JP2001076955A - Magnetic sputtering target and manufacture thereof - Google Patents

Magnetic sputtering target and manufacture thereof

Info

Publication number
JP2001076955A
JP2001076955A JP25375399A JP25375399A JP2001076955A JP 2001076955 A JP2001076955 A JP 2001076955A JP 25375399 A JP25375399 A JP 25375399A JP 25375399 A JP25375399 A JP 25375399A JP 2001076955 A JP2001076955 A JP 2001076955A
Authority
JP
Japan
Prior art keywords
target
magnetic
sputtering
value
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25375399A
Other languages
Japanese (ja)
Other versions
JP4698779B2 (en
Inventor
Yoji Iwanabe
洋史 岩邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP25375399A priority Critical patent/JP4698779B2/en
Publication of JP2001076955A publication Critical patent/JP2001076955A/en
Application granted granted Critical
Publication of JP4698779B2 publication Critical patent/JP4698779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Abstract

PROBLEM TO BE SOLVED: To reduce deformation on an erosion shape by setting a maximum value and a minimum value within a specific range of an intermediate value regarding a magnetic characteristic of any one of a maximum permeability, a coercivity, and a squareness ratio on an initial magnetization curve, in a sputtering plane of a target. SOLUTION: In a magnetic target for magnetron sputtering, in a sputtering plate of a target, a maximum value and a minimum value of any one of a maximum permeability, a coercivity, and a squareness ratio on an initial magnetization curve are set within ±15% of an intermediate value. When the value is beyond the range, deformation appears on an erosion shape. Further, upon manufacturing ingot target, a predetermined magnetic material is dissolved and casted into an ingot, and undergoes hot casting or rolling. Furthermore, the material undergoes cold working and is formed into a plate, a target shape, and so on. Additionally, with hot and cold cross rolling, upsetting casting and the like, it is possible to achieve a target which is small in magnetic anisotropy in the sputtering plane and has isotropic deformation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ターゲットのスパ
ッタ面内における磁気的異方性が少なく、エロージョン
形状の歪みが小さい磁性体スパッタリングターゲットお
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sputtering target having a small magnetic anisotropy in a sputtering surface of a target and a small distortion of an erosion shape, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ハードディスク用磁気記録媒体、磁気ヘ
ッド、LSIチップ等に磁性膜を形成する方法として、
スパッタリング法が広く用いられている。スパッタリン
グ法は、陽極となる基板と陰極となるターゲットとを対
向させ、不活性ガス雰囲気下でこれらの基板とターゲッ
トの間に高電圧を印加して電場を発生させるものであ
り、この時電離した電子と不活性ガスが衝突してプラズ
マが形成され、このプラズマ中の陽イオンがターゲット
表面に衝突してターゲット構成原子を叩きだし、この飛
び出した原子が対向する基板表面に付着して膜が形成さ
れるという原理を用いたものである。
2. Description of the Related Art As a method of forming a magnetic film on a magnetic recording medium for a hard disk, a magnetic head, an LSI chip, and the like,
Sputtering is widely used. In the sputtering method, a substrate serving as an anode and a target serving as a cathode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target under an inert gas atmosphere. The electrons and the inert gas collide to form a plasma, and the cations in the plasma collide with the target surface and strike out the target constituent atoms, and the ejected atoms adhere to the opposing substrate surface to form a film. It is based on the principle of being performed.

【0003】現在、スパッタリングの多くは、いわゆる
マグネトロンスパッタリングと呼ばれている方法が使用
されている。マグネトロンスパッタリング法は、ターゲ
ットの裏側に磁石をセットしターゲット表面に電界と垂
直方向に磁界を発生させてスパッタリングを行なう方法
であり、このような直交電磁界空間内ではプラズマの安
定化および高密度化が可能であり、スパッタ速度を大き
くすることができるという特徴を有している。
At present, most of the sputtering uses a method called magnetron sputtering. The magnetron sputtering method is a method in which a magnet is set on the back side of a target and sputtering is performed by generating a magnetic field on the target surface in a direction perpendicular to the electric field. In such an orthogonal electromagnetic field space, plasma is stabilized and densified. And the sputter rate can be increased.

