JP2001074121A - Power transmission device - Google Patents

Power transmission device

Info

Publication number
JP2001074121A
JP2001074121A JP24857499A JP24857499A JP2001074121A JP 2001074121 A JP2001074121 A JP 2001074121A JP 24857499 A JP24857499 A JP 24857499A JP 24857499 A JP24857499 A JP 24857499A JP 2001074121 A JP2001074121 A JP 2001074121A
Authority
JP
Japan
Prior art keywords
power transmission
reduction mechanism
driven
rotation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24857499A
Other languages
Japanese (ja)
Inventor
Manabu Hasumi
学 蓮見
Takeshi Ishii
岳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24857499A priority Critical patent/JP2001074121A/en
Publication of JP2001074121A publication Critical patent/JP2001074121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To have an effective jamming resistance function and drive a driven portion without occurrence of large fluctuations in speed and driving force for driving a steering surface, even if jamming occurs. SOLUTION: Power from a driving source 1 is divided into two by a differential gear mechanism 3, rotation of a driving shaft 5 and a driving shaft 6 is input to a reduction mechanism 8 incorporating planetary gear mechanism 11 and a reduction mechanism 9 incorporating planetary gear mechanism 12. A fixed sun gear portion 17 of the reduction mechanism 8 is fixed to a fixing portion 7, a rotation output portion 14 is connected to a fixed sun gear portion 18 by a connecting portion 10, and a rotation output portion 15 of the reduction gear 9 is connected with a steering surface 16 to be driven. In the constitution, driving force of two power transmission paths is added to driving load in a normal state. Even if sticking occurred in one of mechanism of the power transmission paths, the other power transmission path can drive load to constitute a power transmission path including the sticking portion in a state where one of the power transmission path is sticking.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば航空機の操
縦系統の舵面の駆動系において、有効な耐ジャミング機
構を備えた動力伝達装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission device having an effective anti-jamming mechanism in, for example, a drive system for a control surface of an aircraft control system.

【0002】[0002]

【従来の技術】航空機の操縦は、飛行中機体の一部の形
状を変えて空力的な力(揚力や抗力など)を発生させ、
機体に姿勢を変えるモーメントを発生させて上昇、下
降、方位転換などを行っている。機体の形状を変える部
位を舵面と称する。通常、これらの舵面は、水平尾翼、
垂直尾翼、主翼に複数設けられていて、パイロットの操
縦操作に応じて制御器を介して関係する舵面に操作信号
が伝達され、その信号に追従して舵面を変位させる動力
伝達装置が駆動され、舵面が操作信号に対応する角度ま
で変位し、前記空力が発生して機体の姿勢が変わり、上
昇、下降、方位転換などの操縦が行われる。舵面を変位
させるためには通常サーボアクチュエータが使用され、
アクチュエータは舵面に作用する空力に抗して前記制御
器の信号に応答性良く追従する必要があるため、大きな
出力が発生でき、かつ応答性に優れる油圧サーボアクチ
ュエータが用いられてきた。しかし、油圧を使用するこ
とで油圧源が必要になることと、作動油の配管が必要に
なることなど重量が嵩む。
2. Description of the Related Art Aircraft control involves changing the shape of a part of an aircraft during flight to generate aerodynamic forces (lift, drag, etc.).
It raises, lowers, and changes direction by generating moments that change the attitude of the aircraft. The part that changes the shape of the fuselage is called a control surface. Usually, these control surfaces are horizontal tails,
A plurality of vertical tails and main wings are provided.Operation signals are transmitted to related control surfaces via a controller in accordance with pilot operation, and a power transmission device that displaces the control surfaces following the signals is driven. Then, the control surface is displaced to an angle corresponding to the operation signal, the aerodynamic force is generated, the attitude of the aircraft is changed, and operations such as ascent, descent, and azimuth change are performed. Servo actuators are usually used to displace the control surfaces,
Since the actuator must follow the signal of the controller with good responsiveness against the aerodynamic force acting on the control surface, a hydraulic servo actuator that can generate a large output and has excellent responsiveness has been used. However, the use of hydraulic pressure increases the weight, such as the need for a hydraulic pressure source and the need for hydraulic oil piping.

【0003】一方、近時小形軽量高出力の高性能電動機
が開発され、油圧を使用しない電動サーボアクチュエー
タにより前記油圧サーボアクチュエータを置き換える検
討が進んでいる。この種の電動サーボアクチュエータ
は、電動機の動力を減速機を介して舵面に作用させるよ
うに構成するのが通例であるが、その伝達径路上で固着
(ジャミング)が生じると舵角変更不能となり、航空機
の致命的な事故に直結する恐れがある。このような不具
合に鑑みて、従来、ジャミングによる操縦不能を防止す
べく、駆動源を複数とし、一部がジャミングしても他の
系統で作動が継続できるようにしたものが考えられてい
る。
On the other hand, recently, small-sized, lightweight, high-output, high-performance electric motors have been developed, and studies are underway to replace the hydraulic servo actuator with an electric servo actuator that does not use hydraulic pressure. This type of electric servo actuator is generally configured so that the power of the electric motor acts on the control surface via a speed reducer. However, when jamming occurs on the transmission path, the steering angle cannot be changed. , Which could lead to fatal accidents in aircraft. In view of such a problem, conventionally, in order to prevent uncontrollability due to jamming, a plurality of drive sources have been proposed so that operation can be continued in another system even if a part of the drive source is jammed.

