(2)を用いることで、高精度なKMnO 4
消費量推定値がリアルタイムで得ることができる。
K, one of the substances to be removed in the ozone treatment
MnOFourThere is no means to measure consumption in real time.
(Analytical methods are available, but they are not simple and require time and effort.
The measured value cannot be applied to ozone injection control. Oh
UV that can be measured in situ gives real-time results
Therefore, by using the equation (2), a highly accurate KMnO Four
Consumption estimates can be obtained in real time.

【0090】第4形態の制御方法は、KMnO4消費量
をUVと式(2)で算出した推定値として直接把握し、
それに応じたオゾン注入を行う方法であるため、溶存オ
ゾン濃度制御のように間接的に水質を把握した制御方法
よりも、さらにオゾン注入率の低減化が期待できる。ま
た、FF制御部により、原水の水質変動に対する処理の
安定化も期待できる。本処理水水質一定制御の実現は、
原水の水質変動に対して安定した処理水質が得られると
同時に、オゾン過剰注入が防止でき、効率のよいオゾン
処理が可能となる。
In the control method of the fourth embodiment, KMnO 4 consumption is directly grasped as UV and an estimated value calculated by the equation (2).
Since the ozone is injected according to the method, it is expected that the ozone injection rate can be further reduced as compared with the control method in which the water quality is indirectly grasped, such as the dissolved ozone concentration control. In addition, the FF control unit can be expected to stabilize the processing for the fluctuation of the raw water quality. Realization of constant control of this treated water quality
At the same time, stable treated water quality can be obtained with respect to fluctuations in the raw water quality, and at the same time, excessive ozone injection can be prevented, and efficient ozone treatment can be performed.

【0091】第4形態では、次に示すような効果が得ら
れる。
In the fourth embodiment, the following effects can be obtained.

【0092】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV and the water temperature are calculated using the water quality items such as the UV and the water temperature of the inflowing ozone-treated raw water and the ozone injection rate determining formula (Equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0093】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using the equation (6), rapid ozone injection can be performed even if the raw water quality changes.

【0094】(c)オゾン処理原水のUV、オゾン処理
水のUVを説明変数とするオゾン処理水KMnO4消費
量推定式(式(2))に、オゾン処理原水UV、オゾン
処理水UVを代入することにより、オゾン処理水KMn
4消費量を高精度に推定できる。
(C) The UV of the ozone-treated water and the UV of the ozone-treated water are substituted into the ozone-treated water KMnO 4 consumption estimation formula (formula (2)) using the UV of the ozonated water and the UV of the ozonated water as explanatory variables. By doing, ozonized water KMn
O 4 consumption can be estimated with high accuracy.

【0095】(d)式(2)の説明変数は、リアルタイ
ム測定可能な水質項目であるから、オゾン処理水KMn
4消費量の推定がリアルタイムで可能となる。
(D) Since the explanatory variable in the equation (2) is a water quality item that can be measured in real time, the ozone-treated water KMn
The estimation of O 4 consumption is made possible in real time.

【0096】(e)フィードバック制御項の制御量とし
て、オゾン処理水水質であるオゾン処理水KMnO4
費量推定値を直接用いることにより、オゾン濃度指標を
制御量とした制御方法よりも、より水質に基づいたオゾ
ン注入が可能となる。
(E) By directly using the estimated value of the consumption of ozonized water KMnO 4, which is the quality of ozonated water, as the control amount of the feedback control term, the water quality can be improved more than the control method using the ozone concentration index as the control amount. , It becomes possible to inject ozone.

【0097】(f)式(6)を用いたオゾン注入率を、
オゾン処理水KMnO4消費量(推定値)フィードバッ
ク制御項を用いて補正することにより、安定したオゾン
処理を実現するオゾン注入率が決定できる。
(F) The ozone injection rate using the equation (6) is
The ozone injection rate that realizes stable ozone treatment can be determined by correcting using the ozone-treated water KMnO 4 consumption (estimated value) feedback control term.

【0098】(g)オゾン処理水KMnO4消費量一定
制御に溶存オゾン濃度上限設定を組み合わせることによ
り、オゾン処理水KMnO4消費量(推定値)が目標値
まで低減されない場合に発生すると考えられるオゾン過
剰注入、溶存オゾン濃度上昇を防止することが出来る。
[0098] The (g) ozonated water KMnO 4 consumption constant control combining the dissolved ozone concentration capping believed ozonated water KMnO 4 consumption (estimated value) is generated if not reduced to the target value Ozone Excessive injection and increase in dissolved ozone concentration can be prevented.

【0099】(h)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御とオゾン処理
水KMnO4消費量一定(溶存オゾン濃度上限設定付
き)フィードバック制御を組み合わせたオゾン注入フィ
ードフォワード・フィードバック組み合わせ制御によっ
て、原水水質の変動に対しても迅速なオゾン注入が可能
となり、かつフィードバック制御単独時に比べて処理の
安定性向上が期待できるようになる。
(H) Ozone injection feedforward feedback combining feedforward control of the ozone injection rate using the quality of the inflowing ozone-treated raw water and feedback control of constant ozone-treated water KMnO 4 consumption (with upper limit setting of dissolved ozone concentration) By the combination control, rapid ozone injection can be performed even when the raw water quality changes, and the stability of the treatment can be expected to be improved as compared with the case where the feedback control is performed alone.

【0100】<第5形態:オゾン処理水THMFP一定
制御(溶存オゾン濃度上限設定付き)>第5形態は、オ
ゾン処理原水のUV、水温と溶存オゾン濃度一定制御設
定値と上記式(6)を用いて、オゾン注入率を決定する
方法(フィードフォワード(FF)制御)と、オゾン処
理水THMFP一定制御設定値とオゾン処理水THMF
P推定値を比較して、オゾン注入率を修正する方法(フ
ィードバック(FB)制御)の組み合わせ制御である。
<Fifth embodiment: Constant control of ozone-treated water THMFP (with upper limit setting of dissolved ozone concentration)> In the fifth embodiment, the UV, water temperature, dissolved ozone concentration constant control set value of the ozone-treated raw water and the above equation (6) are used. Method for determining the ozone injection rate (feed forward (FF) control) using the ozonated water THMFP constant control set value and the ozonized water THMF
This is a combination control of a method of correcting the ozone injection rate by comparing the P estimation value (feedback (FB) control).

【0101】オゾン処理水THMFP推定値の算出に、
式(5)を使用する。この第5形態の制御は、式(5)
のように連続測定可能な水質指標によって、高精度にオ
ゾン処理水のTHMFPを推定できる場合において適用
できる。
In calculating the estimated value of the ozone-treated water THMFP,
Equation (5) is used. The control of the fifth mode is expressed by the following equation (5).
It can be applied when the THMFP of the ozonated water can be estimated with high accuracy by the water quality index that can be continuously measured as described above.

【0102】図6は第5形態を示す構成説明図で、図6
において、第1形態と同一部分は同一符号を付して説明
する。第5形態は、オゾン接触池4、調節器CTRL
1,2,3、オゾン発生器O3G、注入オゾン濃度計O3
CT、注入オゾンガス流量計FT2、オゾン処理原水用
UV計UVT、温度計WT1,2、オゾン処理原水流量
計FT1、溶存オゾン濃度計DO3T、オゾン処理水用
UV計UVO3Tから構成される。オゾン処理原水用U
V計UVT、温度計WT1でオゾン処理原水のUV、水
温をそれぞれ連続測定する。オゾン処理水用UV計UV
T、溶存オゾン濃度計DO3T、温度計WT2でオゾン
処理水のUV、溶存オゾン濃度、水温をそれぞれ連続測
定する。
FIG. 6 is a structural explanatory view showing the fifth embodiment.
In the following description, the same parts as those of the first embodiment are denoted by the same reference numerals. The fifth embodiment is an ozone contact pond 4, a controller CTRL.
1, 2, 3, ozone generator O 3 G, injected ozone concentration meter O 3
CT configured, injecting ozone gas flowmeter FT2, UV meter UVT for ozone treatment raw water, thermometer WT1,2, ozone treatment raw water flow meter FT1, dissolved ozone concentration meter DO 3 T, the UV meter UVO 3 T for ozonated water . U for ozonated raw water
The UV meter and the water temperature of the ozonized raw water are continuously measured by a V meter UVT and a thermometer WT1. UV meter UV for ozonated water
The UV, dissolved ozone concentration, and water temperature of the ozonized water are continuously measured by T, dissolved ozone concentration meter DO 3 T, and thermometer WT2.

【0103】FF制御部では、オゾン処理原水のUVと
水温の水質計測信号を入力信号として与え、式(6)に
よりFF制御用オゾン注入率D1を決定する。式(6)
の溶存オゾン濃度一定制御設定値は「0」(mg/L)と
設定する。この設定により、変動するオゾン処理原水水
質に対応し、さらにオゾン処理水で溶存オゾン濃度が検
出されない程度のオゾン注入率D1が決定される。
The FF control section gives the water quality measurement signals of the ozone treated raw water UV and water temperature as input signals, and determines the ozone injection rate D 1 for FF control by equation (6). Equation (6)
Is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality that varies, further ozone injection rate D 1 of the degree to which the dissolved ozone concentration is not detected by the ozonated water is determined.

【0104】FB制御部では、オゾン処理水のTHMF
P推定値をオゾン処理水UVと水温から式(5)で算出
し、その推定値とオゾン処理水溶存オゾン濃度の信号、
そしてオゾン処理水THMFP一定制御設定値(C4
P)と溶存オゾン濃度上限設定値(DO3ULSP)の
2つの設定値を入力信号として与え、以下に示す式でD
2を演算し、決定する。
In the FB control section, the THMF of the ozone-treated water
The estimated value of P is calculated from the ozone-treated water UV and the water temperature by the equation (5), and the estimated value and the signal of the ozone-treated water-soluble ozone concentration,
Then, the ozone-treated water THMFP constant control set value (C 4 S
P) and the dissolved ozone concentration upper limit set value (DO 3 ULSP) are given as input signals, and D is given by the following equation.
Calculate and determine 2 .

【0105】 D2=k11・(C4sp−C4) (DO3<DO3ulspの場合) (11) D2=k12・(DO3ulsp−DO3)(DO3≧DO3ulspの場合) (12) ここで、 C4sp:オゾン処理水THMFP一定制御設定値(μg/
L) C4 :オゾン処理水THMFP推定値(μg/L) DO3ulset:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3:オゾン処理水の溶存オゾン濃度(mg/L) k11,k12:定数 オゾン処理水のTHMFP推定値は、オゾン処理水のU
Vと水温の2つの水質信号を用いて、式(5)から算出
する。
D 2 = k 11 · (C 4sp -C 4 ) (when DO 3 <DO 3ulsp ) (11) D 2 = k 12 · (DO 3ulsp -DO 3 ) (when DO 3 ≧ DO 3ulsp ) (12) Here, C 4sp : ozone treated water THMFP constant control set value (μg /
L) C 4 : Estimated value of THMFP of ozonized water (μg / L) DO 3ulset : Upper limit value of dissolved ozone concentration of ozonized water (mg / L) DO 3 : Dissolved ozone concentration of ozonized water (mg / L) k 11 , k 12 : constant The THMFP estimated value of the ozonized water is the U
It is calculated from equation (5) using two water quality signals of V and water temperature.

