JP2001073071A - THICK STEEL PLATE HAVING 570 TO 720 N/mm2 TENSILE STRENGTH AND SMALL IN DIFFERENCE IN HARDNESS BETWEEN WELDING HEAT-AFFECTED ZONE AND BASE MATERIAL AND ITS PRODUCTION - Google Patents

THICK STEEL PLATE HAVING 570 TO 720 N/mm2 TENSILE STRENGTH AND SMALL IN DIFFERENCE IN HARDNESS BETWEEN WELDING HEAT-AFFECTED ZONE AND BASE MATERIAL AND ITS PRODUCTION

Info

Publication number
JP2001073071A
JP2001073071A JP24866099A JP24866099A JP2001073071A JP 2001073071 A JP2001073071 A JP 2001073071A JP 24866099 A JP24866099 A JP 24866099A JP 24866099 A JP24866099 A JP 24866099A JP 2001073071 A JP2001073071 A JP 2001073071A
Authority
JP
Japan
Prior art keywords
affected zone
hardness
steel
steel plate
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24866099A
Other languages
Japanese (ja)
Other versions
JP4276341B2 (en
Inventor
Yoshiyuki Watabe
義之 渡部
Yoshio Terada
好男 寺田
Akihiko Kojima
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24866099A priority Critical patent/JP4276341B2/en
Publication of JP2001073071A publication Critical patent/JP2001073071A/en
Application granted granted Critical
Publication of JP4276341B2 publication Critical patent/JP4276341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a thick steel plate having 570 to 720 N/mm2 tensile strength and small in the difference in the hardness between the welding heat- affected zone and base material and to provide a method for producing it. SOLUTION: This steel plate has a steel compsn. contg., by weight, 0.01 to 0.1% C, <=0.6% Si, 0.4 to 2.0% Mn, <=0.025% P, <=0.008% S, <=0.06% Al, 0.05 to 0.2% Nb, 0.005 to 0.035% Ti and 0.001 to 0.005% N, contg., at need, Cu, Ni, Cr, Mo, V, Mg, Ca and rare earth metals, and the balance iron with inevitable impurities and simultaneously satisfying PCM=C+Si/30+(Mn+Cu+ Cr)/20+Ni/60+Mo/15+V/10+5B<=0.18%. Furthermore, as the method for producing the thick steel plate, a cast slab or a steel slab having the above steel compsn. is reheated to 1,100 to 1,250 deg.C, is directly quenched after the completion of rolling at >=750 deg.C and is successively subjected to tempering treatment at the temp. of <=Ac1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築、橋梁、造
船、貯槽タンクその他に用いられる引張強さ570〜7
20N/mm2の溶接構造物用鋼(具体的にはJIS規
格に定めるSM570級鋼)およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a tensile strength of 570 to 7 for construction, bridges, shipbuilding, storage tanks and the like.
The present invention relates to a steel for welded structures of 20 N / mm 2 (specifically, SM570 grade steel specified in JIS standards) and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、鋼材の強度を高めると母材の疲
労強度は向上するが、溶接部の疲労強度は向上しないと
いわれ、疲労を考慮した設計では、高張力鋼を使用して
も必ずしも鋼材使用量が低減されず、高張力鋼のメリッ
トが十分享受できないという問題があった。
2. Description of the Related Art Generally, it is said that when the strength of steel material is increased, the fatigue strength of a base material is improved, but the fatigue strength of a welded portion is not improved. There has been a problem that the amount of steel used is not reduced, and the advantages of high-tensile steel cannot be fully enjoyed.