【0004】[0004]

【発明が解決しようとする課題】従来のジャミング対策
としては、動力伝達経路を分割するか、分離する方法が
とられている。ジャミング部を分離するいわゆるクラッ
チ方式あるいはシアーセクション方式と呼ばれるもの
か、動力伝達経路を分割する遊星歯車機構あるいは差動
歯車機構の何れかが採用されているのが通例である。し
かるに、前者の方式は、リリーストルクの設定が困難で
あるという不都合がある。また後者の方式では、通常作
動時に比べジャミング時に出力(速度や駆動力)が大き
く変化する欠点がある。本発明は、このような事情に鑑
みてなされたものであり、有効な耐ジャミング機能を備
えかつ出力の変動の少ない動力伝達装置を提供すること
を目的とする。
As a conventional countermeasure for jamming, a method of dividing or separating a power transmission path has been adopted. Usually, either a so-called clutch system or a shear section system for separating the jamming portion, or a planetary gear mechanism or a differential gear mechanism for dividing a power transmission path is employed. However, the former method has a disadvantage that it is difficult to set the release torque. Further, the latter method has a disadvantage that the output (speed and driving force) greatly changes during jamming as compared with the normal operation. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power transmission device that has an effective anti-jamming function and has less fluctuation in output.

【0005】[0005]

【問題を解決するための手段】上記の課題を解決するた
めに本発明の動力伝達装置は、動力源の回転または直線
運動の動力を増速または減速して負荷側に伝達し負荷を
駆動する動力伝達装置において、前記動力を増速または
減速し伝達する伝達経路を2個以上並設し、正常時は前
記全ての伝達経路からの駆動力が加算されて負荷を駆動
し、1個の伝達経路が不正常のときは、残りの伝達経路
が不正常伝達経路をそのままの状態で動力伝達経路とな
すように構成する。さらに、本発明の動力伝達装置は、
動力源の回転または直線運動の動力を増速または減速し
て負荷を駆動する動力伝達装置において、前記動力源と
増速または減速し伝達する伝達経路からなる駆動系を2
個以上並設し、正常時は1個の駆動系により負荷を駆動
し、1個の駆動系が不正常のときは、他の動力源に切り
替えるとともに、不正常の駆動系における伝達経路をそ
のままの状態で動力伝達経路に含めるように構成する。
SUMMARY OF THE INVENTION In order to solve the above problems, a power transmission device of the present invention drives the load by increasing or decreasing the speed of rotation or linear motion of a power source to the load side. In the power transmission device, two or more transmission paths for increasing or decreasing the power and transmitting the power are arranged in parallel, and in a normal state, the driving force from all the transmission paths is added to drive the load, and one transmission is performed. When the path is abnormal, the remaining transmission paths are configured to be the power transmission paths with the abnormal transmission path as it is. Further, the power transmission device of the present invention,
In a power transmission device for driving a load by increasing or decreasing the power of rotation or linear motion of a power source, a drive system including a transmission path for increasing or decreasing the speed and transmitting the power is provided.
The load is driven by one drive system when normal, and when one drive system is abnormal, it is switched to another power source and the transmission path in the abnormal drive system is kept as it is. It is configured to be included in the power transmission path in the state of.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例の構成を図
1および図2を使用して説明する。図1は、本発明が提
供する動力伝達装置(以下本装置と称する)の一例の構
成を示し、図2は本発明の概念構成を示す斜視図であ
る。図1において、本装置は駆動源(電動機などの原動
機)1と従動伝達機構2と従動伝達機構2の二つの出力
軸である駆動軸5と駆動軸6にそれぞれ連接されている
減速機構8と減速機構9とからなる。さらに、減速機構
8は本装置と被駆動部16を固定部7に固定する二つの
アーム13a、13bを具備する。さらに、減速機構8
と減速機構9はそれぞれの出力が加算されるように連接
部10により連接されている。減速機構9の回転出力部
15に被駆動部16が連接される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a configuration of an example of a power transmission device (hereinafter, referred to as the present device) provided by the present invention, and FIG. 2 is a perspective view showing a conceptual configuration of the present invention. In FIG. 1, the present apparatus includes a drive source (a prime mover such as an electric motor) 1, a driven transmission mechanism 2, and a reduction mechanism 8 connected to a drive shaft 5 and a drive shaft 6 which are two output shafts of the driven transmission mechanism 2. And a speed reduction mechanism 9. Further, the speed reduction mechanism 8 includes two arms 13a and 13b for fixing the apparatus and the driven unit 16 to the fixing unit 7. Further, the speed reduction mechanism 8
The speed reduction mechanism 9 is connected to the speed reduction mechanism 9 by a connection portion 10 so that the respective outputs are added. The driven part 16 is connected to the rotation output part 15 of the reduction mechanism 9.