【0106】FB制御部は、オゾン処理水THMFP一
定制御に溶存オゾン濃度上限制御を組み合わせたものと
した。溶存オゾン濃度上限制御は、オゾン処理水THM
FP(推定値)がTHMFP一定制御設定値まで低減さ
れない場合に起こりうるオゾン注入と溶存オゾン濃度の
増大を回避するためのものである。溶存オゾンが高くな
りすぎると、注入したオゾンが無駄になるばかりでな
く、後段の活性炭処理(生物活性炭)に悪影響を及ぼす
可能性がある。
The FB control unit was a combination of the constant control of the ozone-treated water THMFP and the control of the dissolved ozone concentration upper limit. The dissolved ozone concentration upper limit control is performed using the ozone treated water THM.
This is for avoiding the ozone injection and the increase in the dissolved ozone concentration which can occur when the FP (estimated value) is not reduced to the THMFP constant control set value. If the dissolved ozone is too high, not only is the injected ozone wasted, but it may adversely affect the subsequent activated carbon treatment (biological activated carbon).

【0107】溶存オゾン濃度上限設定値は、これを勘案
して設定する。溶存オゾン濃度が上限設定を超えない場
合は、式(11)を用いてオゾン処理水THMFP(推
定値)をもとにD2の決定を行い、溶存オゾン濃度が上
限設定を超えた場合は、式(12)を用いて、これ以上
のオゾン注入を回避するため、溶存オゾン濃度をもとに
2の決定を行う。
The dissolved ozone concentration upper limit set value is set in consideration of this. When the dissolved ozone concentration does not exceed the upper limit setting performs determination of D 2 ozonated water THMFP (estimated value) on the basis of using the equation (11), when the dissolved ozone concentration exceeds the upper limit setting, using equation (12), in order to avoid any more ozone injection, the determination of D 2 based on the dissolved ozone concentration.

【0108】FF制御部の出力D1とF8制御部の出力
2を加えて、組み合わせ制御のオゾン注入率DSP
が、調節器CTRL1で決定される。調節器CTRL2
では、オゾン処理原水流量、注入オゾンガス流量、CT
RL1で決定されたDSPから注入オゾン濃度O3CS
Pが決定される。そして、オゾン接触池4の注入オゾン
濃度が、CTRL2で決定された注入オゾン濃度O3
SPになるように制御される。
[0108] In addition the output D 2 outputs D 1 and F8 controller of FF controller, ozone injection rate combination control DSP
Is determined by the controller CTRL1. Controller CTRL2
Then, ozone treated raw water flow rate, injected ozone gas flow rate, CT
Injection ozone concentration O 3 CS from DSP determined by RL1
P is determined. Then, the injected ozone concentration of the ozone contact pond 4 is the injected ozone concentration O 3 C determined by CTRL2.
It is controlled to become SP.

【0109】オゾン処理の除去対象物質の一つであるT
HMFPは、リアルタイムで測定できる手段がなく(分
析方法はあるが、簡便でなく、時間も労力もかかる)、
その測定値をオゾン注入制御には適用できない。オンサ
イト測定可能なUV、水温はリアルタイムで結果が得ら
れるため、式(5)を用いることで、高精度なTHMF
P推定値がリアルタイムで得ることができる。第5形態
の制御方法は、THMFPをUVと水温と式(5)で算
出した推定値として直接把握し、それに応じたオゾン注
入を行う方法であるため、溶存オゾン濃度制御のように
間接的に水質を把握した制御方法よりもさらにオゾン注
入率の低減化が期待できる。また、FF制御部により、
原水の水質変動に対する処理の安定化も期待できる。第
5形態の処理水水質一定制御の実現は、原水の水質変動
に対して安定した処理水質が得られると同時に、オゾン
過剰注入が防止でき、効率のよい、オゾン処理が可能と
なる。
T, one of the substances to be removed by the ozone treatment,
HMFP has no means to measure in real time (there is an analysis method, but it is not simple, it takes time and effort),
The measured value cannot be applied to ozone injection control. Since the results of UV and water temperature that can be measured on-site can be obtained in real time, highly accurate THMF can be obtained by using equation (5).
P estimates can be obtained in real time. The control method of the fifth embodiment is a method of directly grasping the THMFP as the UV, the water temperature, and the estimated value calculated by the equation (5) and injecting ozone in accordance therewith. Therefore, the control method is indirectly performed like the dissolved ozone concentration control. It can be expected that the ozone injection rate can be further reduced than the control method that grasps the water quality. Also, by the FF control unit,
It is also expected that the treatment of raw water quality fluctuations will be stabilized. According to the fifth embodiment, the constant control of the quality of the treated water is achieved, whereby the treated water having a stable quality with respect to the fluctuation of the quality of the raw water can be obtained, and at the same time, the excessive ozone injection can be prevented and the ozone treatment can be performed efficiently.

【0110】上記のように構成した第5形態によれば、
次に示すような効果が得られる。
According to the fifth embodiment configured as described above,
The following effects can be obtained.

【0111】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV, water temperature, and water quality items such as UV and water temperature of the inflowing ozone-treated raw water, and the ozone injection rate determination formula (equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0112】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using the equation (6), rapid ozone injection can be performed even when the raw water quality changes.

【0113】(c)オゾン処理水のUV、水温を説明変
数とするオゾン処理水THMFP推定式(式(5))
に、オゾン処理水UV、水温を代入することにより、オ
ゾン処理水THMFPを高精度に推定できる。
(C) Ozone-treated water THMFP estimation formula (equation (5)) using UV and water temperature as explanatory variables
By substituting the ozone-treated water UV and the water temperature into the above, the ozone-treated water THMFP can be estimated with high accuracy.

【0114】(d)式(5)の説明変数はリアルタイム
測定可能な水質項目であるから、オゾン処理水THMF
Pの推定がリアルタイムで可能となる。
(D) Since the explanatory variable in equation (5) is a water quality item that can be measured in real time, the ozone-treated water THMF
The estimation of P becomes possible in real time.

【0115】(e)フィードバック制御項の制御量とし
て、オゾン処理水水質であるオゾン処理水THMFP推
定値を直接用いることにより、オゾン濃度指標を制御量
とした制御方法よりも、より水質に基づいたオゾン注入
が可能となる。
(E) By directly using the estimated value of the ozone-treated water THMFP, which is the quality of the ozone-treated water, as the control amount of the feedback control term, the control value is more based on the water quality than the control method using the ozone concentration index as the control amount. Ozone injection becomes possible.

【0116】(f)式(6)を用いたオゾン注入率を、
オゾン処理水THMFP(推定値)フィードバック制御
項を用いて補正することにより、安定したオゾン処理を
実現するオゾン注入率が決定できる。
(F) The ozone injection rate using the equation (6) is
By correcting using the ozonated water THMFP (estimated value) feedback control term, the ozone injection rate that realizes stable ozonation can be determined.

【0117】(g)オゾン処理水THMFP一定制御に
溶存オゾン濃度上限設定を組み合わせることにより、オ
ゾン処理水THMFP(推定値)が目標値まで低減され
ない場合に発生すると考えられるオゾン過剰注入、溶存
オゾン濃度上昇を防止することが出来る。
(G) By combining the constant control of the ozone-treated water THMFP with the upper limit setting of the dissolved ozone concentration, the excess ozone injection and the dissolved ozone concentration which are considered to be generated when the ozone-treated water THMFP (estimated value) is not reduced to the target value. The rise can be prevented.

【0118】(h)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御とオゾン処理
水THMFP一定(溶存オゾン濃度上限設定付き)フィ
ードバック制御を組み合わせたオゾン注入フィードフォ
ワード・フィードバック組み合わせ制御によって、原水
水質の変動に対しても迅速なオゾン注入が可能となり、
かつフィードバック制御単独時に比べて処理の安定性向
上が期待できる。
(H) An ozone injection feedforward / feedback / feedback / feedback combination control combining an ozone injection rate feedforward control using the quality of the inflowing ozonized raw water and a constant ozone-processed water THMFP (with an upper limit of dissolved ozone concentration) feedback control. In addition, quick ozone injection is possible even for fluctuations in raw water quality,
In addition, the stability of the process can be expected to be improved as compared with the case where the feedback control is performed alone.

【0119】<第6形態:活性炭処理水UV一定制御
(溶存オゾン濃度上限設定付き)>第6形態は、オゾン
処理原水のUV、水温と溶存オゾン濃度一定制御設定値
と上記式(6)を用いて、オゾン注入率を決定する方法
(フィードフォワード(FF)制御)と、活性炭処理水
UV一定制御設定値と活性炭処理水UVを比較して、オ
ゾン注入率を修正する方法(フィードバック(FB)制
御)の組み合わせ制御である。
<Sixth embodiment: UV constant control of activated carbon treated water (with upper limit setting of dissolved ozone concentration)> In the sixth embodiment, the UV, water temperature, dissolved ozone concentration constant control set value of ozonized raw water and the above equation (6) are calculated. Method for determining ozone injection rate (feed forward (FF) control) and method for correcting ozone injection rate by comparing activated carbon treated water UV constant control set value with activated carbon treated water UV (feedback (FB) Control).

【0120】図7は第6形態を示す構成説明図で、図7
において、第1形態と同一部分は同一符号を付して説明
する。第6形態は、オゾン接触池4、活性炭接触池5、
調節器CTRL1,2,3、オゾン発生器O3G、注入
オゾン濃度計O3CT、注入オゾンガス流量計FT2、
オゾン処理原水用UV計UVT、温度計WT、オゾン処
理原水流量計FT1、溶存オゾン濃度計DO3T、活性
炭処理水用UV計UVACTから構成される。オゾン処
理原水用UV計UVT、温度計WTでオゾン処理原水の
UV、水温を、溶存オゾン濃度計DO3Tでオゾン処理
水の溶存オゾン濃度を、および活性炭処理水用UV計U
VACTで活性炭処理水のUVをそれぞれ連続測定す
る。
FIG. 7 is a structural explanatory view showing a sixth embodiment.
In the following description, the same parts as those of the first embodiment are denoted by the same reference numerals. The sixth embodiment includes an ozone contact pond 4, an activated carbon contact pond 5,
Regulator CTRL1,2,3, ozone generator O 3 G, injecting ozone densitometer O 3 CT, injected ozone gas flowmeter FT2,
It is composed of a UV meter UVT for ozonated raw water, a thermometer WT, an ozonated raw water flow meter FT1, a dissolved ozone concentration meter DO 3 T, and a UV meter UVACT for activated carbon treated water. UV meter for ozonated raw water UVT, thermometer WT for UV and water temperature of ozonated raw water, dissolved ozone concentration meter DO 3 T for dissolved ozone concentration of ozonated water, and UV meter for activated carbon treated water U
The UV of the activated carbon treated water is continuously measured by VACT.

【0121】FF制御部では、オゾン処理原水UV、水
温の水質計測信号を入力信号として与え、式(6)によ
りFF制御用オゾン注入率D1を決定する。式(6)の
溶存オゾン濃度一定制御設定値は「0」(mg/L)と設
定する。この設定により、変動するオゾン処理原水水質
に対応し、さらにオゾン処理水で溶存オゾン濃度が検出
されない程度のD1が決定される。
The FF control section supplies the water quality measurement signals of the ozone-treated raw water UV and the water temperature as input signals, and determines the ozone injection rate D 1 for FF control by equation (6). The dissolved ozone concentration constant control set value of the equation (6) is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality varying, D 1 to the extent that the dissolved ozone concentration is not detected is determined further in ozone treated water.