【0003】溶接鋼構造物の疲労の問題は、特定分野に
限ったものではなく、あらゆる分野で現存している。溶
接部の疲労強度は、溶接ディテールが支配的とされ、そ
の向上のため溶接部(止端部)形状の平坦化による応力
集中の低減やピーニングなどによる残留応力のコントロ
ールなどが広く行われている。また、鋼材面からの溶接
部疲労強度向上対策として、特開平9−227987号
公報、特開平9−241796号公報、特開平10−1
742号公報、特開平10−1743号公報などに、溶
接熱影響部(HAZ)組織の特定組織への制御とそのた
めの鋼成分の規定、あるいはさらに溶接金属(WM)と
HAZの硬度差を小さくすることなどが記載されてい
る。しかし、前述の硬度差は、溶接溶融線を挟む比較的
狭い領域を対象としており、これは溶接部の疲労は、溶
接止端部が問題となるためと推定されるが、母材とHA
Zとの硬度差に関する記載がない。
[0003] The problem of fatigue of welded steel structures is not limited to a particular field, but exists in all fields. Weld detail is considered to be dominant in the fatigue strength of welds. To improve the fatigue strength, reduction of stress concentration by flattening the shape of the weld (toe) and control of residual stress by peening are widely performed. . As measures for improving the fatigue strength of the welded portion from the steel surface, JP-A-9-227987, JP-A-9-241796, and JP-A-10-1
No. 742, Japanese Unexamined Patent Application Publication No. 10-1743, etc., control of the weld heat affected zone (HAZ) structure to a specific structure and the definition of steel components for that purpose, or further reduce the hardness difference between the weld metal (WM) and the HAZ. Is described. However, the hardness difference described above is intended for a relatively narrow region sandwiching the weld fusion line. This is presumed to be due to the fact that the weld toe is problematic at the weld toe.
There is no description about the hardness difference from Z.

【0004】一方、アンモニア、LPGなどの貯槽タン
クや石油・天然ガス精製プラントおよび輸送用ラインパ
イプでは、特に溶接部近傍での硫化水素による硫化物応
力腐食割れ(SSC)が大きな問題となっている。鋼の
SSC感受性は、鋼成分やミクロ組織、非金属介在物の
有無などによって異なるが、とりわけ硬さの影響が大き
く、HRC22(HV換算で248)以下ではSSCは
起こらないとされている。しかし、溶接部のような硬さ
の不均質部では、上記硬さ規制を行っても応力や歪みの
集中(不均質分布)が生じ、SSCの一形態とされるS
OHICなどが発生する場合があった。SOHIC防止
策は、その生成機構が必ずしも明確ではないこともあっ
て、例えば、特開平5−287442号公報、特開平7
−188838号公報、特開平9−125136号公報
などに開示されているようなSSC防止対策をより厳格
に行うという従来対策の延長でしかなく、溶接部での耐
SOHIC特性に対する有効性については記載されてい
ない。
On the other hand, sulfide stress corrosion cracking (SSC) caused by hydrogen sulfide in the vicinity of a weld has become a serious problem in storage tanks for ammonia, LPG, etc., oil / natural gas refining plants, and transportation line pipes. . The SSC susceptibility of steel varies depending on the steel composition, microstructure, the presence or absence of nonmetallic inclusions, etc., but is particularly affected by hardness, and it is said that SSC does not occur at HRC22 (HV conversion: 248 or less). However, in a non-uniform hardness portion such as a welded portion, concentration of stress and strain (heterogeneous distribution) occurs even when the above-described hardness regulation is performed, and S is regarded as one form of SSC.
OIC and the like may occur. The SOHIC prevention measures are described in, for example, Japanese Patent Application Laid-Open Nos. 5-287442 and
It is only an extension of the conventional measures of making SSC prevention measures more strict as disclosed in JP-A-188838, JP-A-9-125136, etc., and describes the effectiveness with respect to the SOHIC resistance characteristics at the welded portion. It has not been.