【0004】一般に、このようなマグネトロンスパッタ
リング法を用い、強磁性体またはフェリ磁性体等の磁性
体薄膜を基板上に形成することが行なわれている。マグ
ネトロンスパッタリングは磁界中に電子を捕らえて、効
率よくスパッタガスを電離するが、ターゲットが磁化を
もつ場合、ターゲットそのものが磁気特性によって、ス
パッタ面近傍の磁界に影響を与える。そしてスパッタ面
内の磁気特性が不均一な(磁気異方性がある)ターゲッ
トを用いるとエロージョン部の最深部が歪み、予定した
膜厚分布が得られないという問題がある。磁気異方性の
あるターゲットは、特に1方向に圧延加工したターゲッ
トにより発生し易い。
In general, a magnetic thin film such as a ferromagnetic material or a ferrimagnetic material is formed on a substrate by using such a magnetron sputtering method. Magnetron sputtering captures electrons in a magnetic field and efficiently ionizes the sputter gas. However, when the target has magnetization, the target itself affects the magnetic field near the sputter surface due to the magnetic characteristics. When a target having a non-uniform magnetic property (having magnetic anisotropy) in the sputtering surface is used, the deepest portion of the erosion portion is distorted, and a predetermined film thickness distribution cannot be obtained. A target having magnetic anisotropy is likely to be generated particularly by a target rolled in one direction.

【0005】特に、圧延を施したターゲット素材は、当
然歪みが等方的ではない。すなわち結晶粒が一方向に延
ばされた集合組織となる。このため、三次元的に見た場
合には勿論のこと、圧延面内ですら、磁気特性に異方性
を生ずることが多い。このような圧延板から円盤状のタ
ーゲットを切出してターゲットを作製すると、本来円形
のエロージョンが進行するところが、1方向に延ばされ
た形となる。本来、円形基板上への成膜の際に本来円形
のエロージョンとなることが期待されていたものである
から、該円形基板上での均一膜厚が達成できない。成膜
の厚さは磁気特性を左右するので、膜厚の均一性は重要
であるが、この点の問題は十分に解決されていなかっ
た。
[0005] In particular, the rolled target material naturally has non-isotropic distortion. That is, the texture becomes a texture in which the crystal grains are extended in one direction. For this reason, when viewed three-dimensionally, it is often the case that anisotropy occurs in the magnetic properties even within the rolling plane. When a disk-shaped target is cut out from such a rolled plate to produce a target, a portion where an essentially circular erosion progresses has a shape extended in one direction. Originally, when a film was formed on a circular substrate, it was originally expected to form a circular erosion, so that a uniform film thickness on the circular substrate could not be achieved. Since the thickness of the film affects the magnetic properties, the uniformity of the film thickness is important, but the problem of this point has not been sufficiently solved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な問題または欠点に鑑みてなされたもので、加工による
磁気異方性を効果的に減少させ、エロージョン形状の歪
みが小さく、かつ安定して製造できる磁性体スパッタリ
ングターゲットおよびその製造方法を得ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems or disadvantages, and has an object to effectively reduce magnetic anisotropy due to working, to reduce distortion of an erosion shape, and to achieve stable operation. And a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者はスパッタリング用ターゲットの製造工
程に着目し、加工工程の改良により、薄膜の磁気的異方
性を容易に減少でき、安定した製造条件で再現性よくか
つ品質の良い磁性薄膜を得ることができるとの知見を得
た。本発明はこの知見に基づき、1 ターゲットのスパ
ッタ面内において、初磁化曲線上の最大透磁率、保磁
力、角型比のいずれかの磁気特性の最大値と最小値が、
その中間値の±15%以内であることを特徴とするマグ
ネトロンスパッタリング用磁性体ターゲット、2 スパ
ッタリング用ターゲット素材をクロス圧延し、等方的な
歪みとすることにより、磁気的異方性を減少させること
を特徴とするターゲットのスパッタ面内における初磁化
曲線上の最大透磁率、保磁力、角型比のいずれかの磁気
特性の最大値と最小値がその中間値の±15%以内にあ
るマグネトロンスパッタリング用磁性体ターゲットの製
造方法、を提供するものである。
In order to solve the above-mentioned problems, the present inventor has focused on the manufacturing process of a sputtering target, and can easily reduce the magnetic anisotropy of a thin film by improving the processing process. It has been found that a magnetic thin film with good reproducibility and high quality can be obtained under stable manufacturing conditions. The present invention is based on this finding, the maximum value and the minimum value of any one of the magnetic properties of the maximum magnetic permeability, coercive force, squareness ratio on the initial magnetization curve within the sputtering surface of one target are:
The magnetic anisotropy is reduced by cross-rolling the magnetic target for magnetron sputtering and the target material for 2 sputtering, which is characterized by being within ± 15% of the intermediate value, to make isotropic strain. A magnetron in which the maximum value and the minimum value of any of the magnetic properties of the maximum magnetic permeability, coercive force, and squareness ratio on the initial magnetization curve in the sputtering surface of the target are within ± 15% of the intermediate value. A method of manufacturing a magnetic target for sputtering.