【0122】FB制御部では、活性炭処理水のUVとオ
ゾン処理水溶存オゾン濃度の2つの計測信号、そして活
性炭処理水UV値一定制御設定値UVACSPと、溶存
オゾン濃度上限設定値DO3ULSPの2つの設定値を
入力信号として与え、以下に示す式でD2を演算し、決
定する。
In the FB control unit, two measurement signals of the UV of the activated carbon treated water and the ozone concentration of the dissolved water in the ozone treatment water, the set value UVACSP of the constant value control of the activated carbon treated water UV value, and the upper limit set value of the dissolved ozone concentration DO 3 ULSP are obtained. Two set values are given as input signals, and D 2 is calculated and determined by the following equation.

【0123】 D2=k13・(UVacsp−UVac) (DO3<DO3ulspの場合)(13) D2=k14・(DO3ulsp−DO3) (DO3≧DO3ulspの場合)(14) ここで、 UVacsp:活性炭処理水UV一定制御設定値(abs/50m
m) UVac :活性炭処理水UV(abs/50mm) DO3ulsp:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3 :オゾン処理水の溶存オゾン濃度(mg/L) k13,k14 :定数 FB制御部は、UV一定制御に溶存オゾン濃度上限制御
を組み合わせたものとした。溶存オゾン濃度上限制御
は、活性炭処理水UVがUV一定制御設定値まで低減さ
れない場合に起こりうるオゾン注入と溶存オゾン濃度の
増大を回避するためのものである。溶存オゾンが高くな
りすぎると、注入したオゾンが無駄になるばかりでな
く、後段の活性炭処理(生物活性炭)に悪影響を及ぼす
可能性がある。
D 2 = k 13 · (UV acsp −UV ac ) (when DO 3 <DO 3ulsp ) (13) D 2 = k 14 · (DO 3ulsp −DO 3 ) (when DO 3 ≧ DO 3ulsp ) (14) Here, UV acsp : Activated carbon treated water UV constant control set value (abs / 50m
m) UV ac : Activated carbon treated water UV (abs / 50 mm) DO 3ulsp : Dissolved ozone concentration upper limit set value of dissolved ozone water (mg / L) DO 3 : Dissolved ozone concentration of ozone treated water (mg / L) k 13 , k 14 : constant The FB control unit is a combination of the UV constant control and the dissolved ozone concentration upper limit control. The dissolved ozone concentration upper limit control is for avoiding an ozone injection and an increase in dissolved ozone concentration that may occur when the activated carbon treated water UV is not reduced to the UV constant control set value. If the dissolved ozone is too high, the injected ozone is not only wasted, but also may adversely affect the subsequent activated carbon treatment (biological activated carbon).

【0124】溶存オゾン濃度上限設定値はこれを勘案し
て設定する。溶存オゾン濃度が上限設定を超えない場合
は、式(13)を用いて活性炭処理水UVをもとにD2
の決定を行い、溶存オゾン濃度が上限設定を超えた場合
は、式(14)を用いてこれ以上のオゾン注入を回避す
るため、溶存オゾン濃度をもとにD2の決定を行う。
The dissolved ozone concentration upper limit set value is set in consideration of this. If the dissolved ozone concentration does not exceed the upper limit setting, D 2 is calculated based on the activated carbon treated water UV using the equation (13).
Make decisions, if the dissolved ozone concentration exceeds the upper limit set to avoid any more ozone injected using the equation (14), the determination of D 2 based on the dissolved ozone concentration.

【0125】FF制御部の出力D1とFB制御部の出力
D2を加えて、組み合わせ制御のオゾン注入率DSPが
決定される。CTRL2では、オゾン処理原水流量、注
入オゾンガス流量、CTRL1で決定されたDSPから
注入オゾン濃度O3CSPが決定される。そして、オゾ
ン接触池4の注入オゾン濃度がCTRL2で決定された
3CSPになるように制御される。第6形態の制御方
法は、活性炭処理水の水質を∪V値で直接把握し、それ
に応じたオゾン注入を行う方法であるため、溶存オゾン
濃度制御のように間接的に水質を把握した制御方法より
も、さらにオゾン注入率の低減化が期待できる。
By adding the output D1 of the FF control unit and the output D2 of the FB control unit, the ozone injection rate DSP of the combination control is determined. In CTRL2, the injected ozone concentration O 3 CSP is determined from the flow rate of the ozonized raw water, the flow rate of the injected ozone gas, and the DSP determined in CTRL1. Then, the injection ozone concentration of the ozone contact pond 4 is controlled so as to be O 3 CSP determined by CTRL2. The control method of the sixth embodiment is a method of directly grasping the water quality of the activated carbon treated water by a ΔV value and injecting ozone according to the value. Therefore, a control method in which water quality is indirectly grasped such as dissolved ozone concentration control. It is expected that the ozone injection rate can be further reduced.

【0126】第6形態の制御方法は、オゾン処理を活性
炭処理の前処理と明確に位置づけ、オゾン・活性炭処理
の最終処理水である活性炭処理水で目標の水質を得るた
めの制御方法である(オゾン処理水はオゾン・活性炭処
理の中間処理水であるとの位置づけ)。よって、オゾン
の物性(水温が低いほど水に溶けやすい、など)や活性
炭の吸着特性、生物活性炭として機能した時の生物活性
(水温が高いほど生物の活性が高い)といった各処理工
程の特性に応じた負荷配分が、この制御ではなされる。
また、FF制御部により、原水の水質変動に対する処理
の安定化も期待できる。第6形態処理水水質一定制御の
実現は、原水の水質変動に対して安定した処理水質が得
られると同時に、オゾン過剰注入が防止でき、効率のよ
いオゾン処理が可能となる。
The control method of the sixth embodiment is a control method for clearly positioning ozone treatment as pretreatment of activated carbon treatment and obtaining a target water quality with activated carbon treated water that is the final treatment water of ozone / activated carbon treatment ( Ozone-treated water is regarded as intermediate treatment water for ozone and activated carbon treatment). Therefore, the characteristics of each treatment process such as the physical properties of ozone (such as the lower the water temperature, the more soluble it is in water), the adsorption characteristics of activated carbon, and the biological activity when functioning as biologically activated carbon (the higher the water temperature, the higher the biological activity) Appropriate load distribution is performed in this control.
In addition, the FF control unit can be expected to stabilize the processing for the fluctuation of the raw water quality. The sixth embodiment realizes the constant control of the treated water quality so that the treated water quality stable with respect to the fluctuation of the raw water quality can be obtained, and at the same time, the excessive ozone injection can be prevented and the efficient ozone treatment can be performed.

【0127】上記のように構成した第6形態によれば、
次に示すような効果が得られる。
According to the sixth embodiment configured as described above,
The following effects can be obtained.

【0128】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV, water temperature, and water quality items such as UV and water temperature of the inflowing ozone-treated raw water, and the ozone injection rate determination formula (equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0129】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using the equation (6), quick ozone injection can be performed even when the raw water quality changes.

【0130】(c)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水UVを直接用
いることにより、オゾン濃度指標を制御量とした制御方
法よりも、より水質に基づいたオゾン注入が可能とな
る。
(C) By directly using the activated carbon treated water UV, which is the quality of the activated carbon treated water, as the control amount of the feedback control term, the ozone injection based on the water quality can be more improved than the control method using the ozone concentration index as the control amount. Becomes possible.

【0131】(d)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水UVを用いた
オゾン注入制御は、オゾン処理水UVを用いる場合より
も、よりオゾン注入率の低減化が期待出来る。
(D) As the control amount of the feedback control term, the ozone injection control using the activated carbon treated water UV, which is the quality of the activated carbon treated water, makes it possible to further reduce the ozone injection rate as compared with the case where the ozone treated water UV is used. Can be expected.

【0132】(e)式(6)を用いたオゾン注入率を、
活性炭処理水UV測定値に基づいたフィードバック制御
項を用いて補正することにより、安定したオゾン処理を
実現するオゾン注入率が決定できる。
(E) The ozone injection rate using the equation (6) is
By correcting using the feedback control term based on the UV measurement value of the activated carbon treated water, the ozone injection rate that realizes stable ozone treatment can be determined.

【0133】(f)活性炭処理水UV一定制御に溶存オ
ゾン濃度上限設定を組み合わせることにより、活性炭処
理水UVが目標値まで低減されない場合に発生すると考
えられるオゾン過剰注入、溶存オゾン濃度上昇を防止す
ることが出来る。
(F) By combining the constant control of the activated carbon treated water UV with the upper limit setting of the dissolved ozone concentration, it is possible to prevent the excessive ozone injection and the increase of the dissolved ozone concentration which are considered to occur when the activated carbon treated water UV is not reduced to the target value. I can do it.

【0134】(g)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御と活性炭処理
水UV一定(溶存オゾン濃度上限設定付き)フィードバ
ック制御を組み合わせたオゾン注入フィードフォワード
・フィードバック組み合わせ制御によって、原水水質の
変動に対しても迅速なオゾン注入が可能となり、かつフ
ィードバック制御単独時に比べて処理の安定性向上が期
待できる。
(G) Ozone injection feedforward control using feedwater quality of ozone-treated raw water flowing in and feed-forward control of combined ozone injection feedforward and feedback control of constant activated carbon treated water UV (with upper limit setting of dissolved ozone concentration) feedback control In addition, rapid ozone injection can be performed even when the raw water quality fluctuates, and the stability of the treatment can be expected to be improved as compared with the case where the feedback control is performed alone.

【0135】<第7形態:活性炭処理水KMnO4消費
量一定制御(溶存オゾン濃度上限設定付き)>第7形態
は、オゾン処理原水のUV、水温と溶存オゾン濃度一定
制御設定値と上記式(6)を用いて、オゾン注入率を決
定する方法(フィードフォワード(FF)制御)と、活
性炭処理水KMnO4消費量一定制御設定値と活性炭処
理水KMnO4消費量推定値を比較して、オゾン注入率
を修正する方法(フィードバック(FB)制御)の組み
合わせ制御である。活性炭処理水KMnO4消費量推定
値の算出に、式(3)を使用する。第7形態の制御は、
式(3)のように連続測定可能な水質指標によって、高
精度に活性炭処理水のKMnO4消費量を推定できる場
合において適用できる。
<Seventh Embodiment: Constant Control of KMnO 4 Consumption of Activated Carbon Treated Water (with Upper Limit Setting of Dissolved Ozone Concentration)> The seventh embodiment is based on the UV, water temperature and dissolved ozone concentration constant control set values of the ozonized raw water and the above formula ( 6), a method of determining the ozone injection rate (feed forward (FF) control), and comparing the set value of the constant control of the KMnO 4 consumption of the activated carbon treated water with the estimated value of the KMnO 4 consumption of the activated carbon treated water. This is a combination control of a method (feedback (FB) control) for correcting the injection rate. Equation (3) is used to calculate the estimated value of the KMnO 4 consumption of the activated carbon treated water. The control of the seventh mode is as follows.
The present invention can be applied to a case where the KMnO 4 consumption amount of the activated carbon treated water can be estimated with high accuracy by a water quality index that can be continuously measured as in Expression (3).