【0005】[0005]

【発明が解決しようとする課題】本発明は、引張強さ5
70〜720N/mm2の溶接熱影響部と母材の硬さ差
が小さい厚鋼板およびその製造方法に関するものであ
る。溶接割れ感受性組成P CMをはじめ、鋼組成を本願発
明の通り限定することで、溶接性が著しく改善されるば
かりでなく、溶接熱影響部の硬化性、軟化性も低減し、
溶接熱影響部と母材の硬さ差を小さくすることが可能と
なり、溶接部の硬さ(強度)の不均質に起因する供用時
の応力・歪みの集中(不均一分布)が緩和され、溶接部
の疲労強度や耐応力腐食割れ性が一段と向上し、溶接鋼
構造物の安全性を高めることができる。
The present invention has a tensile strength of 5%.
70-720 N / mmTwoOf hardness between weld heat affected zone and base metal of steel
Thick steel plate and a method of manufacturing the same.
You. Weld crack susceptibility composition P cmAnd other steel compositions
As is obvious, if the limitation is made, the weldability is significantly improved.
In addition, the hardening and softening properties of the heat affected zone are reduced,
It is possible to reduce the hardness difference between the heat affected zone and the base metal
During operation due to unevenness in the hardness (strength) of the weld
Concentration (non-uniform distribution) of stress and strain on
The fatigue strength and stress corrosion cracking resistance of steel
The safety of the structure can be improved.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の要旨
とするところは下記の通りである。
That is, the gist of the present invention is as follows.

【0007】(1) 重量%で、C:0.01〜0.1
%、Si:0.6%以下、Mn:0.4〜2.0%、
P:0.025%以下、S:0.008%以下、Al:
0.06%以下、Nb:0.05〜0.2%、Ti:
0.005〜0.035%、N:0.001〜0.00
5%、残部が鉄および不可避的不純物からなり、かつ、 PCM=C+Si/30+(Mn+Cu+Cr)/20+
Ni/60+Mo/15+V/10+5B≦0.18% を同時に満足する鋼組成を有することを特徴とする引張
強さ570〜720N/mm2の溶接熱影響部と母材の
硬さ差が小さい厚鋼板。
(1) In weight%, C: 0.01 to 0.1
%, Si: 0.6% or less, Mn: 0.4 to 2.0%,
P: 0.025% or less, S: 0.008% or less, Al:
0.06% or less, Nb: 0.05 to 0.2%, Ti:
0.005 to 0.035%, N: 0.001 to 0.00
5%, the balance being iron and unavoidable impurities, and, P CM = C + Si / 30 + (Mn + Cu + Cr) / 20 +
A steel plate having a steel composition satisfying Ni / 60 + Mo / 15 + V / 10 + 5B ≦ 0.18% at the same time, and having a small difference in hardness between a weld heat affected zone and a base metal having a tensile strength of 570 to 720 N / mm 2. .

【0008】(2) 鋼組成としてさらに、重量%で、
Cu:0.05〜0.5%、Ni:0.05〜0.5
%、Cr:0.05〜0.5%、Mo:0.05〜0.
5%、V:0.005〜0.2%、Mg:0.0002
〜0.005%の範囲で1種または2種以上を含有する
ことを特徴とする上記(1)記載の引張強さ570〜7
20N/mm2の溶接熱影響部と母材の硬さ差が小さい
厚鋼板。
(2) Further, as a steel composition,
Cu: 0.05-0.5%, Ni: 0.05-0.5
%, Cr: 0.05-0.5%, Mo: 0.05-0.
5%, V: 0.005 to 0.2%, Mg: 0.0002
A tensile strength of 570 to 7 according to the above (1), wherein one or more kinds are contained in a range of from 0.005% to 0.005%.
A thick steel plate with a small difference in hardness between the weld heat affected zone of 20 N / mm 2 and the base metal.

【0009】(3) 鋼組成としてさらに、重量%で、
Ca:0.0005〜0.004%、REM:0.00
05〜0.004%のいずれかの少なくとも1種をさら
に含有することを特徴とする上記(1)〜(2)のいず
れか1項に記載の引張強さ570〜720N/mm2
溶接熱影響部と母材の硬さ差が小さい厚鋼板。
(3) Further, as a steel composition,
Ca: 0.0005-0.004%, REM: 0.00
The heat of welding having a tensile strength of 570 to 720 N / mm 2 according to any one of the above (1) and (2), further comprising at least one of 0.5 to 0.004%. A thick steel plate with a small difference in hardness between the affected zone and the base metal.