【0007】駆動源1の軸19は、差動歯車機構3およ
び伝達歯車4aおよび4bからなる従動伝達機構2の前
記差動歯車機構3の入力軸となる。入力された駆動力
は、差動歯車機構3により動力伝達経路が二つに分岐さ
れ、その一方は伝達歯車4aを介して減速機構8の入力
軸である駆動軸5に伝達され、駆動太陽歯車11a、遊
星歯車11b、11d、固定太陽歯車11c、被駆動太
陽歯車11eからなる遊星歯車機構11で減速されて被
駆動太陽歯車11eに連接されている回転出力部14に
出力され、連接部10を介して減速機構9の固定太陽歯
車部18に連接されている。また、減速機構8の固定太
陽歯車部17は図2に示すアーム13a、13bで本装
置外の固定部7例えば航空機の機体構造部材に固定され
る。他方、伝達歯車4bを介して減速機構9の入力軸で
ある駆動軸6に伝達された駆動力は、駆動太陽歯車12
a、遊星歯車12b、12d、固定太陽歯車12c、被
駆動太陽歯車12eからなる遊星歯車機構12で減速さ
れ被駆動太陽歯車12eに連接されている回転出力部1
5から、前記減速機構8の回転出力部14から連接部1
0を介して減速機構9の固定太陽歯車部18に入力され
た変位に加算されて出力され、連接されている被駆動部
(舵面)16を駆動する構成をとる。
The shaft 19 of the drive source 1 serves as an input shaft of the differential gear mechanism 3 of the driven transmission mechanism 2 including the differential gear mechanism 3 and the transmission gears 4a and 4b. The input driving force is split into two power transmission paths by the differential gear mechanism 3, one of which is transmitted to the drive shaft 5, which is the input shaft of the reduction mechanism 8, via the transmission gear 4 a. 11a, the planetary gears 11b and 11d, the fixed sun gear 11c, and the speed reduced by the planetary gear mechanism 11 composed of the driven sun gear 11e, output to the rotation output unit 14 connected to the driven sun gear 11e, and It is connected to the fixed sun gear portion 18 of the speed reduction mechanism 9 via the transmission. The fixed sun gear portion 17 of the speed reduction mechanism 8 is fixed to the fixed portion 7 outside the apparatus by, for example, an airframe structural member of an aircraft by arms 13a and 13b shown in FIG. On the other hand, the driving force transmitted to the drive shaft 6 as the input shaft of the reduction mechanism 9 via the transmission gear 4b is
a, the rotation output unit 1 that is reduced in speed by the planetary gear mechanism 12 including the planetary gears 12b and 12d, the fixed sun gear 12c, and the driven sun gear 12e and is connected to the driven sun gear 12e.
5, from the rotation output unit 14 of the speed reduction mechanism 8 to the connection unit 1
The output is added to the displacement input to the fixed sun gear portion 18 of the speed reduction mechanism 9 through the output portion 0, and is output to drive the connected driven portion (control surface) 16.

【0008】上記した本装置の形状について概念斜視図
を図2に示す。駆動源1の駆動力は従動伝達機構2に加
わり駆動軸5と駆動軸6に分岐される。駆動軸5から減
速機構8に入力された駆動力は、減速機構8で減速され
回転出力部14に出力され、連接部10を介して減速機
構9に連接される。駆動軸6から減速機構9に入力され
た駆動力は減速機構9で減速され減速機構8の出力に加
算されて回転出力部15に出力され、連接されている本
装置外の被駆動部(舵面)16を駆動する。
FIG. 2 is a conceptual perspective view showing the shape of the above-described apparatus. The driving force of the driving source 1 is applied to the driven transmission mechanism 2 and is branched to the driving shaft 5 and the driving shaft 6. The driving force input from the drive shaft 5 to the speed reduction mechanism 8 is reduced by the speed reduction mechanism 8, output to the rotation output unit 14, and connected to the speed reduction mechanism 9 via the connection unit 10. The driving force input from the drive shaft 6 to the speed reduction mechanism 9 is decelerated by the speed reduction mechanism 9, added to the output of the speed reduction mechanism 8, output to the rotation output unit 15, and connected to a driven part (steering unit) outside the apparatus. Surface 16 is driven.

【0009】つぎに図3から図7を使用して本装置の作
動について説明する。図3に上記の本装置の駆動力の伝
達の経路を、図4に図3に示す軸17、駆動軸5、駆動
軸6、回転出力部14、回転出力部15の各部の回転
A、B、C、D、Eを示す。正常作動時には軸17の回
転(A)は、二つの経路に分岐して減速比を取らない場
合にはそのままの回転が駆動軸5(B)と駆動軸6
(C)に伝達され、減速機構8で減速された回転(D)
は、減速機構8の回転出力部14に出力され、減速機構
9に入力される。減速機構9の回転入力(C)は減速機
構9で減速され前記(D)と加算されて回転出力部15
に(E)として出力され被駆動部16を駆動する。
Next, the operation of the present apparatus will be described with reference to FIGS. FIG. 3 shows the transmission path of the driving force of the above-described apparatus, and FIG. 4 shows the rotations A and B of the shaft 17, the driving shaft 5, the driving shaft 6, the rotation output unit 14, and the rotation output unit 15 shown in FIG. , C, D, and E. During normal operation, the rotation (A) of the shaft 17 is branched into two paths, and if the reduction ratio is not taken, the rotations of the shaft 17 remain unchanged as the drive shaft 5 (B) and the drive shaft 6
The rotation transmitted to (C) and reduced by the reduction mechanism 8 (D)
Is output to the rotation output unit 14 of the speed reduction mechanism 8 and input to the speed reduction mechanism 9. The rotation input (C) of the speed reduction mechanism 9 is decelerated by the speed reduction mechanism 9 and added to the above (D), and the rotation output unit 15
(E) to drive the driven part 16.