【0136】図8は第7形態を示す構成説明図で、図8
において、第1形態、第6形態と同一部分は同一符号を
付して説明する。第7形態は、オゾン接触池4、活性炭
接触池5、調節器CTRL1,2,3、オゾン発生器O
3G、注入オゾン濃度計O3CT、注入オゾンガス流量計
FT2、オゾン処理原水用UV計UVT、温度計WT、
オゾン処理原水流量計FT1、溶存オゾン濃度計DO3
T、活性炭処理水用UV計UVACTから構成される。
オゾン処理原水用∪V計UVT、温度計WTでオゾン処
理原水のUVと水温を、活性炭処理水用UV計UVAC
Tで活性炭処理水のUVを、および溶存オゾン濃度計D
3Tでオゾン処理水の溶存オゾン濃度をそれぞれ連続
測定する。
FIG. 8 is a structural explanatory view showing the seventh embodiment.
In the following description, the same parts as those in the first and sixth embodiments are denoted by the same reference numerals. The seventh embodiment includes an ozone contact pond 4, an activated carbon contact pond 5, a controller CTRL 1, 2, 3, and an ozone generator O
3 G, injecting ozone densitometer O 3 CT, injected ozone gas flowmeter FT2, UV meter UVT for ozone treatment raw water, a thermometer WT,
Ozonated raw water flow meter FT1, dissolved ozone concentration meter DO 3
T, composed of UV meter UVACT for activated carbon treated water.
∪V meter UVT for ozonated raw water, UV temperature of ozonized raw water with thermometer WT, UV meter UVAC for activated carbon treated water
At T, UV of activated carbon treated water and dissolved ozone concentration meter D
The dissolved ozone concentration of the ozonized water is continuously measured with O 3 T.

【0137】FF制御部では、オゾン処理原水UV、水
温の水質計測信号を入力信号として与え、式(6)によ
りFF制御用オゾン注入率D1を決定する。式(6)の
溶存オゾン濃度一定制御設定値は「0」(mg/L)と設
定する。この設定により、変動するオゾン処理原水水質
に対応し、さらにオゾン処理水で溶存オゾン濃度が検出
されない程度のD1が決定される。
The FF control section supplies water quality measurement signals of the ozone-treated raw water UV and the water temperature as input signals, and determines the ozone injection rate D 1 for FF control by equation (6). The dissolved ozone concentration constant control set value of the equation (6) is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality varying, D 1 to the extent that the dissolved ozone concentration is not detected is determined further in ozone treated water.

【0138】FB制御部では、活性炭処理水UVと式
(3)から活性炭処理水のKMnO4消費量推定値を算
出し、その推定値とオゾン処理水溶存オゾン濃度、そし
て活性炭処理水KMnO4消費量一定制御設定値C6SP
と溶存オゾン濃度上限設定値DO3ULSPの2つの設
定値を入力信号として与え、以下に示す式でD2を演算
し、決定する。
The FB control unit calculates an estimated value of the KMnO 4 consumption of the activated carbon treated water from the activated carbon treated water UV and the equation (3), and calculates the estimated value, the ozone concentration of the ozone-treated water-soluble ozone, and the KMnO 4 consumption of the activated carbon treated water. Constant value control set value C 6 SP
And the dissolved ozone concentration upper limit set value DO 3 ULSP are given as input signals, and D 2 is calculated and determined by the following equation.

【0139】 D2=k15・(C6sp−C6) (DO3<DO3ulspの場合) (15) D2=k16・(DO3ulsp−DO3) (DO3≧DO3ulspの場合)(16) ここで、 C6sp:活性炭処理水KMnO4消費量一定制御設定値
(mg/L) C6:活性炭処理水KMnO4消費量推定値(mg/L) DO3ulset:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3:オゾン処理水の溶存オゾン濃度(mg/L) k15,k16:定数 活性炭処理水KMnO4消費量推定値は、活性炭処理の
∪Vを用いて、式(3)から算出する。
D 2 = k 15 · (C 6sp -C 6 ) (when DO 3 <DO 3ulsp ) (15) D 2 = k 16 · (DO 3ulsp -DO 3 ) (when DO 3 ≧ DO 3ulsp ) (16) Here, C 6sp : KMnO 4 consumption constant control set value of activated carbon treated water (mg / L) C 6 : KMnO 4 consumption estimated value of activated carbon treated water (mg / L) DO 3ulset : Dissolution of ozone treated water Ozone concentration upper limit set value (mg / L) DO 3 : Dissolved ozone concentration of ozonized water (mg / L) k 15 , k 16 : constants Activated carbon treated water KMnO 4 consumption estimated value is calculated using ∪V of activated carbon treatment Then, it is calculated from equation (3).

【0140】FB制御部は、活性炭処理水KMnO4
費量一定制御に溶存オゾン濃度上限制御を組み合わせた
ものとした。溶存オゾン濃度上限制御は、活性炭処理水
KMnO4消費量(推定値)がKMnO4消費量一定制御
設定値まで低減されない場合に起こりうるオゾン注入と
溶存オゾン濃度の増大を回避するためのものである。溶
存オゾンが高くなりすぎると、注入したオゾンが無駄に
なるばかりでなく、後段の活性炭処理(生物活性炭)に
悪影響を及ぼす可能性がある。溶存オゾン濃度上限設定
値はこれを勘案して設定する。溶存オゾン濃度が上限設
定を超えない場合は、式(15)を用いて活性炭処理水
KMnO4消費量推定値をもとにD2の決定を行い、溶存
オゾン濃度が上限設定を超えた場合は、式(16)を用
いてこれ以上のオゾン注入を回避するため、溶存オゾン
濃度をもとにD2の決定を行う。FF制御部の出力D1
F8制御部の出力D2を加えて、組み合わせ制御のオゾ
ン注入率DSPが決定される。CTRL2では、オゾン
処理原水流量、注入オゾンガス流量、CTRL1で決定
されたDSPから注入オゾン濃度O3CSPが決定され
る。そして、オゾン接触池4の注入オゾン濃度が、CT
RL2で決定されたO3CSPになるように制御され
る。
The FB control unit is a combination of the constant control of the consumption of activated carbon treated water KMnO 4 and the control of the dissolved ozone concentration upper limit. The dissolved ozone concentration upper limit control is for avoiding ozone injection and an increase in dissolved ozone concentration that may occur when the consumption (estimated value) of the activated carbon treated water KMnO 4 is not reduced to the KMnO 4 consumption constant control set value. . If the dissolved ozone is too high, the injected ozone is not only wasted, but also may adversely affect the subsequent activated carbon treatment (biological activated carbon). The dissolved ozone concentration upper limit set value is set in consideration of this. When the dissolved ozone concentration does not exceed the upper limit setting performs determination of D 2 using Equation (15) based on activated carbon treated water KMnO 4 consumption estimates, if the dissolved ozone concentration exceeds the upper limit setting in order to avoid any more ozone injected using the equation (16), the determination of D 2 based on the dissolved ozone concentration. In addition the output D 2 outputs D 1 and F8 controller of FF controller, ozone injection rate of the combination control DSP is determined. In CTRL2, the injected ozone concentration O 3 CSP is determined from the flow rate of the ozonized raw water, the flow rate of the injected ozone gas, and the DSP determined in CTRL1. Then, the concentration of ozone injected into the ozone contact pond 4 is CT
It is controlled so as to become O 3 CSP determined by RL2.

【0141】オゾン・活性炭処理の除去対象物質の一つ
であるKMnO4消費量は、リアルタイムで測定できる
手段がなく(分析方法はあるが、簡便でなく、時間も労
力もかかる)、その測定値をオゾン注入制御には適用で
きない。オンサイト測定可能なUVは、リアルタイムで
結果が得られるため、式(3)を用いることで、高精度
なKMnO4消費量推定値がリアルタイムで得ることが
できる。
The consumption of KMnO 4, which is one of the substances to be removed by the ozone / activated carbon treatment, has no means for real-time measurement (there is an analysis method, but it is not simple, it takes time and effort), and the measured value is obtained. Cannot be applied to ozone injection control. Since UV that can be measured on-site can be obtained in real time, a highly accurate estimated value of KMnO 4 consumption can be obtained in real time by using equation (3).

【0142】第7形態の制御方法は、活性炭処理水KM
nO4消費量をUVと式(3)で算出した推定値として
直接把握し、それに応じたオゾン注入を行う方法である
ため、溶存オゾン濃度制御のように間接的に水質を把握
した制御方法よりも、さらにオゾン注入率の低減化が期
待できる。この第7形態の制御方法は、オゾン処理を活
性炭処理の前処理と明確に位置づけ、オゾン・活性炭処
理の最終処理水である活性炭処理水で目標の水質を得る
ための制御方法である(オゾン処理水はオゾン・活性炭
処理の中間処理水であるとの位置づけ)。
[0142] The control method of the seventh embodiment is the same as that of the activated carbon treated water KM.
This is a method of directly grasping nO 4 consumption as UV and an estimated value calculated by equation (3), and injecting ozone in accordance with that. Therefore, a control method that indirectly grasps water quality, such as dissolved ozone concentration control, is used. Can also be expected to further reduce the ozone injection rate. In the control method of the seventh embodiment, the ozone treatment is clearly positioned as the pretreatment of the activated carbon treatment, and is a control method for obtaining the target water quality with the activated carbon treated water that is the final treatment water of the ozone / activated carbon treatment (the ozone treatment). Water is regarded as intermediate treatment water for ozone and activated carbon treatment).

【0143】よって、オゾンの物性(水温が低いほど水
に溶けやすい等)や活性炭の吸着特性、生物活性炭とし
て機能した時の生物活性(水温が高いほど生物の活性が
高い)といった各処理工程の特性に応じた負荷配分が、
この制御ではなされる。また、FF制御部により、原水
の水質変動に対する処理の安定化も期待できる。第7形
態による処理水水質一定制御の実現は、原水の水質変動
に対して安定した処理水質が得られると同時に、オゾン
過剰注入が防止でき、効率のよいオゾン処理が可能とな
る。
Therefore, the properties of ozone (such as the lower the water temperature is, the more soluble it is in water), the adsorption characteristics of activated carbon, and the biological activity when functioning as biologically activated carbon (the higher the water temperature is, the higher the biological activity) is in each processing step. Load distribution according to characteristics,
This control is performed. In addition, the FF control unit can be expected to stabilize the processing for the fluctuation of the raw water quality. Realization of the constant treatment water quality control according to the seventh embodiment not only provides stable treatment water quality against fluctuations in raw water quality, but also prevents excessive ozone injection and enables efficient ozone treatment.

【0144】上記のように構成した第7形態によれば、
次に示すような効果が得られる。
According to the seventh embodiment configured as described above,
The following effects can be obtained.

【0145】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV, water temperature, and water quality items such as UV and water temperature of the inflowing ozone-treated raw water, and the ozone injection rate determination formula (Equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0146】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using the equation (6), it becomes possible to inject ozone quickly even when the raw water quality changes.

【0147】(c)活性炭処理水のUVを説明変数とす
る活性炭処理水KMnO4消費量推定式(式(3))
に、活性炭処理水UVを代入することにより、活性炭処
理水KMnO4消費量を高精度に推定できる。
(C) Formula for estimating KMnO 4 consumption of activated carbon treated water using UV of the activated carbon treated water as an explanatory variable (equation (3))
By substituting the activated carbon treated water UV into the water, the consumption of the activated carbon treated water KMnO 4 can be estimated with high accuracy.

【0148】(d)式(3)の説明変数はリアルタイム
測定可能な水質項目であるから、活性炭処理水KMnO
4消費量の推定がリアルタイムで可能となる。
(D) Since the explanatory variables in equation (3) are water quality items that can be measured in real time, the activated carbon treated water KMnO
4 Estimation of consumption can be made in real time.

【0149】(f)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水KMnO4
費量推定値を直接用いることにより、オゾン濃度指標を
制御量とした制御方法よりも、より水質に基づいたオゾ
ン注入が可能となる。
(F) By directly using the estimated value of the consumption of the activated carbon treated water KMnO 4, which is the quality of the activated carbon treated water, as the control amount of the feedback control term, the water quality can be improved more than the control method using the ozone concentration index as the control amount. , It becomes possible to inject ozone.