【0010】(4) 上記(1)〜(3)のいずれか1
項に記載の鋼組成からなる鋳片または鋼片を、1100
〜1250℃の温度に再加熱し、750℃以上の温度で
圧延を終了した後、直ちに焼き入れし、引き続きAc1
以下の温度で焼き戻し処理することを特徴とする引張強
さ570〜720N/mm2の溶接熱影響部と母材の硬
さ差が小さい厚鋼板の製造方法。
(4) Any one of the above (1) to (3)
The slab or the slab having the steel composition described in the above item 1100
After reheating to a temperature of 1250 ° C. and finishing the rolling at a temperature of 750 ° C. or higher, it is immediately quenched, and subsequently Ac 1
A method for producing a thick steel plate having a small difference in hardness between a weld heat affected zone and a base material having a tensile strength of 570 to 720 N / mm 2 , characterized by performing a tempering treatment at the following temperature.

【0011】[0011]

【発明の実施の形態】HIC対策としては水素のトラッ
プサイトとなる中心偏析の軽減や硫化物(MnS)をは
じめとする非金属介在物の低減とその形態制御などが極
めて有効であり、またSSC対策としては前記に加えて
鋼のSSC感受性に大きな影響を及ぼすとされる溶接熱
影響部硬さを低減することが有効である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As measures against HIC, reduction of center segregation serving as a trap site for hydrogen, reduction of nonmetallic inclusions such as sulfide (MnS) and control of the form thereof are extremely effective. As a countermeasure, in addition to the above, it is effective to reduce the hardness of the heat affected zone, which is considered to have a great effect on the SSC sensitivity of steel.

【0012】まず、溶接熱影響部での硬化性の低減に
は、鋼の焼入性を下げることが効果的であるが、同時に
母材強度をも低下させる。このため、両者をバランスよ
く達成するには、鋼成分の適正化だけでは極めて困難で
ある。そこで、焼入性に最も顕著に効くCおよびBを極
力抑えたBフリー・低Cをベースとして溶接熱影響部硬
さの低減を図り、同時にNbあるいはさらに必要に応じ
てVを添加することで析出硬化を活用する方法を考案し
た。
First, it is effective to reduce the hardenability of steel to reduce the hardenability in the weld heat affected zone, but at the same time, the strength of the base metal is also reduced. For this reason, it is extremely difficult to achieve both in a well-balanced manner only by optimizing the steel composition. Therefore, the hardness of the weld heat-affected zone is reduced based on the B-free and low C in which C and B, which are most effective for hardenability, are suppressed to the utmost, and at the same time, Nb or, if necessary, V is added. A method utilizing precipitation hardening was devised.

【0013】Nb(Nb+V)の析出硬化そのものは従
来より広く知られたものであるが、本願発明における最
大の特徴は、Nbを0.05〜0.2%と比較的多く添
加することである。Nb(Nb+V)を比較的多く添加
し、その析出硬化を積極的に利用した例としては、例え
ば特開平5−25542号公報、特開平5−20922
2号公報に開示されているが、いずれも引張強さ780
N/mm2(80kgf/mm2)級の高張力鋼である。
Nbの析出硬化代は非常に大きく、多量添加を前提にし
た場合、本願発明が対象とする引張強さ570〜720
N/mm2のいわゆるJIS規格で定められたSM57
0級鋼(60kgf/mm2級鋼)に対しては、強度が
過剰傾向となるため、多く添加されることはなかった。
Nb多量添加前提でも、製造条件によっては強度上昇を
抑えることは可能であるが、そのようなケースはNb本
来の効果をフルに発揮したものではなく、添加量として
は妥当なものではない。
The precipitation hardening itself of Nb (Nb + V) has been widely known, but the greatest feature of the present invention is that Nb is added in a relatively large amount of 0.05 to 0.2%. . Examples of the case where Nb (Nb + V) is added in a relatively large amount and its precipitation hardening is actively used are disclosed in, for example, JP-A-5-25542 and JP-A-5-20922.
No. 2, the tensile strength is 780.
N / mm 2 (80 kgf / mm 2 ) class high tensile steel.
The precipitation hardening allowance of Nb is very large, and assuming that a large amount is added, the tensile strength 570 to 720 targeted by the present invention is considered.
SM57 specified by the so-called JIS standard of N / mm 2
As for the 0-grade steel (60 kgf / mm 2 -grade steel), the strength tends to be excessive, so that a large amount was not added.
Although it is possible to suppress an increase in strength depending on the manufacturing conditions even on the assumption that a large amount of Nb is added, such a case does not fully exhibit the original effect of Nb, and is not appropriate as an added amount.