【0010】減速機構8と減速機構9の減速比はb/a
であり、正常作動時には減速機構8の回転出力bに減速
機構9の回転出力bが加算されて減速機構9の回転出力
部14には約2bまたは2bの回転出力が出力される。
つぎに、減速機構8の経路でジャミング(固着)が発生
した場合、駆動軸5の回転(B)はゼロとなり、したが
って回転出力部14の回転(D)もゼロとなる。この場
合、図1の従動歯車機構2内の差動歯車機構3において
伝達歯車4aが停止した状態では、駆動軸6の回転
(C)は2倍の2aとなり、減速機構9の回転出力
(E)は2bとなる。つぎに、減速機構9の経路でジャ
ミング(固着)が発生した場合、駆動軸6の回転(C)
はゼロとなる。この場合、図1の従動歯車機構2内の差
動歯車機構3において伝達歯車4bが停止した状態で
は、駆動軸5の回転(B)は2倍の2aとなり、減速機
構8の回転出力部14の回転(D)は2bとなり、駆動
軸の回転の無い減速機構9はそのままで減速機構8と共
に駆動され回転出力部15の回転(E)も2bとなる。
The reduction ratio between the reduction mechanism 8 and the reduction mechanism 9 is b / a
During normal operation, the rotation output b of the speed reduction mechanism 9 is added to the rotation output b of the speed reduction mechanism 8, and a rotation output of about 2b or 2b is output to the rotation output unit 14 of the speed reduction mechanism 9.
Next, when jamming (sticking) occurs in the path of the speed reduction mechanism 8, the rotation (B) of the drive shaft 5 becomes zero, and therefore, the rotation (D) of the rotation output unit 14 also becomes zero. In this case, when the transmission gear 4a is stopped in the differential gear mechanism 3 in the driven gear mechanism 2 in FIG. 1, the rotation (C) of the drive shaft 6 is doubled to 2a, and the rotation output (E ) Becomes 2b. Next, when jamming (sticking) occurs in the path of the speed reduction mechanism 9, rotation (C) of the drive shaft 6 is performed.
Becomes zero. In this case, when the transmission gear 4b is stopped in the differential gear mechanism 3 in the driven gear mechanism 2 of FIG. 1, the rotation (B) of the drive shaft 5 is doubled to 2a, and the rotation output unit 14 of the reduction mechanism 8 (D) is 2b, and the speed reduction mechanism 9 without rotation of the drive shaft is driven together with the speed reduction mechanism 8 and the rotation (E) of the rotation output unit 15 is also 2b.

【0011】つぎに、図1、図5、図6、図7を使用し
て前記図4の状態に対応する被駆動部(舵面)16の回
転変位の状態を説明する。図5は本装置が正常な状態
で、図1の駆動源1の軸19の回転変位がaの時、固定
部7に対する減速機構8の回転変位はbとなり、減速機
構8の変位の軸上に回転中心がある減速機構9の回転変
位もbとなる。したがって、減速機構8の回転中心(固
定部7に対する回転中心)に対する被駆動部(舵面)1
6の回転変位は2bより小さいが、Xに対してYの大き
さが十分大きければ限りなく2bに近づく。図6は減速
機構8の系統がジャミングした場合で、減速機構9の回
転中心に対する回転出力部15すなわち舵面16の回転
変位は2bであるが、固定部7に対する減速機構8の回
転中心からの回転変位は2bより小さいが、Xに対して
Yの大きさが十分大きければ限りなく2bに近づく。図
7は減速機構9の系統がジャミングした場合で、固定部
7に対する減速機構8の回転変位2bがそのまま舵面1
6の回転変位となる。
Next, the state of the rotational displacement of the driven portion (control surface) 16 corresponding to the state of FIG. 4 will be described with reference to FIGS. 1, 5, 6, and 7. FIG. 5 shows that the apparatus is in a normal state, and when the rotational displacement of the shaft 19 of the drive source 1 in FIG. 1 is a, the rotational displacement of the reduction mechanism 8 with respect to the fixed part 7 is b, and the displacement of the reduction mechanism 8 is on the axis. Is also b. Therefore, the driven portion (control surface) 1 with respect to the rotation center of the reduction mechanism 8 (the rotation center with respect to the fixed portion 7).
Although the rotational displacement of 6 is smaller than 2b, it approaches 2b as long as the magnitude of Y with respect to X is sufficiently large. FIG. 6 shows a case in which the system of the speed reduction mechanism 8 is jammed, and the rotation displacement of the rotation output unit 15, that is, the control surface 16 with respect to the rotation center of the speed reduction mechanism 9 is 2 b, but the rotation displacement of the speed reduction mechanism 8 with respect to the fixed unit 7 from the rotation center is small. Although the rotational displacement is smaller than 2b, it approaches 2b as long as the magnitude of Y with respect to X is sufficiently large. FIG. 7 shows a case where the system of the speed reduction mechanism 9 is jammed, and the rotational displacement 2b of the speed reduction mechanism 8 with respect to the fixed portion 7 is
6 is obtained.