【0150】(g)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水KMnO4
費量(推定値)を用いたオゾン注入制御は、オゾン処理
水のそれを用いる場合よりも、よりオゾン注入率の低減
化が期待出来る。
(G) The ozone injection control using the activated carbon treated water KMnO 4 consumption (estimated value), which is the quality of the activated carbon treated water, as the control amount of the feedback control term is more effective than the case where the ozone treated water is used. The ozone injection rate can be reduced more.

【0151】(h)式(6)を用いたオゾン注入率を、
活性炭処理水KMnO4消費量(推定値)フィードバッ
ク制御項を用いて補正することにより、安定したオゾン
処理を実現するオゾン注入率が決定できる。
(H) The ozone injection rate using the equation (6) is
By correcting using the KMnO 4 consumption (estimated value) feedback control term of the activated carbon treated water, the ozone injection rate for realizing stable ozone treatment can be determined.

【0152】(i)活性炭処理水KMnO4消費量一定
制御に溶存オゾン濃度上限設定を組み合わせることによ
り、活性炭処理水KMnO4消費量(推定値)が目標値
まで低減されない場合に発生すると考えられるオゾン過
剰注入、溶存オゾン濃度上昇を防止することが出来る。
[0152] (i) ozone by combining the dissolved ozone concentration limit set to the activated carbon-treated water KMnO 4 consumption constant control, believed to activated carbon treated water KMnO 4 consumption (estimated value) is generated if not reduced to the target value Excessive injection and increase in dissolved ozone concentration can be prevented.

【0153】(j)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御と活性炭処理
水KMnO4消費量一定(溶存オゾン濃度上限設定付
き)フィードバック制御を組み合わせたオゾン注入フィ
ードフォワード・フィードバック組み合わせ制御によっ
て、原水水質の変動に対しても迅速なオゾン注入が可能
となり、かつフィードバック制御単独時に比べて処理の
安定性向上が期待できる。 <第8形態:活性炭処理水
THMFP一定制御(溶存オゾン濃度上限設定付き)>
第8形態は、オゾン処理原水のUV、水温と溶存オゾン
濃度一定制御設定値と上記式(6)を用いて、オゾン注
入率を決定する方法(フィードフォワード(FF)制
御)と活性炭処理水THMFP一定制御設定値と活性炭
処理水THMFP推定値を比較して、オゾン注入率を修
正する方法(フィードバック(FB)制御)の組み合わ
せ制御である。活性炭処理水THMFP推定値の算出
に、式(5)を使用する。第8形態の制御は、式(5)
のように連続測定可能な水質指標によって、高精度に活
性炭処理水のTHMFPを推定できる場合において適用
できる。 図9は第8形態を示す構成説明図で、図9に
おいて、第1形態、第7形態と同一部分は同一符号を付
して説明する。第8形態は、オゾン接触池4、活性炭接
触池5、調節器CTRL1,2,3、オゾン発生器O3
G、注入オゾン濃度計O3CT、注入オゾンガス流量計
FT2、オゾン処理原水用∪V計UVT、温度計WT
1,2、オゾン処理原水流量計FT1、溶存オゾン濃度
計DO3T、活性炭処理水用∪V計UVACTから構成
される。オゾン処理原水用UV計UVT、温度計WT1
でオゾン処理原水のUVと水温を、活性炭処理水用UV
計UVACT、温度計WT2で活性炭処理水のUVと水
温を、および溶存オゾン濃度計DO3Tでオゾン処理水
の溶存オゾン濃度をそれぞれ連続測定する。
(J) Ozone injection feedforward feedback combining feedforward control of the ozone injection rate using the quality of the inflowing ozone-treated raw water and feedback control of constant consumption of activated carbon-treated water KMnO 4 (with upper limit setting of dissolved ozone concentration) By the combination control, rapid ozone injection can be performed even when the raw water quality changes, and the stability of the treatment can be expected to be improved as compared with the case where the feedback control is used alone. <Eighth embodiment: THMFP constant control of activated carbon treated water (with upper limit setting of dissolved ozone concentration)>
The eighth embodiment is a method of determining the ozone injection rate (feed forward (FF) control) using the UV, water temperature, dissolved ozone concentration constant control set value and the above equation (6), and the activated carbon treated water THMFP. This is a combination control of a method (feedback (FB) control) of correcting the ozone injection rate by comparing the fixed control set value with the estimated value of the activated carbon THMFP. Equation (5) is used to calculate the THMFP estimated value of the activated carbon treated water. The control in the eighth mode is expressed by the following equation (5).
It can be applied when the THMFP of the activated carbon treated water can be estimated with high accuracy by the water quality index that can be continuously measured as described above. FIG. 9 is a configuration explanatory view showing an eighth embodiment. In FIG. 9, the same parts as those in the first embodiment and the seventh embodiment are denoted by the same reference numerals. Eighth embodiment, ozone contact basin 4, activated carbon contacting pond 5, control CTRL1,2,3, ozone generator O 3
G, injected ozone concentration meter O 3 CT, injected ozone gas flow meter FT2, ozone treated raw water ΔV meter UVT, thermometer WT
1, 2, ozone-treated raw water flow meter FT1, dissolved ozone concentration meter DO 3 T, ΔV meter UVACT for activated carbon treated water. Ozone-treated raw water UV meter UVT, thermometer WT1
UV and water temperature of ozone-treated raw water, UV for activated carbon-treated water
The UV and water temperature of the activated carbon treated water are continuously measured by a UVACT meter and a thermometer WT2, and the dissolved ozone concentration of the ozonized water is continuously measured by a dissolved ozone concentration meter DO 3 T.

【0154】FF制御部では、オゾン処理原水UV、水
温の水質計測信号を入力信号として与え、式(6)によ
りFF制御用オゾン注入率D1を決定する。式(6)の
溶存オゾン濃度一定制御設定値は「0」(mg/L)と設
定する。この設定により、変動するオゾン処理原水水質
に対応し、さらにオゾン処理水で溶存オゾン濃度が検出
されない程度のD1が決定される。
The FF control section supplies the water quality measurement signals of the ozone-treated raw water UV and the water temperature as input signals, and determines the ozone injection rate D 1 for FF control by equation (6). The dissolved ozone concentration constant control set value of the equation (6) is set to “0” (mg / L). This setting corresponds to the ozone treatment raw water quality varying, D 1 to the extent that the dissolved ozone concentration is not detected is determined further in ozone treated water.

【0155】FB制御部では、活性炭処理水UVと水温
と式(5)から活性炭処理水のTHMFP推定値を算出
し、その推定値とオゾン処理水溶存オゾン濃度の信号、
そして活性炭処理水THMFP一定制御設定値C7SP
と溶存オゾン濃度上限設定値DO3ULSPの2つの設
定値を入力信号として与え、以下に示す式でD2を演算
し、決定する。
The FB control unit calculates a THMFP estimated value of the activated carbon treated water from the activated carbon treated water UV, the water temperature, and the equation (5), and calculates the estimated value and a signal of the ozone concentration in the ozone treated water-soluble ozone concentration.
And the activated carbon treated water THMFP constant control set value C 7 SP
And the dissolved ozone concentration upper limit set value DO 3 ULSP are given as input signals, and D 2 is calculated and determined by the following equation.

【0156】 D2=k17・(C7sp−C7) (DO3<DO3ulspの場合) (17) D2=k18・(DO3ulsp−DO3) (DO3≧DO3ulspの場合)(18) ここで、 C7sp:活性炭処理水THMFP一定制御設定値(μg/
L) C7 :活性炭処理水THMFP推定値(μg/L) DO3ulset:オゾン処理水の溶存オゾン濃度上限設定値
(mg/L) DO3:オゾン処理水の溶存オゾン濃度(mg/L) k17,k18:定数 活性炭処理水のTHMFP推定値は、活性炭処理のUV
と水温を用いて、式(5)から算出する。
D 2 = k 17 · (C 7sp -C 7 ) (when DO 3 <DO 3ulsp ) (17) D 2 = k 18 · (DO 3ulsp -DO 3 ) (when DO 3 ≧ DO 3ulsp ) (18) Here, C 7sp : THMFP constant control set value (μg /
L) C 7 : THMFP estimated value of activated carbon treated water (μg / L) DO 3ulset : Upper limit value of dissolved ozone concentration of ozonated water (mg / L) DO 3 : Dissolved ozone concentration of ozonized water (mg / L) k 17 , k 18 : constant The THMFP estimated value of the activated carbon treated water is the UV of the activated carbon treated water.
Using equation (5) and the water temperature.

【0157】FB制御部は、活性炭処理水THMFP一
定制御に溶存オゾン濃度上限制御を組み合わせたものと
した。溶存オゾン濃度上限制御は、活性炭処理水THM
FP(推定値)がTHMFP一定制御設定値まで低減さ
れない場合に起こり得るオゾン注入と溶存オゾン濃度の
増大を回避するためのものである。溶存オゾンが高くな
りすぎると、注入したオゾンが無駄になるばかりでな
く、後段の活性炭処理(生物活性炭)に悪影響を及ぼす
可能性がある。溶存オゾン濃度上限設定値は、これを勘
案して設定する。溶存オゾン濃度が上限設定を超えない
場合は、式(17)を用いて活性炭処理水THMFP推
定値をもとにD2の決定を行い、溶存オゾン濃度が上限
設定を超えた場合は、式(17)を用いて、これ以上の
オゾン注入を回避するため、溶存オゾン濃度をもとにD
2の決定を行う。
The FB control unit is a combination of THMFP constant control of activated carbon treated water and dissolved ozone concentration upper limit control. Dissolved ozone concentration upper limit control is activated carbon treated water THM
This is for avoiding an ozone injection and an increase in the dissolved ozone concentration that can occur when the FP (estimated value) is not reduced to the THMFP constant control set value. If the dissolved ozone is too high, the injected ozone is not only wasted, but also may adversely affect the subsequent activated carbon treatment (biological activated carbon). The dissolved ozone concentration upper limit set value is set in consideration of this. If the dissolved ozone concentration does not exceed the upper limit setting, D 2 is determined based on the estimated value of the activated carbon treated water THMFP using Expression (17), and if the dissolved ozone concentration exceeds the upper limit setting, the expression (17) is used. 17), to avoid further injection of ozone, D
Make decision 2 .

【0158】FF制御部の出力D1とFB制御部の出力
2を加えて、組み合わせ制御のオゾン注入率DSPが
決定される。CTRL2では、オゾン処理原水流量、注
入オゾンガス流量、CTRL1で決定されたDSPから
注入オゾン濃度O3CSPが決定される。そして、オゾ
ン接触池4の注入オゾン濃度が、CTRL2で決定され
たO3CSPになるように制御される。
The output D 1 of the FF controller and the output D 2 of the FB controller are added to determine the ozone injection rate DSP of the combination control. In CTRL2, the injected ozone concentration O 3 CSP is determined from the flow rate of the ozonized raw water, the flow rate of the injected ozone gas, and the DSP determined in CTRL1. Then, the injection ozone concentration of the ozone contact pond 4 is controlled so as to be O 3 CSP determined by CTRL2.

【0159】オゾン・活性炭処理の除去対象物質の一つ
であるTHMFPは、リアルタイムで測定できる手段が
なく(分析方法はあるが、簡便でなく、時間も労力もか
かる)、その測定値をオゾン注入制御に適用できない。
オンサイト測定可能なUV、水温はリアルタイムで結果
が得られるため、式(5)を用いることで、高精度なT
HMFP推定値がリアルタイムで得ることができる。
THMFP, which is one of the substances to be removed by the ozone / activated carbon treatment, has no means for real-time measurement (there is an analysis method, but it is not simple, it takes time and effort), and the measured value is injected with ozone. Not applicable for control.
Since UV and water temperatures that can be measured on-site can be obtained in real time, a high-precision T
An HMFP estimate can be obtained in real time.