【0014】本願発明においては、0.05〜0.2%
のNb添加を必須要件として引張強さ570〜720N
/mm2の鋼を提供するものである。このような比較的
高いNb添加は、析出硬化による母材の高張力化のみな
らず、溶接熱影響部の軟化防止にも効果を発揮し、Bフ
リー・低C化による溶接熱影響部での硬化抑制ととも
に、溶接熱影響部と母材の硬さ差が小さいという特徴を
有する。このため、鋼組成を以下の通り限定する必要が
ある。
In the present invention, 0.05 to 0.2%
With Nb addition as an essential requirement
/ Mm 2 of steel. Such a relatively high Nb addition not only increases the tensile strength of the base material due to precipitation hardening, but also exerts an effect in preventing the welding heat affected zone from softening. It has the characteristics that the difference in hardness between the weld heat affected zone and the base metal is small as well as the suppression of hardening. Therefore, it is necessary to limit the steel composition as follows.

【0015】Cは、鋼の焼入性に最も顕著に効き、溶接
熱影響部の硬さを大きく左右する。C量が多すぎると焼
入性が高くなり、本願発明が対象とする強度レベルに対
し、溶接熱影響部の硬さが高くなるため、上限を0.1
%に限定した。一方、下限は、母材および溶接部の強度
確保ならびにNbの析出硬化を発揮するための最小量と
して0.01%以上は必要である。
C most remarkably affects the hardenability of steel, and greatly affects the hardness of the weld heat affected zone. If the C content is too large, the hardenability increases, and the hardness of the weld heat affected zone increases with respect to the strength level targeted by the present invention.
%. On the other hand, the lower limit is required to be 0.01% or more as the minimum amount for ensuring the strength of the base material and the welded portion and exhibiting the precipitation hardening of Nb.

【0016】Siは、脱酸上鋼に含まれる元素である
が、多く添加すると溶接性、溶接熱影響部靭性が劣化す
るため、上限を0.6%に限定した。鋼の脱酸は、Al
やTiのみでも十分可能であり、焼入性および後述する
CMの観点から0.25%以下が望ましい。
[0016] Si is an element contained in the deoxidized upper steel, but if added in a large amount, the weldability and the toughness of the heat affected zone deteriorate, so the upper limit is limited to 0.6%. The deoxidation of steel is
And Ti is only sufficiently possible even at 0.25% from the viewpoint of P CM which will be described later and hardenability less.

【0017】Mnは、強度、靭性を確保する上で不可欠
な元素であり、その下限は0.4%である。しかし、多
すぎると焼入性、PCMが上昇して、溶接熱影響部硬さ
を高めるとともに溶接性、溶接熱影響部靭性を劣化さ
せ、さらにスラブの中心偏析を助長するため、上限を
2.0%とした。
Mn is an indispensable element for securing strength and toughness, and its lower limit is 0.4%. However, if the content is too large, the hardenability and PCM increase, increasing the hardness of the weld heat affected zone, deteriorating the weldability and the weld heat affected zone toughness, and further promoting the center segregation of the slab. 0%.