【0012】前記のごとく、本装置においては、通常X
に対してYは十分大きいので減速機構8および減速機構
9のいずれかの系統にジャミングが発生しても、舵面1
6の回転変位は大きく変わらない動力伝達機構が実現で
きる。また、減速機構8および減速機構9のいずれかの
系統にジャミングが発生しても、駆動力の変動も生じな
い動力伝達機構が実現できる。以上の説明は、減速機構
8と減速機構9がX離れて構成されている例であるが、
Xを限りなくゼロとした同軸配置にすることにより一系
統がジャミングしても被駆動部16の回転速度、変位と
もに変動無く駆動できる動力伝達装置が実現できる。さ
らに、減速機構のジャミングに対して冗長度をあげるた
めに、駆動軸5の後に差動歯車機構3と同様な作動歯車
機構をを介在させて駆動軸を二つに分岐し、各軸に図1
の例と同様に減速機構を並置し出力を連接して被駆動部
を駆動するように構成することもできる。
As described above, in this apparatus, X
Is large enough so that even if jamming occurs in either system of the speed reduction mechanism 8 and the speed reduction mechanism 9, the control surface 1
6 can realize a power transmission mechanism whose rotational displacement is not largely changed. Further, even if jamming occurs in any of the systems of the speed reduction mechanism 8 and the speed reduction mechanism 9, a power transmission mechanism in which the driving force does not fluctuate can be realized. The above description is an example in which the speed reduction mechanism 8 and the speed reduction mechanism 9 are configured X apart from each other.
By using a coaxial arrangement in which X is set to zero as much as possible, a power transmission device that can be driven without fluctuation in both the rotation speed and the displacement of the driven unit 16 even when one system jams can be realized. Further, in order to increase the redundancy with respect to the jamming of the speed reduction mechanism, the drive shaft is branched into two by interposing an operation gear mechanism similar to the differential gear mechanism 3 after the drive shaft 5, and each of the shafts is illustrated. 1
In the same manner as in the above example, the speed reduction mechanism may be arranged in parallel, and the output may be connected to drive the driven portion.

【0013】次に、本発明が第2に提供する動力伝達装
置(以下本装置と称する)の構成例を、図8および図9
を用いて説明する。図8に本装置の構成をブロック図で
示す。本装置は、駆動源21と減速機構23からなる第
1の動力伝達機構と駆動源22と減速機構24からなる
第2の動力伝達系統を有し、減速機構23と減速機構2
4は連接部29により連接されており、駆動源21と駆
動源22の何れが選択されても被駆動部28を等しく駆
動できるように構成されている。前記第1の動力伝達系
統と第2の動力伝達系統の選択は制御器25により行わ
れる。
Next, an example of the configuration of a power transmission device (hereinafter referred to as the present device) secondly provided by the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 8 is a block diagram showing the configuration of the present apparatus. This device has a first power transmission mechanism including a drive source 21 and a reduction mechanism 23 and a second power transmission system including a drive source 22 and a reduction mechanism 24.
Reference numeral 4 is connected by a connecting portion 29 so that the driven portion 28 can be driven equally regardless of which of the driving source 21 and the driving source 22 is selected. The controller 25 selects the first power transmission system and the second power transmission system.

【0014】つぎに、図9、図10、図11を用いて構
成と作動を説明する。図9において、第1の動力伝達系
統の駆動源(原動機)21から入力された駆動力は、駆
動軸30から固定部26に対して回転支持された減速機
構23に伝達され、駆動太陽歯車27a、遊星歯車27
b、27d、固定太陽歯車27c、被駆動太陽歯車27
eからなる遊星歯車機構27で減速されて被駆動太陽歯
車27eに連接されている回転出力部31に出力され、
被駆動部(舵面)28を駆動する。第2の動力伝達系統
は、駆動源(原動機)22の駆動入力が減速され、駆動
端34が固定部33に対して直線運動をする機構を内蔵
するリニアアクチュエータを構成し、駆動源22の入力
に応じて直線運動する駆動端34を、連接部29を介し
て減速機構23の固定太陽歯車部32に連接する。ま
た、減速機構24の駆動端34の他端は、駆動端34が
直線運動をして連接部29を介して減速機構23の固定
太陽歯車部32を回転させるときに、減速機構24が動
揺し得るように固定部33に対してピボット35で支持
されている。かくして、駆動端34の直線運動により、
減速機構23が固定部26に対して回転して被駆動部
(舵面)28が駆動される。
Next, the structure and operation will be described with reference to FIGS. 9, 10 and 11. FIG. In FIG. 9, a driving force input from a driving source (motor) 21 of a first power transmission system is transmitted from a driving shaft 30 to a reduction mechanism 23 that is rotatably supported with respect to a fixed portion 26, and is driven by a driving sun gear 27a. , Planetary gear 27
b, 27d, fixed sun gear 27c, driven sun gear 27
e, which is reduced by the planetary gear mechanism 27 and output to the rotation output unit 31 connected to the driven sun gear 27e.
The driven part (control surface) 28 is driven. The second power transmission system constitutes a linear actuator having a mechanism in which the drive input of the drive source (motor) 22 is decelerated and the drive end 34 performs a linear motion with respect to the fixed portion 33. Is connected to the fixed sun gear portion 32 of the speed reduction mechanism 23 via the connection portion 29. The other end of the drive end 34 of the speed reduction mechanism 24 is oscillated when the drive end 34 makes a linear motion to rotate the fixed sun gear 32 of the speed reduction mechanism 23 via the connecting portion 29. It is supported by a pivot 35 with respect to the fixing part 33 so as to obtain the same. Thus, due to the linear movement of the drive end 34,
The reduction mechanism 23 rotates with respect to the fixed part 26, and the driven part (control surface) 28 is driven.