【0160】第8形態の制御方法は、活性炭処理水TH
MFPをUVと水温と式(5)で算出した推定値として
直接把握し、それに応じたオゾン注入を行う方法である
ため、溶存オゾン濃度制御のように間接的に水質を把握
した制御方法よりも、さらにオゾン注入率の低減化が可
能となる。
The control method according to the eighth embodiment is based on the activated carbon treated water TH
This is a method of directly grasping the MFP as UV, water temperature, and an estimated value calculated by the equation (5), and injecting ozone in accordance therewith. Therefore, compared with a control method in which water quality is indirectly grasped, such as control of dissolved ozone concentration, In addition, the ozone injection rate can be further reduced.

【0161】この第8形態の制御方法は、オゾン処理を
活性炭処理の前処理と明確に位置づけ、オゾン・活性炭
処理の最終処理水である活性炭処理水で目標の水質を得
るための制御方法である(オゾン処理水はオゾン・活性
炭処理の中間処理水であるとの位置づけ)。
In the control method of the eighth embodiment, the ozone treatment is clearly positioned as the pretreatment of the activated carbon treatment, and the target water quality is obtained with the activated carbon treated water that is the final treated water of the ozone / activated carbon treatment. (Positioned ozonated water is intermediate treated water for ozone / activated carbon treatment.)

【0162】よって、オゾンの物性(水温が低いほど水
に溶けやすいなど)や活性炭の吸着特性、生物活性炭と
して機能した時の生物活性(水温が高いほど生物の活性
が高い)といった各処理工程の特性に応じた負荷配分
が、この制御ではなされる。また、FF制御部により、
原水の水質変動に対する処理の安定化も期待できる。第
8形態の処理水水質一定制御の実現は、原水の水質変動
に対して安定した処理水質が得られると同時に、オゾン
過剰注入が防止でき、効率のよいオゾン処理が可能とな
る。
Therefore, the properties of ozone (such as the lower the water temperature is, the more easily it dissolves in water), the adsorption characteristics of activated carbon, and the biological activity when functioning as biologically activated carbon (the higher the water temperature, the higher the biological activity), are used in each processing step. The load distribution according to the characteristic is performed by this control. Also, by the FF control unit,
It is also expected that the treatment of raw water quality fluctuations will be stabilized. Realization of the constant control of the treated water quality in the eighth embodiment makes it possible to obtain a treated water quality that is stable with respect to fluctuations in the quality of the raw water, and at the same time, it is possible to prevent excessive injection of ozone, thereby enabling efficient ozone treatment.

【0163】上記のように構成した第8形態によれば、
次に示すような効果が得られる。
According to the eighth embodiment configured as described above,
The following effects can be obtained.

【0164】(a)流入するオゾン処理原水のUV、水
温といった水質項目、溶存オゾン濃度一定制御設定値を
説明変数とするオゾン注入率決定式(式(6))に、オ
ゾン処理原水UV、水温の現在測定値と溶存オゾン濃度
一定制御設定値として「0」mg/Lを代入することによ
り、オゾン処理原水の水質に応じたオゾン注入率を決定
できる。
(A) The ozone-treated raw water UV, water temperature, and water quality items such as UV and water temperature of the inflowing ozone-treated raw water and the ozone injection rate determination formula (Equation (6)) using the dissolved ozone concentration constant control set value as an explanatory variable are shown in FIG. By substituting “0” mg / L as the current measured value of “1” and the dissolved ozone concentration constant control setting value, the ozone injection rate according to the quality of the ozonized raw water can be determined.

【0165】(b)式(6)を用いたオゾン注入率に基
づき、原水水質の変動に対しても迅速なオゾン注入が可
能となる。
(B) Based on the ozone injection rate using the equation (6), it becomes possible to inject ozone quickly even when the raw water quality changes.

【0166】(c)活性炭処理水のUVと水温を説明変
数とする活性炭処理水THMFP推定式(式(5))
に、活性炭処理水UV、水温を代入することにより、活
性炭処理水THMFPを高精度に推定できる。
(C) Activated carbon treated water THMFP estimation formula (expression (5)) using UV and water temperature as explanatory variables
The activated carbon-treated water THMFP can be estimated with high accuracy by substituting the activated carbon-treated water UV and the water temperature into the water.

【0167】(d)式(5)の説明変数はリアルタイム
測定可能な水質項目であるから、活性炭処理水THMF
Pの推定がリアルタイムで可能となる。
(D) Since the explanatory variable in equation (5) is a water quality item that can be measured in real time, the activated carbon treated water THMF
The estimation of P becomes possible in real time.

【0168】(e)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水THMFP推
定値を直接用いることにより、オゾン濃度指標を制御量
とした制御方法よりも、より水質に基づいたオゾン注入
が可能となる。
(E) By directly using the estimated value of the activated carbon treated water THMFP, which is the quality of the activated carbon treated water, as the control amount of the feedback control term, the control value is more based on the water quality than the control method using the ozone concentration index as the control amount. Ozone injection becomes possible.

【0169】(f)フィードバック制御項の制御量とし
て、活性炭処理水水質である活性炭処理水THMFP
(推定値)を用いたオゾン注入制御は、オゾン処理水の
それを用いる場合よりも、よりオゾン注入率の低減化が
可能となる。
(F) The control amount of the feedback control term is activated carbon treated water THMFP, which is the quality of activated carbon treated water.
The ozone injection control using the (estimated value) can further reduce the ozone injection rate as compared with the case where the ozone-treated water is used.

【0170】(g)式(6)を用いたオゾン注入率を、
活性炭処理水THMFP(推定値)フィードバック制御
項を用いて補正することにより、安定したオゾン処理を
実現するオゾン注入率が決定できる。
(G) The ozone injection rate using the equation (6) is
By performing correction using the activated carbon treated water THMFP (estimated value) feedback control term, the ozone injection rate that realizes stable ozone treatment can be determined.

【0171】(h)活性炭処理水THMFP一定制御に
溶存オゾン濃度上限設定を組み合わせることにより、活
性炭処理水THMFP(推定値)が目標値まで低減され
ない場合に発生すると考えられるオゾン過剰注入、溶存
オゾン濃度上昇を防止することが出来る。
(H) By combining the constant control of the activated carbon treated water THMFP with the upper limit setting of the dissolved ozone concentration, the excess ozone injection and the dissolved ozone concentration considered to occur when the activated carbon treated water THMFP (estimated value) is not reduced to the target value. The rise can be prevented.

【0172】(i)流入するオゾン処理原水の水質を用
いたオゾン注入率フィードフォワード制御と活性炭処理
水THMFP一定(溶存オゾン濃度上限設定付き)フィ
ードバック制御を組み合わせたオゾン注入フィードフォ
ワード・フィードバック組み合わせ制御によって、原水
水質の変動に対しても迅速なオゾン注入が可能となり、
かつフィードバック制御単独時に比べて処理の安定性向
上が可能となる。
(I) Ozone injection feed-forward control using the quality of the ozone-treated raw water flowing in and feed-forward control combined with feed-forward feedback control of constant activated carbon treated water THMFP (with upper limit setting of dissolved ozone concentration) feedback control. In addition, quick ozone injection is possible even for fluctuations in raw water quality,
In addition, the stability of the process can be improved as compared with the case where the feedback control is performed alone.

【0173】[0173]

【発明の効果】以上述べたように、この発明によれば、
必要なオゾン注入率が分かるため、原水水質の変動に対
しても迅速なオゾン注入が可能になる。また、オゾン注
入率を溶存オゾン濃度測定値に基づいたフィードフォワ
ード・フィードバック制御を用いて補正することによ
り、安定したオゾン処理を実現するオゾン注入率が決定
できる。さらに、フィードフォワード制御とフィードバ
ック制御を組み合わせているので、原水水質の変動に対
しても迅速なオゾン注入が可能になるとともに、フィー
ドバック制御単独時に比較して処理の安定性向上が期待
できる。この他、溶存オゾン濃度上昇を防止することが
でき、またオゾン処理水KMnO4消費量、THMFP
を高精度に推定でき、しかも、活性炭処理水の場合にも
同様な効果が得られる等種々の優れた利点がある。
As described above, according to the present invention,
Since the required ozone injection rate is known, it is possible to quickly inject ozone even when the raw water quality changes. In addition, by correcting the ozone injection rate using feedforward feedback control based on the dissolved ozone concentration measurement value, the ozone injection rate that realizes stable ozone treatment can be determined. Furthermore, since the feedforward control and the feedback control are combined, rapid ozone injection can be performed even when the raw water quality fluctuates, and improvement in the processing stability can be expected as compared to the case where the feedback control is performed alone. In addition, the dissolved ozone concentration can be prevented from increasing, and the ozone-treated water KMnO 4 consumption, THMFP
Can be estimated with high accuracy, and the same effect can be obtained in the case of activated carbon treated water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オゾン・活性炭処理実証プラントにプロセス用
UV計を設置した構成説明図。
FIG. 1 is a configuration explanatory view in which a process UV meter is installed in an ozone / activated carbon treatment demonstration plant.

【図2】この発明の実施の第1形態(UVを用いたオゾ
ン注入率フィードフォワード制御)の構成説明図。
FIG. 2 is a configuration explanatory diagram of a first embodiment (ozone injection rate feedforward control using UV) of the first embodiment of the present invention.

【図3】この発明の実施の第2形態(溶存オゾン濃度一
定制御)の構成説明図。
FIG. 3 is a configuration explanatory view of a second embodiment (dissolved ozone concentration constant control) of the second embodiment of the present invention.

【図4】この発明の実施の第3形態(オゾン処理水UV
一定制御)の構成説明図。
FIG. 4 shows a third embodiment (ozone-treated water UV) of the present invention.
FIG.

【図5】この発明の実施の第4形態(オゾン処理水KM
nO4消費量一定制御)の構成説明図。
FIG. 5 shows a fourth embodiment of the present invention (ozone-treated water KM).
FIG. 2 is a configuration explanatory diagram of nO 4 consumption constant control).

【図6】この発明の実施の第5形態(オゾン処理水TH
MFP一定制御)の構成説明図。
FIG. 6 shows a fifth embodiment (ozone-treated water TH) of the present invention.
FIG. 3 is an explanatory diagram of a configuration of MFP constant control.

【図7】この発明の実施の第6形態(活性炭処理水UV
一定制御)の構成説明図。
FIG. 7 shows a sixth embodiment of the present invention (activated carbon treated water UV).
FIG.

【図8】この発明の実施の第7形態(活性炭処理水KM
nO4消費量一定制御)の構成説明図。
FIG. 8 shows a seventh embodiment of the present invention (activated carbon treated water KM).
FIG. 2 is a configuration explanatory diagram of nO 4 consumption constant control).

【図9】この発明の実施の第8形態(活性炭処理水TH
MFP一定制御)の構成説明図。
FIG. 9 shows an eighth embodiment of the present invention (activated carbon treated water TH).
FIG. 3 is an explanatory diagram of a configuration of MFP constant control.