【0018】P、Sは、本願発明においては不純物であ
り、特性上少ないほど好ましいことは広く知られた事実
であり、脱P、脱Sなどの経済性も考慮し、それぞれ上
限を0.025%、0.008%に限定した。特に、S
はMnSを形成し、湿潤硫化水素環境中ではHICやS
SC、さらにはSOHIC生成を助長するため、このよ
うな環境で使用される用途においては、後述するCa添
加とともに、Sを0.001%以下とすることが望まし
い。
It is widely known that P and S are impurities in the present invention, and that the smaller the characteristic, the better. It is well known that the upper limit of each of P and S is 0.025 in consideration of economical efficiency such as P removal and S removal. %, 0.008%. In particular, S
Forms MnS, and in wet hydrogen sulfide environment, HIC and S
In order to promote the production of SC and further SOHIC, in applications used in such an environment, it is desirable to make S 0.001% or less together with the addition of Ca described later.

【0019】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
願発明においては、その加減は限定しない。しかし、A
l量が多くなると鋼の清浄度が悪くなるばかりでなく、
溶接金属の靭性が劣化するので上限を0.06%とし
た。
Al is an element generally contained in the deoxidized upper steel, but deoxidation is sufficient with only Si or Ti, and in the present invention, the degree of addition is not limited. But A
As the amount of l increases, not only the cleanliness of the steel deteriorates, but also
Since the toughness of the weld metal deteriorates, the upper limit is set to 0.06%.

【0020】Tiは、母材および溶接熱影響部靭性向上
のために必須である。なぜならばTiは、Al量が少な
いとき(例えば0.003%以下)、Oと結合してTi
23を主成分とする析出物を形成、粒内変態フェライト
生成の核となり溶接熱影響部靭性を向上させる。また、
TiはNと結合してTiNとしてスラブ中に微細析出
し、加熱時のγ粒の粗大化を抑え、圧延組織の細粒化に
有効であり、また鋼板中にに存在する微細TiNは、溶
接時に溶接熱影響部組織を細粒化するためである。これ
らの効果を得るためには、Tiは最低0.005%必要
である。しかし、多すぎるとTiCを形成し、低温靭性
や溶接性を劣化させるので、その上限は0.035%で
ある。
[0020] Ti is essential for improving the toughness of the base metal and the weld heat affected zone. This is because when the amount of Al is small (for example, 0.003% or less), Ti combines with O to form Ti.
Precipitates mainly composed of 2 O 3 are formed and serve as nuclei for the formation of intragranular transformed ferrite to improve the toughness of the heat affected zone of the weld. Also,
Ti combines with N to precipitate finely in the slab as TiN, suppresses coarsening of γ grains during heating, is effective for reducing the rolling structure, and fine TiN present in the steel sheet is welded. This is because the structure of the heat affected zone is sometimes refined. To obtain these effects, at least 0.005% of Ti is required. However, if the content is too large, TiC is formed and the low-temperature toughness and the weldability are deteriorated, so the upper limit is 0.035%.

【0021】Nは、不可避的不純物として鋼中に含まれ
るものであるが、Nbと結合して炭窒化物を形成して強
度を増加させ、また、TiNを形成して前述のように鋼
の性質を高める。このため、N量として最低0.001
%必要である。しかしながら、N量の増加は溶接熱影響
部靭性、溶接性に極めて有害であり、本願発明において
はその上限は0.005%である。
N, which is contained in steel as an unavoidable impurity, combines with Nb to form a carbonitride to increase the strength, and forms TiN to form a steel as described above. Enhance the nature. Therefore, the amount of N is at least 0.001.
%is necessary. However, an increase in the amount of N is extremely harmful to the toughness and weldability of the heat affected zone, and the upper limit is 0.005% in the present invention.

【0022】次に、必要に応じて含有することができる
Cu、Ni、Cr、Mo、V、Mgの添加理由について
説明する。
Next, the reasons for adding Cu, Ni, Cr, Mo, V, and Mg, which can be contained as required, will be described.