【0008】[0008]

【発明の実施の形態】本発明のマグネトロンスパッタリ
ングターゲットは強磁性体またはフェリ磁性体等の磁性
体薄膜を基板上に形成するターゲットに適応することが
でき、磁性材料(組成)の種類に特定されずに広範囲に
使用することができる。本発明のマグネトロンスパッタ
リング用磁性体ターゲットは、ターゲットのスパッタ面
内において、初磁化曲線上の最大透磁率、保磁力、角型
比のいずれかの磁気特性の最大値と最小値が、その中間
値の±15%以内である。本数値の枠から外れるもの
は、エロージョン形状のゆがみが発生する。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetron sputtering target of the present invention can be applied to a target for forming a magnetic thin film such as a ferromagnetic material or a ferrimagnetic material on a substrate, and is specified by the type of magnetic material (composition). Can be used extensively without The magnetron sputtering magnetic target of the present invention has a maximum permeability and a maximum coercivity on the initial magnetization curve, a maximum value and a minimum value of any one of the magnetic properties of the squareness ratio on the sputtering surface of the target, and an intermediate value between them. Is within ± 15%. If the value is out of the range of the numerical value, distortion of the erosion shape occurs.

【0009】例えば、溶製ターゲットの製造に際して
は、まず所定の磁性材料を溶解後のブロック(インゴッ
ト)に鋳造し、これを熱間で鍛造又は圧延加工し、さら
に冷間加工して平板状その他のマグネトロンスパッタリ
ング装置にセットできるターゲット形状に成形する。
For example, in the production of a smelting target, first, a predetermined magnetic material is cast into a melted block (ingot), which is hot forged or rolled, and then cold worked to form a flat plate or the like. Into a target shape that can be set in a magnetron sputtering apparatus.