【0015】第1の動力伝達系統と第2の動力伝達機構
の選択は前記したように制御器25により実行される。
例えば、通常は第1の動力伝達系統により被駆動部(舵
面)28を駆動するが、減速機構23にジャミングが発
生した場合には制御器25が駆動源21をオフにし、駆
動源22をオンにすることにより駆動源22に加わる制
御信号に追従して減速機構24の駆動端34が固定部3
3に対して伸縮し、連接部29を介して固定太陽歯車部
32を回転させることにより、固定部26に対し回転支
持された減速機構23がジャミングにより固着した状態
で、回転支持部に対して回転し、前記したように減速機
構23をジャミングしたままで動力伝達経路とし被駆動
部(舵面)28を駆動する。図10に第1の動力伝達機
構が選択された時の作動の状態を示す。減速機構24の
駆動端34は固定で、減速機構23の駆動軸30の回転
は、減速機構23で減速され、舵面28をbだけ回転さ
せる。図11は、第2の動力伝達機構が選択された時の
作動の状態を示す。固定部26に対して回転支持された
減速機構23は一体となり、駆動端34が下方に移動す
ることにより連接部29がbだけ回転し、舵面28もb
だけ回転変位するように作動する。かくして第2の動力
伝達系統が選択されても第1の動力動力伝達系統と同様
な駆動が得られる。以上の説明では、駆動源22に出力
端が直線変位するリニアアクチュエータを用いている
が、減速機構23と同様な回転変位機構を用いても同様
な動力伝達装置が実現できる。
The selection of the first power transmission system and the second power transmission mechanism is executed by the controller 25 as described above.
For example, normally, the driven portion (control surface) 28 is driven by the first power transmission system, but when jamming occurs in the speed reduction mechanism 23, the controller 25 turns off the drive source 21 and turns off the drive source 22. By turning on, the drive end 34 of the speed reduction mechanism 24 follows the control signal applied to the drive source 22 and
3 by rotating the fixed sun gear portion 32 through the connecting portion 29 so that the reduction mechanism 23 rotatably supported by the fixed portion 26 is fixed to the rotation supporting portion by jamming. It rotates and drives the driven portion (control surface) 28 as a power transmission path while the speed reduction mechanism 23 is jammed as described above. FIG. 10 shows an operation state when the first power transmission mechanism is selected. The drive end 34 of the speed reduction mechanism 24 is fixed, and the rotation of the drive shaft 30 of the speed reduction mechanism 23 is reduced by the speed reduction mechanism 23 to rotate the control surface 28 by b. FIG. 11 shows an operation state when the second power transmission mechanism is selected. The deceleration mechanism 23, which is rotationally supported by the fixed portion 26, is integrated. When the drive end 34 moves downward, the connecting portion 29 rotates by b, and the control surface 28 also moves by b.
It operates to rotate only. Thus, even if the second power transmission system is selected, driving similar to that of the first power transmission system can be obtained. In the above description, a linear actuator whose output end is linearly displaced is used as the drive source 22, but a similar power transmission device can be realized by using a rotational displacement mechanism similar to the speed reduction mechanism 23.

【0016】[0016]

【発明の効果】本発明が、第1に提供する動力伝達装置
は、上記のように構成されており一つの駆動源の回転を
作動歯車機構により二つの回転軸に分岐させ、それぞれ
の回転軸に遊星歯車機構を内蔵する減速機構を連接し、
かつ二つの減速機構の内の一方の遊星歯車機構の固定太
陽歯車部を固定端に固定し、その減速機構の回転出力部
を他方の減速機構の固定太陽歯車部に連接しその回転出
力部に被駆動部を連設することにより、通常は二つの減
速機構の回転出力が加算されて被駆動部を駆動し、いず
れかの減速機構にジャミングが生じた場合、残りの減速
機構への回転入力が2倍となり、ジャミングが発生して
いる減速機構を含めて被駆動部を駆動するため、いずれ
かの系統にジャミングが発生しても、舵面の回転変位
(速度)は大きく変わらず、かつ駆動力の変動も生じな
い動力伝達装置が実現できる。さらに、本発明が、第2
に提供する動力伝達装置は、動力伝達系統を二つにし、
制御器で切り替えて被駆動部を駆動するようにし、第1
の動力伝達系統の減速機構に遊星歯車機構を内蔵し、減
速して被駆動部を駆動することができ、その固定太陽歯
車部と第2の動力伝達系統の減速機構を連接し、第2の
動力伝達機構の減速機構の出力で第1の動力伝達系統の
前記固定太陽歯車部を回転し得るように連接することに
より、第1の動力伝達系統にジャミングが生じていても
第2の動力伝達系統からも全く同様に被駆動部を駆動で
き、かつ、駆動速度と駆動力の変動も生じない動力伝達
装置が実現できる。
The power transmission device provided first by the present invention is constructed as described above, and the rotation of one drive source is branched into two rotation shafts by an operating gear mechanism. Connected to a reduction mechanism with a built-in planetary gear mechanism,
And the fixed sun gear part of one planetary gear mechanism of the two reduction mechanisms is fixed to a fixed end, and the rotation output part of the reduction mechanism is connected to the fixed sun gear part of the other reduction mechanism and connected to the rotation output part. By connecting the driven parts in series, the rotation outputs of the two reduction mechanisms are usually added to drive the driven parts, and when jamming occurs in one of the reduction mechanisms, the rotation input to the remaining reduction mechanisms is performed. Is doubled, and the driven part is driven including the speed reduction mechanism in which the jamming has occurred. Therefore, even if the jamming occurs in any of the systems, the rotational displacement (speed) of the control surface does not greatly change, and It is possible to realize a power transmission device in which the driving force does not fluctuate. Further, the present invention provides a second method.
The power transmission device to provide the two power transmission system,
The driven part is driven by switching by the controller, and the first
A planetary gear mechanism is built in the speed reduction mechanism of the power transmission system, and the driven part can be driven at a reduced speed. The fixed sun gear part and the speed reduction mechanism of the second power transmission system are connected to each other, By connecting the fixed sun gear portion of the first power transmission system so as to be rotatable with the output of the reduction mechanism of the power transmission system, the second power transmission is performed even if jamming occurs in the first power transmission system. It is possible to realize a power transmission device that can drive a driven part in the same manner from the system and that does not cause fluctuations in driving speed and driving force.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1の発明に係わる動力伝達装置
の一実施例の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of a power transmission device according to the first aspect of the present invention.