【0023】基本となる成分に、さらにこれらの元素を
添加する主たる目的は、本願発明の優れた特徴を損なう
ことなく、強度、靭性などの特性を向上させるためであ
る。したがって、その添加量は自ずと制限されるべき性
質のものである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent features of the present invention. Therefore, the amount added is of a nature that should be naturally restricted.

【0024】Cuは、過剰に添加しなければ、溶接性、
溶接熱影響部靭性に悪影響を及ぼすことなく母材の強
度、靭性を向上させる。これらの効果を発揮させるため
には、少なくとも0.05%以上の添加が必要である。
しかし、過剰な添加は、溶接性の劣化に加え、熱間圧延
時にCu−クラックが発生し、製造困難となるため0.
50%に限定した。
Unless Cu is added excessively, weldability,
Improves the strength and toughness of the base metal without adversely affecting the toughness of the weld heat affected zone. In order to exert these effects, it is necessary to add at least 0.05% or more.
However, excessive addition causes deterioration of weldability and Cu-cracks during hot rolling, which makes production difficult.
Limited to 50%.

【0025】Niは、Cuとほぼ同様の効果、現象を示
し、下限は実質的な効果が得られるための最小量とすべ
きで、0.05%である。上限については、Cuと同様
の理由に加え、比較的高価であることや、湿潤硫化水素
環境中では応力下でフィッシャーと呼ばれる鋸歯状腐食
が懸念されるため0.5%に限定した。
Ni exhibits almost the same effects and phenomena as Cu, and the lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%. The upper limit is limited to 0.5% because of the same reasons as Cu, and because of the relatively high cost and the possibility of saw-tooth corrosion called a Fischer under stress in a wet hydrogen sulfide environment under stress.

【0026】Cr、Moは、0.05%以上の添加で母
材の強度、靭性をともに向上させる。しかし、添加量が
多すぎると母材、溶接部の靭性および溶接性の劣化を招
くため、上限を0.5%とした。
Cr and Mo improve both the strength and toughness of the base material when added at 0.05% or more. However, if the added amount is too large, the toughness and weldability of the base metal and the welded portion are deteriorated, so the upper limit was made 0.5%.

【0027】Vは、Nbとほぼ同様の作用を有するもの
であるが、Nbに比べてその効果は小さい。また、Vは
焼入性にも影響を及ぼすため、Nbの補完的添加とすべ
きであり、下限は効果が見られる0.01%で、上限は
0.05%に限定した。
V has almost the same effect as Nb, but its effect is smaller than that of Nb. Further, since V also affects the hardenability, it should be supplemented with Nb. The lower limit is 0.01% at which the effect is observed, and the upper limit is limited to 0.05%.

【0028】Mgは、溶接熱影響部においてオーステナ
イト粒の成長を抑制し、細粒化する作用があり、溶接部
の強靭化が図れる。このような効果を享受するために
は、Mgは0.0002%以上必要である。一方、添加
量が増えると添加量に対する効果代が小さくなるため、
コスト上得策ではないので上限は0.005%とした。
Mg has the effect of suppressing the growth of austenite grains in the heat affected zone of welding and reducing the size of the grains, thereby toughening the welded portion. In order to enjoy such effects, Mg needs to be 0.0002% or more. On the other hand, as the addition amount increases, the effect cost on the addition amount decreases,
The upper limit is set to 0.005% because it is not advantageous in terms of cost.

【0029】さらに、CaおよびREMは、MnSの形
態を制御し、母材の低温靭性を向上させるほか、湿潤硫
化水素環境下での水素誘起割れ(HIC、SSC、SO
HIC)感受性を低減させる。これらの効果を発揮する
ためには、最低0.0005%必要である。しかし、多
すぎる添加は、鋼の清浄度を逆に高め、母材靭性や湿潤
硫化水素環境下での水素誘起割れ(HIC、SSC、S
OHIC)感受性を高めため、添加量の上限は0.00
4%に限定した。CaとREMは、ほぼ同等の効果を有
するため、いずれか1種を上記範囲で添加すればよい。
Further, Ca and REM control the morphology of MnS and improve the low-temperature toughness of the base material, and also cause hydrogen-induced cracking (HIC, SSC, SOC) in a wet hydrogen sulfide environment.
HIC) reduces susceptibility. To achieve these effects, a minimum of 0.0005% is required. However, too much addition will conversely increase the cleanliness of the steel, increase base metal toughness and hydrogen-induced cracking in wet hydrogen sulfide environments (HIC, SSC, SSC).
OHIC) To increase the sensitivity, the upper limit of the amount added is 0.00
Limited to 4%. Since Ca and REM have almost the same effect, one of them may be added in the above range.