【0010】さらに、上記熱間及び冷間、あるいは場合
によっては冷間での加工を、例えばクロス圧延や据え込
み鍛造等で行えば、歪みが等方的なターゲットを得るこ
とができる。この場合、クロス圧延は専ら相互に直角な
方向の圧延であるが、これを直角以外の方向の圧延、す
なわち多方向圧延とすることもできる。また、このクロ
ス圧延を繰り返して圧延することもできる。本発明にお
いて用いる用語「クロス圧延」はこれらの全てを含む。
なお、多方向のクロス圧延はそれなりに異方性はより改
善されるが、通常は、上記のように2方向圧延で十分な
場合が多い。これによって、ほぼ均一な歪みをもつ組織
にすることができ、磁気的異方性を減少させ、ターゲッ
トのスパッタ面内における初磁化曲線上の最大透磁率、
保磁力、角型比のいずれかの磁気特性の最大値と最小値
がその中間値の±15%以内にあるマグネトロンスパッ
タリング用磁性体ターゲットを得ることができる。
[0010] Further, if the above-mentioned hot and cold, or in some cases, cold working is performed by, for example, cross rolling or upsetting forging, a target having an isotropic strain can be obtained. In this case, the cross-rolling is exclusively rolling in directions perpendicular to each other, but it can be rolling in directions other than right-angle, that is, multi-directional rolling. In addition, rolling can be performed by repeating this cross rolling. The term "cross rolling" as used in the present invention includes all of these.
In addition, although the anisotropy is further improved in the multi-direction cross rolling, the two-direction rolling is often sufficient as described above. As a result, a structure having a substantially uniform strain can be obtained, the magnetic anisotropy is reduced, the maximum magnetic permeability on the initial magnetization curve in the sputtering surface of the target,
A magnetic target for magnetron sputtering can be obtained in which the maximum value and the minimum value of any of the magnetic properties of the coercive force and the squareness ratio are within ± 15% of the intermediate value.

【0011】[0011]

【実施例および比較例】以下、実施例および比較例に基
づいて説明する。なお、本実施例はあくまで一例であ
り、この例によって何ら制限されるものではない。すな
わち、本発明は特許請求の範囲によってのみ制限される
ものであり、本発明の技術思想に含まれる実施例以外の
種々の変形を包含するものである。
Examples and comparative examples are described below based on examples and comparative examples. This embodiment is merely an example, and the present invention is not limited to this example. That is, the present invention is limited only by the claims, and includes various modifications other than the examples included in the technical idea of the present invention.

【0012】(実施例)純度99.99%以上のNiと
Feを原料とし、真空誘導溶解炉を用いてNi−Fe合
金を真空溶解した。溶解品の組成はNi−20wt%F
eである。前記Ni−Fe合金の溶解鋳造後、得られた
インゴット(170×200×30t)を均熱化処理
(1100°Cで2時間保持)し、その後12tまで熱
間圧延した。熱間圧延後、室温で各方向にそれぞれ断面
減少率43%で互いに垂直な2方向に圧延を施した。こ
れらの熱延板から試料を切り出し、磁性体ターゲットと
した。
(Example) Using Ni and Fe having a purity of 99.99% or more as raw materials, a Ni-Fe alloy was vacuum-melted using a vacuum induction melting furnace. The composition of the melted product is Ni-20wt% F
e. After melting and casting the Ni—Fe alloy, the obtained ingot (170 × 200 × 30 t) was soaked (held at 1100 ° C. for 2 hours), and then hot rolled to 12 t. After hot rolling, rolling was performed at room temperature in two directions perpendicular to each other with a reduction in area of 43% in each direction. Samples were cut out from these hot-rolled sheets and used as magnetic targets.

【0013】(比較例)実施例と同様に、純度99.9
9%以上のNiとFeを原料とし、真空誘導溶解炉を用
いてNi−Fe合金を真空溶解した。溶解品の組成はN
i−20wt%Feである。前記Ni−Fe合金の溶解
鋳造後、得られたインゴット(170×200×30
t)を均熱化処理(1100°Cで2時間保持)し、そ
の後12tまで熱間圧延した。熱間圧延後、室温で断面
減少率43%で1方向圧延した。そして、これらの熱処
理板から試料を切り出し、円盤形の磁性体ターゲットと
した。
(Comparative Example) As in Example, the purity was 99.9.
Using 9% or more of Ni and Fe as raw materials, a Ni-Fe alloy was vacuum-melted using a vacuum induction melting furnace. The composition of the melt is N
i-20 wt% Fe. After melting and casting the Ni—Fe alloy, the obtained ingot (170 × 200 × 30) was obtained.
t) was soaked (maintained at 1100 ° C. for 2 hours) and then hot-rolled to 12t. After hot rolling, unidirectional rolling was performed at room temperature with a reduction in area of 43%. Then, samples were cut out from these heat-treated plates to obtain disk-shaped magnetic targets.