【図2】本発明の請求項1の発明に係わる動力伝達装置
の主要な構成を示す概念斜視図である。
FIG. 2 is a conceptual perspective view showing a main configuration of a power transmission device according to the first embodiment of the present invention.

【図3】本発明の請求項1の発明に係わる動力伝達装置
の主要な構成を示すブロック図である。
FIG. 3 is a block diagram showing a main configuration of a power transmission device according to the first embodiment of the present invention.

【図4】本発明の請求項1の発明に係わる動力伝達装置
の作動状態に応じた図3に示す各部の回転を示す図であ
る。
FIG. 4 is a diagram showing rotation of each part shown in FIG. 3 according to an operation state of the power transmission device according to the first aspect of the present invention.

【図5】本発明の請求項1の発明に係わる動力伝達装置
の正常作動状態で被駆動部の駆動状態を示す図である。
FIG. 5 is a diagram showing a driving state of a driven part in a normal operation state of the power transmission device according to the first aspect of the present invention.

【図6】本発明の請求項1の発明に係わる動力伝達装置
の減速機構8が固着した状態での被駆動部の駆動状態を
示す図である。
FIG. 6 is a diagram showing a driving state of a driven part in a state where the speed reduction mechanism 8 of the power transmission device according to the first aspect of the present invention is fixed.

【図7】本発明の請求項1の発明に係わる動力伝達装置
の減速機構9が固着した状態での被駆動部の駆動状態を
示す図である。
FIG. 7 is a diagram showing a driven state of a driven part in a state where the speed reduction mechanism 9 of the power transmission device according to the first aspect of the present invention is fixed.

【図8】本発明の請求項2の発明に係わる動力伝達装置
の主要な構成を示すブロック図である。
FIG. 8 is a block diagram showing a main configuration of a power transmission device according to a second embodiment of the present invention.

【図9】本発明の請求項2の発明に係わる動力伝達装置
の主要な構成を示す図である。
FIG. 9 is a diagram showing a main configuration of a power transmission device according to a second embodiment of the present invention.

【図10】本発明の請求項2の発明に係わる動力伝達装
置の正常作動状態で被駆動部の駆動状態を示す図であ
る。
FIG. 10 is a diagram showing a driving state of a driven portion in a normal operation state of the power transmission device according to the second aspect of the present invention.

【図11】本発明の請求項2の発明に係わる動力伝達装
置の減速機構23が固着した状態での被駆動部の駆動状
態を示す図である。
FIG. 11 is a diagram showing a driving state of a driven part in a state where the speed reduction mechanism 23 of the power transmission device according to the second aspect of the present invention is fixed.

【符号の説明】[Explanation of symbols]

1・・・・駆動源(原動機) 2・・・・従動伝達機
構 3・・・・差動歯車機構 4a、4b・・・・伝
達歯車 5・・・・駆動軸 6・・・・駆動軸 7・・・・固定部 8・・・・減速機構 9・・・・減速機構 10・・・・連接部 11、12・・・・遊星歯車機構 13a、13b・・
・・アーム 14・・・・回転出力部 15・・・・回転出力
部 16・・・・被駆動部(舵面) 17・・・・固定太陽
歯車部 18・・・・固定太陽歯車部 19・・・・軸
1. Drive source (motor) 2. Drive transmission mechanism 3. Differential gear mechanism 4a, 4b Transmission gear 5. Drive shaft 6. Drive shaft 7 ... fixed part 8 ... reduction mechanism 9 ... reduction mechanism 10 ... connecting part 11, 12 ... planetary gear mechanism 13a, 13b ...
··· Arm 14 ··· Rotation output unit 15 ··· Rotation output unit 16 ··· Driven part (control surface) 17 ··· Fixed sun gear 18 ··· Fixed sun gear 19 ····axis