【符号の説明】[Explanation of symbols]

1…原水槽 2…凝集沈殿池 3…前砂ろ過池 4…オゾン接触池 5…活性炭接触池 6…混和池 7…後砂ろ過池 O3G…オゾン発生器 O3CT…注入オゾン濃度計 UVT…低濃度UV計 WT…温度計 FT1…オゾン処理原水流量計 FT2…注入オゾンガス流量計 CTRL…調節器1 ... raw water tank 2 ... coagulation sedimentation tank 3 ... Previous sand filter 4 ... ozone contact basin 5 ... activated carbon contact basin 6 ... mixing basin 7 ... rear sand filtration basin O 3 G ... ozone generator O 3 CT ... injecting ozone concentration meter UVT: Low concentration UV meter WT: Thermometer FT1: Ozone treated raw water flow meter FT2: Injected ozone gas flow meter CTRL: Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 540 C02F 1/50 540A 550 550C 550L 560 560B 560Z G01N 21/33 G01N 21/33 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 540 C02F 1/50 540A 550 550C 550L 560 560B 560Z G01N 21/33 G01N 21/33

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】 被処理水をオゾン接触池でオゾン注入処
理する際に、オゾン接触池の溶存オゾン濃度が一定とな
るようにオゾン注入率を制御する方法において、 前記
被処理水の紫外線吸光度と水温を計測した後、前記オゾ
ン注入率D(mg/L)を、下記式に被処理水の紫外線吸
光度A(abs/50mm)、被処理水の水温T(℃)と溶存
オゾン濃度一定制御設定値C(mg/L)を代入して決定
することを特徴とするオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
1. A method for controlling an ozone injection rate so that a concentration of dissolved ozone in an ozone contact pond becomes constant when ozone injection treatment is performed on the water to be treated in an ozone contact pond. After the water temperature was measured, the ozone injection rate D (mg / L) was calculated by the following formula using the ultraviolet absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) of the water to be treated, and the dissolved ozone concentration constant control setting. An ozone injection control method characterized by substituting and determining a value C (mg / L). D = aA + bT + cC + d where a, b, c, and d are constants
【請求項2】 前記オゾン注入率決定式で得たオゾン注
入率を用いて、オゾン注入処理をフィードフォワード制
御することを特徴とする請求項1記載のオゾン注入制御
方法。
2. The ozone injection control method according to claim 1, wherein the ozone injection processing is feed-forward controlled using the ozone injection rate obtained by the formula for determining the ozone injection rate.
【請求項3】 被処理水をオゾン接触池でオゾン注入処
理する際に、オゾン接触池の溶存オゾン濃度が一定とな
るようにオゾン注入率を制御する方法において、 前記
被処理水の紫外線吸光度と水温を計測した後、下記式に
被処理水の紫外線吸光度A(abs/50mm)、被処理水の
水温T(℃)と溶存オゾン濃度一定制御設定値C(mg/
L)を代入して決定したオゾン注入率D(mg/L)を、オ
ゾン接触池出口の溶存オゾン濃度と溶存オゾン濃度一定
制御設定値を用いてフィードバック補正したことを特徴
とするオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
3. A method for controlling an ozone injection rate such that a concentration of dissolved ozone in an ozone contact pond becomes constant when ozone injection treatment is performed on the water to be treated in an ozone contact pond. After measuring the water temperature, the UV absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C (mg /
Wherein the ozone injection rate D (mg / L) determined by substituting L) is corrected by feedback using the dissolved ozone concentration at the outlet of the ozone contact tank and the dissolved ozone concentration constant control set value. . D = aA + bT + cC + d where a, b, c, and d are constants
【請求項4】 前記オゾン注入率を用いたフィードフォ
ワード制御とフィードバック制御によりオゾンを注入す
ることを特徴とする請求項3記載のオゾン注入制御方
法。
4. The ozone injection control method according to claim 3, wherein the ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項5】 被処理水をオゾン接触池でオゾン注入処
理する際に、オゾン処理水の紫外線吸光度が一定となる
ようにオゾン注入率を制御する方法において、 前記被処理水の紫外線吸光度と水温を計測した後、下記
式に被処理水の紫外線吸光度A(abs/50mm)、被処理
水の水温T(℃)と溶存オゾン濃度一定制御設定値C
(mg/L)を代入して決定したオゾン注入率D(mg/L)
を、オゾン処理水の紫外線吸光度とオゾン処理水の紫外
線吸光度一定制御設定値を用いてフィードバック補正し
たことを特徴とするオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
5. A method for controlling an ozone injection rate such that the ozone-injected water is subjected to ozone injection treatment in an ozone contact pond so that the ultraviolet absorbance of the ozone-treated water is constant. After the measurement, the UV absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) of the water to be treated and the dissolved ozone concentration constant control set value C are calculated by the following equations.
(Mg / L) and ozone injection rate D (mg / L)
Using the ultraviolet absorbance of the ozonated water and the ultraviolet absorbance constant control set value of the ozonated water in a feedback manner. D = aA + bT + cC + d where a, b, c, and d are constants
【請求項6】 前記フィードバック補正に際しては、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項5記載のオゾン注入制御方法。
6. The ozone injection control method according to claim 5, wherein an upper limit setting of the concentration of ozone treated water-soluble ozone is added during the feedback correction.
【請求項7】 前記オゾン注入率を用いたフィードフォ
ワード制御とフィードバック制御によりオゾンを注入す
ることを特徴とする請求項5、6記載のオゾン注入制御
方法。
7. The ozone injection control method according to claim 5, wherein ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項8】 被処理水をオゾン接触池でオゾン注入処
理する際に、オゾン処理水の過マンガン酸カリウム(K
MnO4)消費量が一定となるようにオゾン注入率を制
御する方法において、 前記被処理水の紫外線吸光度と水温を計測した後、下記
式に被処理水の紫外線吸光度A(abs/50mm)、被処理
水の水温T(℃)と溶存オゾン濃度一定制御設定値C
(mg/L)を代入して決定したオゾン注入率D(mg/L)
を、オゾン処理水KMnO4消費量推定値とKMnO4
費量一定制御設定値を用いてフィードバック補正したこ
とを特徴とするオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
8. When the water to be treated is subjected to ozone injection treatment in an ozone contact pond, potassium permanganate (K) of the ozonized water is treated.
MnO 4 ) In a method of controlling the ozone injection rate so that the consumption amount is constant, after measuring the ultraviolet absorbance and the water temperature of the water to be treated, the ultraviolet absorbance A (abs / 50 mm) of the water to be treated is calculated by the following formula: Water temperature T (° C) of treated water and dissolved ozone concentration constant control set value C
(Mg / L) and ozone injection rate D (mg / L)
The ozone injection control method characterized by the feedback correction using the ozonated water KMnO 4 consumption estimate and the KMnO 4 consumption constant control setting value. D = aA + bT + cC + d where a, b, c, and d are constants
【請求項9】 前記過マンガン酸カリウム(KMn
4)消費量推定値を、下記KMnO4消費量推定式KM
を用いて求めたことを特徴とする請求項8記載のオゾン
注入制御方法。 KM=a・A2+b・{1−(A2/A1)}+c 但し、A1:被処理水の紫外線吸光度、A2:オゾン処理
水紫外線吸光度、a,b,c:定数
9. The potassium permanganate (KMn)
O 4 ) The estimated consumption value is calculated by the following KMnO 4 consumption estimation formula KM
The ozone injection control method according to claim 8, wherein the ozone injection control method is used to calculate the ozone injection. KM = a · A 2 + b · {1- (A 2 / A 1 )} + c, where A 1 : UV absorbance of water to be treated, A 2 : UV absorbance of ozone treated water, a, b, c: constants
【請求項10】 前記KMnO4消費量推定式と、リア
ルタイム測定可能な被処理水の紫外線吸光度とオゾン処
理水の紫外線吸光度とを用いて、オゾン処理水KMnO
4消費量をリアルタイムに推定することを特徴とする請
求項9記載のオゾン注入制御方法。
10. Using the KMnO 4 consumption estimation formula, the UV absorbance of the water to be treated and the UV absorbance of the ozonated water, which can be measured in real time, use the ozonated water KMnO 4.
Ozone injection control method according to claim 9, wherein the estimating the 4 consumption in real time.
【請求項11】 前記オゾン処理水KMnO4消費量を
推定値としてリアルタイムで把握し、この推定値をオゾ
ン注入の制御指標として用いることを特徴とする請求項
8〜10記載のオゾン注入制御方法。
11. The ozone injection control method according to claim 8, wherein the ozone treated water KMnO 4 consumption is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.
【請求項12】 前記フィードバック補正に際して、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項8記載のオゾン注入制御方法。
12. The ozone injection control method according to claim 8, wherein an upper limit setting of the concentration of ozone treated water-soluble ozone is added during the feedback correction.
【請求項13】 前記オゾン注入率を用いたフィードフ
ォワード制御とフィードバック制御によりオゾンを注入
することを特徴とする請求項8〜12記載のオゾン注入
制御方法。
13. The ozone injection control method according to claim 8, wherein ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項14】 被処理水をオゾン接触池でオゾン注入
処理する際に、オゾン処理水のトリハロメタン生成能
(THMFP)が一定となるようにオゾン注入率を制御
する方法において、 前記被処理水の紫外線吸光度と水温を計測した後、下記
式に被処理水の紫外線吸光度A(abs/50mm)、被処理
水の水温T(℃)と溶存オゾン濃度一定制御設定値C
(mg/L)を代入して決定したオゾン注入率D(mg/L)
を、オゾン処理水THMFP推定値とTHMFP一定制
御設定値を用いてフィードバック補正したことを特徴と
するオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
14. A method for controlling an ozone injection rate such that a trihalomethane generation ability (THMFP) of ozonized water is constant when ozone-injection treatment is performed on the water to be treated in an ozone contact pond. After measuring the UV absorbance and water temperature, the UV absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C are calculated by the following formulas.
(Mg / L) and ozone injection rate D (mg / L)
Using the estimated value of the ozone-treated water THMFP and the set value of the THMFP constant control, and the feedback correction of D = aA + bT + cC + d where a, b, c, and d are constants
【請求項15】 前記オゾン処理水THMFP推定値
を、下記THMFP推定式THを用いて求めたことを特
徴とする請求項14記載のオゾン注入制御方法。 TH=a・A+b・T+c 但し、A:オゾン処理水の紫外線吸光度、T:オゾン処
理水の水温、a,b,c:定数
15. The ozone injection control method according to claim 14, wherein the estimated value of the ozone-treated water THMFP is obtained using the following THMFP estimation formula TH. TH = a · A + b · T + c, where A: UV absorbance of ozonated water, T: water temperature of ozonated water, a, b, c: constants
【請求項16】 前記THMFP推定式と、リアルタイ
ム測定可能なオゾン処理水紫外線吸光度、水温を用い
て、オゾン処理水THMFPをリアルタイムに推定する
ことを特徴とする請求項15記載のオゾン注入制御方
法。
16. The ozone injection control method according to claim 15, wherein the ozone-treated water THMFP is estimated in real time using the THMFP estimation formula, the ultraviolet absorbance of ozone-treated water that can be measured in real time, and the water temperature.
【請求項17】 前記オゾン処理水THMFPを推定値
としてリアルタイムで把握し、この推定値をオゾン注入
の制御指標として用いることを特徴とする請求項14〜
16記載のオゾン注入制御方法。
17. The ozone-treated water THMFP is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.
16. The method for controlling ozone injection according to claim 16.
【請求項18】 前記フィードバック補正に際して、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項14記載のオゾン注入制御方法。
18. The ozone injection control method according to claim 14, wherein an ozone treatment water-soluble ozone concentration upper limit setting is added during the feedback correction.
【請求項19】 前記オゾン注入率を用いたフィードフ
ォワード制御とフィードバック制御によりオゾンを注入
することを特徴とする請求項14〜18記載のオゾン注
入制御方法。
19. The ozone injection control method according to claim 14, wherein ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項20】 被処理水をオゾン接触池でオゾン注入
処理する際に、活性炭処理水の紫外線吸光度が一定とな
るようにオゾン注入率を制御する方法において、 前記
被処理水の紫外線吸光度と水温を計測した後、下記式に
被処理水の紫外線吸光度A(abs/50mm)、被処理水の
水温T(℃)と溶存オゾン濃度一定制御設定値C(mg/
L)を代入して決定したオゾン注入率D(mg/L)を、活
性炭処理水紫外線吸光度と紫外線吸光度一定制御設定値
を用いてフィードバック補正したことを特徴とするオゾ
ン注入制御方法。
20. A method of controlling the ozone injection rate so that the ultraviolet absorbance of the activated carbon treated water becomes constant when the treated water is subjected to ozone injection treatment in the ozone contact pond, wherein the ultraviolet absorbance and the water temperature of the treated water are controlled. After the measurement, the UV absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) of the water to be treated and the dissolved ozone concentration constant control set value C (mg /
An ozone injection control method, wherein the ozone injection rate D (mg / L) determined by substituting L) is feedback-corrected using the ultraviolet ray absorbance of the activated carbon treated water and the ultraviolet ray absorbance constant control set value.
【請求項21】 前記フィードバック補正に際して、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項20記載のオゾン注入制御方法。
21. The ozone injection control method according to claim 20, wherein an ozone concentration upper limit setting of the ozone treated aqueous solution is added during the feedback correction.
【請求項22】 前記オゾン注入率を用いたフィードフ
ォワード制御とフィードバック制御によりオゾンを注入
することを特徴とする請求項20、21記載のオゾン注
入制御方法。
22. The ozone injection control method according to claim 20, wherein the ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項23】 被処理水をオゾン接触池でオゾン注入
処理する際に、活性炭処理水の過マンガン酸カリウム
(KMnO4)消費量が一定となるようにオゾン注入率
を制御する方法において、 前記被処理水の紫外線吸光度と水温を計測した後、下記
式に被処理水の紫外線吸光度A(abs/50mm)、被処理
水の水温T(℃)と溶存オゾン濃度一定制御設定値C
(mg/L)を代入して決定したオゾン注入率D(mg/L)
を、活性炭処理水KMnO4消費量推定値とKMnO4
費量一定制御設定値を用いてフィードバック補正したこ
とを特徴とするオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
23. A method for controlling an ozone injection rate such that a consumption amount of potassium permanganate (KMnO 4 ) of activated carbon treated water becomes constant when ozone injection processing is performed on water to be treated in an ozone contact pond, After measuring the ultraviolet absorbance and the water temperature of the water to be treated, the ultraviolet absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C are calculated by the following equations.
(Mg / L) and ozone injection rate D (mg / L)
Using the activated carbon treated water KMnO 4 consumption estimated value and the KMnO 4 consumption constant control set value. D = aA + bT + cC + d where a, b, c, and d are constants
【請求項24】 前記活性炭処理水KMnO4消費量推
定値を、下記活性炭処理水KMnO4消費量推定式KM
1を用いて求めたことを特徴とする請求項23記載のオ
ゾン注入制御方法。 KM1=a・A1+b 但し、A1:活性炭処理水の紫外線吸光度、a,b:定
24. the activated carbon treated water KMnO 4 consumption estimate, the following activated carbon treated water KMnO 4 consumption estimation equation KM
24. The method for controlling ozone injection according to claim 23, wherein the method is used to determine the ozone injection. KM1 = a · A1 + b where A1: UV absorbance of activated carbon treated water, a, b: constants
【請求項25】 前記活性炭処理水KMnO4消費量推
定式と、リアルタイム測定可能な活性炭処理水の紫外線
吸光度を用いて、活性炭処理水KMnO4消費量をリア
ルタイムに推定することを特徴とする請求項24記載の
オゾン注入制御方法。
And 25. The activated carbon-treated water KMnO 4 consumption estimation equation, the claims using an ultraviolet absorbance of real-time measurable activated carbon treated water, and estimates the activated carbon treated water KMnO 4 consumption in real time 25. The method for controlling ozone injection according to claim 24.
【請求項26】 前記活性炭処理水KMnO4消費量を
推定値としてリアルタイムで把握し、この推定値をオゾ
ン注入の制御指標として用いることを特徴とする請求項
23〜25記載のオゾン注入制御方法。
26. The ozone injection control method according to claim 23, wherein the KMnO 4 consumption of the activated carbon treated water is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.
【請求項27】 前記フィードバック補正に際して、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項23記載のオゾン注入制御方法。
27. The ozone injection control method according to claim 23, wherein an upper limit setting of the ozone-treated water-soluble ozone concentration is added during the feedback correction.
【請求項28】 前記オゾン注入率を用いたフィードフ
ォワード制御とフィードバック制御によりオゾンを注入
することを特徴とする請求項23〜27記載のオゾン注
入制御方法。
28. The ozone injection control method according to claim 23, wherein ozone is injected by feedforward control and feedback control using the ozone injection rate.
【請求項29】 被処理水をオゾン接触池でオゾン注入
処理する際に、活性炭処理水のトリハロメタン生成能
(THMFP)が一定となるようにオゾン注入率を制御
する方法において、 前記被処理水の紫外線吸光度と水温を計測した後、下記
式に被処理水の紫外線吸光度A(abs/50mm)、被処理
水の水温T(℃)と溶存オゾン濃度一定制御設定値C
(mg/L)を代入して決定したオゾン注入率D(mg/L)
を、活性炭処理水THMFP推定値とTHMFP一定制
御設定値を用いてフィードバック補正したことを特徴と
するオゾン注入制御方法。 D=a・A+b・T+c・C+d 但し、a,b,c,dは定数
29. A method for controlling an ozone injection rate such that a trihalomethane generating ability (THMFP) of activated carbon treated water becomes constant when ozone injecting treatment of the treated water with an ozone contact pond is performed. After measuring the UV absorbance and water temperature, the UV absorbance A (abs / 50 mm) of the water to be treated, the water temperature T (° C.) and the dissolved ozone concentration constant control set value C are calculated by the following formulas.
(Mg / L) and ozone injection rate D (mg / L)
Using the activated carbon treated water THMFP estimated value and the THMFP constant control set value in a feedback manner. D = aA + bT + cC + d where a, b, c, and d are constants
【請求項30】 前記活性炭処理水THMFP推定値
を、下記活性炭処理水THMFP推定式TH1を用いて
求めたことを特徴とする請求項29記載のオゾン注入制
御方法。 TH1=a・A2+b・T2+c 但し、A2:活性炭処理水の紫外線吸光度、T2:活性
炭処理水の水温、a,b,c:定数
30. The ozone injection control method according to claim 29, wherein the estimated value of the activated carbon treated water THMFP is determined by using the following activated carbon treated water THMFP estimation formula TH1. TH1 = a · A2 + b · T2 + c, where A2: UV absorbance of activated carbon treated water, T2: temperature of activated carbon treated water, a, b, c: constants
【請求項31】 前記活性炭処理水THMFP推定式
と、リアルタイム測定可能な活性炭処理水の紫外線吸光
度と水温を用いて、活性炭処理水THMFPをリアルタ
イムに推定することを特徴とする請求項30記載のオゾ
ン注入制御方法。
31. The ozone according to claim 30, wherein the activated carbon treated water THMFP is estimated in real time using the activated carbon treated water THMFP estimating formula and the ultraviolet absorbance and water temperature of the activated carbon treated water that can be measured in real time. Injection control method.
【請求項32】 前記活性炭処理水THMFPを推定値
としてリアルタイムで把握し、この推定値をオゾン注入
の制御指標として用いることを特徴とする請求項29、
30記載のオゾン注入制御方法。
32. The activated carbon treated water THMFP is grasped in real time as an estimated value, and the estimated value is used as a control index for ozone injection.
30. The method for controlling ozone injection according to claim 30.
【請求項33】 前記フィードバック補正に際して、オ
ゾン処理水溶存オゾン濃度上限設定を付加したことを特
徴とする請求項29記載のオゾン注入制御方法。
33. The ozone injection control method according to claim 29, wherein an ozone concentration upper limit setting of the ozone treated water-soluble ozone concentration is added during the feedback correction.
【請求項34】 前記オゾン注入率を用いたフィードフ
ォワード制御とフィードバック制御によりオゾンを注入
することを特徴とする請求項29〜33記載のオゾン注
入制御方法。
34. The ozone injection control method according to claim 29, wherein the ozone is injected by feedforward control and feedback control using the ozone injection rate.
JP25653599A 1999-09-10 1999-09-10 Method for controlling ozone injection Pending JP2001079574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25653599A JP2001079574A (en) 1999-09-10 1999-09-10 Method for controlling ozone injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25653599A JP2001079574A (en) 1999-09-10 1999-09-10 Method for controlling ozone injection