【0014】次に、実施例および比較例のスパッタ薄膜
の最大透磁率、保磁力および角型比を測定するために、
下記のスパッタリング条件で円盤形基板上に成膜し、B
-Hメーターで4πIコイル、を用い、最大磁界100
0Oeで最大透磁率、保磁力および角型比を測定した。 (マグネトロンスパッタリング条件) 成膜電力 500W/3インチ径 Ar圧力 0.Pa 膜厚 25nm 基板温度 280°C この結果を表1に示す。
Next, in order to measure the maximum magnetic permeability, coercive force and squareness of the sputtered thin films of Examples and Comparative Examples,
A film is formed on a disk-shaped substrate under the following sputtering conditions, and B
-H meter with 4πI coil, maximum magnetic field 100
The maximum magnetic permeability, coercive force and squareness were measured at 0 Oe. (Magnetron sputtering conditions) Deposition power 500 W / 3 inch diameter Ar pressure 0. Pa film thickness 25 nm Substrate temperature 280 ° C. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1において、比較例では最大透磁率
(μ)の最大値が105、最小値が59.2であり、バ
ラツキがあるのに対して、本発明の実施例では最大値が
231、最小値が220であり、均一性に優れている。
また、保磁力については、比較例においては最大値が1
4.0Oe、最小値10.2Oeであるのに対して、本
発明の実施例では最大値が5.0Oe、最小値3.4O
eであり、均一性に優れている。さらに角型比について
は、比較例では最大値が0.0097、最小値0.00
15であるのに対して、本発明の実施例では最大値が
0.0006、最小値0となり、磁気特性の異方性が極
めて小さい。そして、本発明の実施例では、ターゲット
のスパッタ面内において、初磁化曲線上の最大透磁率、
保磁力、角型比のいずれかの磁気特性の最大値と最小値
が、その中間値の±15%以内である条件を満たしてい
る。
In Table 1, the maximum value of the maximum magnetic permeability (μ) is 105 and the minimum value is 59.2 in the comparative example, and there are variations, whereas in the embodiment of the present invention, the maximum value is 231. The minimum value is 220, which is excellent in uniformity.
As for the coercive force, the maximum value was 1 in the comparative example.
While 4.0 Oe and the minimum value are 10.2 Oe, the maximum value is 5.0 Oe and the minimum value is 3.4 O in the embodiment of the present invention.
e, which is excellent in uniformity. Further, as for the squareness ratio, the maximum value was 0.0097 and the minimum value was 0.00 in the comparative example.
In contrast to 15, the maximum value is 0.0006 and the minimum value is 0 in the embodiment of the present invention, and the anisotropy of the magnetic properties is extremely small. Then, in the embodiment of the present invention, the maximum magnetic permeability on the initial magnetization curve in the sputtering surface of the target,
The condition that the maximum value and the minimum value of any of the magnetic properties of the coercive force and the squareness ratio are within ± 15% of the intermediate value is satisfied.