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J009 DA16 EA06 EA11 EA16 EA25 EA35 EA44 ED01 ED03 FA30 3J027 FA34 FA37 FB16 GB06 GC13 GC24 GC27 GE29 HB07 HC15 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J009 DA16 EA06 EA11 EA16 EA25 EA35 EA44 ED01 ED03 FA30 3J027 FA34 FA37 FB16 GB06 GC13 GC24 GC27 GE29 HB07 HC15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】動力源の回転または直線運動の動力を増速
または減速して負荷側に伝達し負荷を駆動する動力伝達
装置において、前記動力を増速または減速し伝達する伝
達経路を2個以上並設し、正常時は前記全ての伝達経路
からの駆動力が加算されて負荷を駆動し、1個の伝達経
路が不正常のときは、残りの伝達経路が不正常伝達経路
をそのままの状態で動力伝達経路となすように構成した
ことを特徴とする動力伝達装置。
A power transmission device for driving a load by increasing or decreasing the power of rotation or linear motion of a power source and transmitting the power to a load side, wherein two transmission paths for increasing or decreasing the power and transmitting the power. When the transmission force is normal, the driving forces from all the transmission paths are added to drive the load, and when one transmission path is abnormal, the remaining transmission paths are the same as the abnormal transmission paths. A power transmission device, wherein the power transmission device is configured to form a power transmission path in a state.
【請求項2】動力源の回転または直線運動の動力を増速
または減速して負荷側に伝達し負荷を駆動する動力伝達
装置において、前記動力源と増速または減速し伝達する
伝達経路からなる駆動系を2個以上並設し、正常時は1
個の駆動系により負荷を駆動し、1個の駆動系が不正常
のときは、他の駆動系に切り替えるとともに、不正常の
駆動系における伝達経路をそのままの状態で動力伝達経
路に含めるように構成したことを特徴とする動力伝達装
置。
2. A power transmission apparatus for driving a load by transmitting the power of rotation or linear motion of a power source to a load side by increasing or decreasing the speed, comprising a transmission path for increasing or decreasing the speed and transmitting the power source. Two or more drive systems are arranged side by side, and 1
The load is driven by two drive systems, and when one drive system is abnormal, it is switched to another drive system, and the transmission path in the abnormal drive system is included in the power transmission path as it is. A power transmission device comprising:
JP24857499A 1999-09-02 1999-09-02 Power transmission device Pending JP2001074121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24857499A JP2001074121A (en) 1999-09-02 1999-09-02 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24857499A JP2001074121A (en) 1999-09-02 1999-09-02 Power transmission device

Publications (1)

Publication Number Publication Date
JP2001074121A true JP2001074121A (en) 2001-03-23

Family

ID=17180171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24857499A Pending JP2001074121A (en) 1999-09-02 1999-09-02 Power transmission device

Country Status (1)

Country Link
JP (1) JP2001074121A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112693A (en) * 2001-10-09 2003-04-15 Teijin Seiki Co Ltd Control device for steering blade
JP2010501398A (en) * 2006-08-23 2010-01-21 エアバス・ユ―ケ―・リミテッド Anti-stick failure resistant actuator
CN102107730A (en) * 2011-01-27 2011-06-29 西北工业大学 Dynamic controller of hinge-free aircraft
CN104307706A (en) * 2014-09-10 2015-01-28 长兴金润大正机械有限公司 Transmission structure of gear pumps of gum dispenser
CN104500657A (en) * 2014-12-26 2015-04-08 哈尔滨固泰电子有限责任公司 Twin-engine parallel operation automobile gearbox and transmission method
WO2019017325A1 (en) * 2017-07-18 2019-01-24 川崎重工業株式会社 Aircraft steering system provided with electromechanical actuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112693A (en) * 2001-10-09 2003-04-15 Teijin Seiki Co Ltd Control device for steering blade
JP2010501398A (en) * 2006-08-23 2010-01-21 エアバス・ユ―ケ―・リミテッド Anti-stick failure resistant actuator
CN102107730A (en) * 2011-01-27 2011-06-29 西北工业大学 Dynamic controller of hinge-free aircraft
CN104307706A (en) * 2014-09-10 2015-01-28 长兴金润大正机械有限公司 Transmission structure of gear pumps of gum dispenser
CN104500657A (en) * 2014-12-26 2015-04-08 哈尔滨固泰电子有限责任公司 Twin-engine parallel operation automobile gearbox and transmission method
WO2019017325A1 (en) * 2017-07-18 2019-01-24 川崎重工業株式会社 Aircraft steering system provided with electromechanical actuator
EP3656663A4 (en) * 2017-07-18 2021-05-19 Kawasaki Jukogyo Kabushiki Kaisha Aircraft steering system provided with electromechanical actuator
US11235862B2 (en) 2017-07-18 2022-02-01 Kawasaki Jukogyo Kabushiki Kaisha Aircraft flight control system including electromechanical actuator

Similar Documents

Publication Publication Date Title
EP3144220B1 (en) Aircraft control surface actuator
US7871033B2 (en) Tilt actuation for a rotorcraft
EP1786667B1 (en) Systems and methods for providing differential motion to wing high lift devices
US8080966B2 (en) Motor control architecture for simultaneously controlling multiple motors
US8087619B2 (en) Active control stick assembly including traction drive
RU2466316C2 (en) Drive
US20150217866A1 (en) Magnetorheological Rotorcraft Actuator
JP2010506792A (en) Fault-tolerant redundant differential actuator
US9162751B2 (en) Apparatus for use on an aircraft
EP2415669B1 (en) Control system
EP3656663B1 (en) Aircraft steering system including electromechanical actuator
CN107406138B (en) Flight control assemblies for aircraft
JP2001074121A (en) Power transmission device
US20240190578A1 (en) Multi-mode aircraft power-split transmission system
CN109163625B (en) Redundant driving type steering engine with multiple safety margins
EP3998199B1 (en) Civil aircraft equipped with actuator for primary flight control surface
EP1262687B1 (en) Electromotive actuator and method for controlling the same
US10745118B2 (en) Variable ratio gearbox for a rotary wing aircraft tail rotor
EP2832647B1 (en) Exterior helicopter light unit and method of operating an exterior helicopter light unit
JP4666443B2 (en) Electric actuator and rocket using the same
US10752349B2 (en) Active counterweight for main rotor
Ford Actuation systems development
JPH01229798A (en) Actuator mechanism for controlling rudder face with variable transmission ratio
WO2007009520A1 (en) Control surface operating mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310