Publications (1)

Publication Number Publication Date
JP2001079574A true JP2001079574A (en) 2001-03-27

Family

ID=17293984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25653599A Pending JP2001079574A (en) 1999-09-10 1999-09-10 Method for controlling ozone injection

Country Status (1)

Country Link
JP (1) JP2001079574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062003A1 (en) * 2011-10-28 2013-05-02 株式会社明電舎 Chemical injection control method and chemical injection controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062003A1 (en) * 2011-10-28 2013-05-02 株式会社明電舎 Chemical injection control method and chemical injection controller
JP2013094686A (en) * 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller
US9517954B2 (en) 2011-10-28 2016-12-13 Asahi Kasei Chemicals Corporation Chemical injection control method and chemical injection controller

Similar Documents

Publication Publication Date Title
US10807882B2 (en) Process and device for the treatment of a fluid containing a contaminant
CA1174636A (en) Process for disinfecting water
Griffiths et al. The application of artificial neural networks for the optimization of coagulant dosage
JP4145717B2 (en) Water quality monitoring and control system
CA2975369C (en) Water treatment apparatus and water treatment method
JP2001079574A (en) Method for controlling ozone injection
JP2015104726A (en) Water treatment control device, and water treatment control method
CN114229990A (en) Ozone adding control system and method for ozone catalytic oxidation process
JP4982114B2 (en) Water treatment control device
JP2007117849A (en) Ozone treatment system
JP2005324121A (en) Water treatment method and water treatment apparatus
JP2002174402A (en) Method and system for treating boiler water
KR20050063263A (en) A apparatus and method for controlling the value of concentration contact time(ct) automatically in the chlorine-disinfection process
JPS62176594A (en) Water treatment method
JP4358037B2 (en) Water treatment equipment
JP5843600B2 (en) Method for generating and injecting dilute aqueous sodium hypochlorite solution
JPH06238281A (en) Sterilization system for water tank
LU504799B1 (en) A method for controlling dosing of chlorine dioxide in the field of water treatment
JPH11207369A (en) Ozone injection controlling method
KR101211596B1 (en) Apparatus and control method of chlorine dioxide treatment followed by chlorine disinfection for enhancing removal rates of disinfectant-by-products and pathogenic microorganism
JP2023184092A (en) Water treatment system, water treatment method, and program
JPS58137491A (en) Method for controlling injection of alkali agent in water purifying plant
JPH0910782A (en) Control of ozone injection ratio by ultraviolet absorbancy
JPS60179191A (en) Method for controlling injection of chlorine in water purification plant
JP2006326431A (en) Control device for water treating operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822