【0017】次に、上記マグネトロンスパッタリング後
の円盤状ターゲットのエロージョン形を測定した。(理
想的には真円形のエロージョン形となる。)この結果
を、表2に示す。この表2に示す通り、比較例では短径
/長径の比が、0.954であった。これに対し、実施
例は同比が1である。実施例ではエロージョン形の異方
性が低減し、それだけ均一な膜が形成されたことを意味
している。本実施例では、Ni−20wt%Feターゲ
ット、Ni−17wt%Fe、Ni−19at%Pにつ
いて説明したが、上記例以外の磁性体ターゲットにおい
ても同等の効果があることが確認できた。
Next, the erosion shape of the disk-shaped target after the magnetron sputtering was measured. (Ideally a perfect circular erosion shape.) The results are shown in Table 2. As shown in Table 2, in the comparative example, the ratio of minor axis / major axis was 0.954. In contrast, the embodiment has the same ratio of 1. In the example, the erosion type anisotropy was reduced, which means that a uniform film was formed. In the present embodiment, the Ni-20 wt% Fe target, Ni-17 wt% Fe, and Ni-19 at% P have been described, but it has been confirmed that the same effect can be obtained with magnetic targets other than the above examples.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明のマグネトロンスパッタリング用
磁性体ターゲットは、スパッタリング用ターゲット素材
をクロス圧延を施すことにより、歪みの等方化を図り、
これによってスパッタ面内における初磁化曲線上の最大
透磁率、保磁力、角型比のいずれかの磁気特性の最大値
と最小値がその中間値の±15%以内とすることによ
り、エロージョン形状の歪みが小さく、かつ安定して製
造できる磁性体スパッタリングターゲットおよびその製
造方法を得ることができる優れた特性を備えている。
According to the magnetic target for magnetron sputtering of the present invention, the target material for sputtering is subjected to cross-rolling so that distortion is isotropic,
As a result, the maximum value and the minimum value of any of the magnetic properties of the maximum magnetic permeability, coercive force, and squareness ratio on the initial magnetization curve in the sputter surface are within ± 15% of an intermediate value thereof, thereby forming the erosion shape. The magnetic sputtering target has a small distortion and can be stably manufactured, and has excellent characteristics to obtain a method for manufacturing the same.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ターゲットのスパッタ面内において、初
磁化曲線上の最大透磁率、保磁力、角型比のいずれかの
磁気特性の最大値と最小値が、その中間値の±15%以
内であることを特徴とするマグネトロンスパッタリング
用磁性体ターゲット。
1. The maximum and minimum values of any one of the maximum magnetic permeability, coercive force, and squareness ratio on the initial magnetization curve within the sputtering surface of the target are within ± 15% of the intermediate value. A magnetic target for magnetron sputtering, characterized in that:
【請求項2】 スパッタリング用ターゲット素材をクロ
ス圧延し、等方的な歪みとすることにより、磁気的異方
性を減少させることを特徴とするターゲットのスパッタ
面内における初磁化曲線上の最大透磁率、保磁力、角型
比のいずれかの磁気特性の最大値と最小値がその中間値
の±15%以内にあるマグネトロンスパッタリング用磁
性体ターゲットの製造方法。
2. The method according to claim 1, wherein the target material for sputtering is cross-rolled to reduce isotropic anisotropy, thereby reducing magnetic anisotropy. A method for producing a magnetron sputtering target having a maximum value and a minimum value of any one of magnetic properties of a magnetic susceptibility, a coercive force, and a squareness ratio within ± 15% of an intermediate value thereof.
JP25375399A 1999-09-08 1999-09-08 Magnetic sputtering target and manufacturing method thereof Expired - Lifetime JP4698779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25375399A JP4698779B2 (en) 1999-09-08 1999-09-08 Magnetic sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25375399A JP4698779B2 (en) 1999-09-08 1999-09-08 Magnetic sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001076955A true JP2001076955A (en) 2001-03-23
JP4698779B2 JP4698779B2 (en) 2011-06-08

Family

ID=17255673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25375399A Expired - Lifetime JP4698779B2 (en) 1999-09-08 1999-09-08 Magnetic sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4698779B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007923A1 (en) * 2003-07-16 2005-01-27 Kabushiki Kaisha Kobe Seiko Sho Ag BASE SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
JP2010535633A (en) * 2007-08-06 2010-11-25 エイチ.シー. スターク インコーポレイテッド Method of controlling the structure of plates and sheets by tilt rolling
CN113814280A (en) * 2021-08-17 2021-12-21 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel
CN114934261A (en) * 2022-04-27 2022-08-23 先导薄膜材料(广东)有限公司 Iron target, iron-nickel alloy target, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109309A (en) * 1985-11-08 1987-05-20 Hitachi Ltd Manufacture of uniaxial anisotropic magnetic thin film
JPS63244728A (en) * 1987-03-31 1988-10-12 Nkk Corp Target for sputtering
JPH02225661A (en) * 1989-02-23 1990-09-07 Mitsubishi Metal Corp Production of ferromagnetic body target
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JPH06248445A (en) * 1993-02-23 1994-09-06 Toshiba Corp Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
JP2000038661A (en) * 1998-07-21 2000-02-08 Hitachi Metals Ltd Co ALLOY TARGET, ITS PRODUCTION, APPARATUS FOR SPUTTERING, MAGNETIC RECORDING FILM AND DEVICE FOR MAGNETIC RECORDING

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109309A (en) * 1985-11-08 1987-05-20 Hitachi Ltd Manufacture of uniaxial anisotropic magnetic thin film
JPS63244728A (en) * 1987-03-31 1988-10-12 Nkk Corp Target for sputtering
JPH02225661A (en) * 1989-02-23 1990-09-07 Mitsubishi Metal Corp Production of ferromagnetic body target
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JPH06248445A (en) * 1993-02-23 1994-09-06 Toshiba Corp Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
JP2000038661A (en) * 1998-07-21 2000-02-08 Hitachi Metals Ltd Co ALLOY TARGET, ITS PRODUCTION, APPARATUS FOR SPUTTERING, MAGNETIC RECORDING FILM AND DEVICE FOR MAGNETIC RECORDING

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007923A1 (en) * 2003-07-16 2005-01-27 Kabushiki Kaisha Kobe Seiko Sho Ag BASE SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
US7763126B2 (en) 2003-07-16 2010-07-27 Kabushiki Kaisha Kobe Seiko Sho Ag base sputtering target and process for producing the same
US8123875B2 (en) 2003-07-16 2012-02-28 Kabushiki Kaisha Kobe Seiko Sho AG base sputtering target and process for producing the same
JP2010535633A (en) * 2007-08-06 2010-11-25 エイチ.シー. スターク インコーポレイテッド Method of controlling the structure of plates and sheets by tilt rolling
CN113814280A (en) * 2021-08-17 2021-12-21 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel
CN113814280B (en) * 2021-08-17 2023-09-15 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel
CN114934261A (en) * 2022-04-27 2022-08-23 先导薄膜材料(广东)有限公司 Iron target, iron-nickel alloy target, and method for producing same
CN114934261B (en) * 2022-04-27 2023-12-05 先导薄膜材料(广东)有限公司 Iron target, iron-nickel alloy target and manufacturing method thereof

Also Published As

Publication number Publication date
JP4698779B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US7618505B2 (en) Target of high-purity nickel or nickel alloy and its producing method
KR100499173B1 (en) Method of making low magnetic permeability cobalt sputter targets
KR100598420B1 (en) Manganese alloy sputtering target and method for producing the same
US6585866B2 (en) High purity cobalt sputter target and process of manufacturing the same
JP2005530925A (en) High PTF sputtering target and manufacturing method thereof
JP2005528525A (en) High purity ferromagnetic sputter target
EP1235946B1 (en) Method for producing cobalt-based alloy sputter target
JP4698779B2 (en) Magnetic sputtering target and manufacturing method thereof
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JP7282274B2 (en) Neodymium-iron-boron permanent magnet material, its raw material composition, and its production method
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP4582465B2 (en) High purity nickel or nickel alloy target and method for producing the same
JP5958183B2 (en) Ni or Ni alloy sputtering target and method for producing the same
JP2003213405A (en) High purity nickel or nickel alloy target and production method therefor
JP6384523B2 (en) Ni or Ni alloy sputtering target
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same
JP5113100B2 (en) High purity nickel alloy target
JPS63244727A (en) Manufacture of target for sputtering
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
JPS62186511A (en) Target member
CN117012491A (en) FeCoNiZr x Medium-entropy alloy soft magnetic film, preparation method and application thereof
JPS63100178A (en) Sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4698779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term