【0030】本願発明において、個々の元素の添加量の
限定に加え、PCM=C+Si/30+(Mn+Cu+C
r)/20+Ni/60+Mo/15+V/10+5B
と定義する値を0.18%以下に限定する理由は、第一
義的には溶接構造用鋼として溶接冷間割れを防止し、優
れた溶接性を確保するためである。これに加えて、本願
発明の最大の特徴である最低でも0.05%のNbを添
加し、Nbの析出硬化を利用する上で、限定された引張
強さ(570〜720N/mm2)の中で必要以上に焼
入性を高めないためである。逆に、0.05%のNb添
加でその析出硬化を最大限に利用した場合、PCMで0.
18%を超える成分では、SM570級鋼として強度が
過剰となってしまう。
In the present invention, in addition to limiting the addition amount of each element, P CM = C + Si / 30 + (Mn + Cu + C
r) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
The reason for limiting the value defined as 0.18% or less is primarily to prevent welding cold cracking as a welded structural steel and to ensure excellent weldability. In addition, at least 0.05% of Nb, which is the most important feature of the present invention, is added, and in order to utilize the precipitation hardening of Nb, a limited tensile strength (570 to 720 N / mm 2 ) is required. This is because the hardenability is not increased more than necessary. Conversely, when utilizing the precipitation hardening maximally 0.05% of Nb addition, 0 in P CM.
If the content exceeds 18%, the strength becomes excessive as SM570 grade steel.

【0031】本願発明の特徴とする溶接熱影響部と母材
の硬さ差を小さくするためには、Nbをはじめとする各
種成分を上記のように限定した上で、さらに鋼板の製造
方法も適切に限定すべきである。以下、その限定範囲お
よび理由について説明する。
In order to reduce the difference in hardness between the weld heat affected zone and the base metal, which is a feature of the present invention, various components including Nb are limited as described above. Should be appropriately limited. Hereinafter, the limitation range and the reason will be described.

【0032】まず、上記限定範囲に制御された成分を有
する鋳片または鋼片を、1100〜1250℃の温度に
再加熱しなければならない。下限温度は、Nbの析出硬
化利用の観点から、再加熱時にNbを一旦溶体化させる
必要上からの理由である。一旦溶体化させることによ
り、後工程を本願発明のようにすることによってNbの
析出物を微細に分散析出させることができ、析出硬化現
象を有効に発現させることができる。一方、再加熱上限
温度は、再加熱時のオーステナイト粒を必要以上に粗大
化させないためである。再加熱時のオーステナイト粒
は、圧延後の組織の微細化にも少なからず影響を与える
ため、再加熱温度は極力低い方が好ましいが、Nbの溶
体化の観点から上限を1250℃に限定したものであ
る。
First, a slab or a slab having components controlled within the above-mentioned limited range must be reheated to a temperature of 1100 to 1250 ° C. The lower limit temperature is a reason from the viewpoint of utilizing the precipitation hardening of Nb that it is necessary to once turn Nb into a solution during reheating. Once the solution is formed, the precipitate of Nb can be finely dispersed and precipitated by making the subsequent process as in the present invention, and the precipitation hardening phenomenon can be effectively exhibited. On the other hand, the upper limit of the reheating temperature is to prevent the austenite grains at the time of reheating from being excessively coarsened. Since the austenite grains during reheating have a considerable effect on the refinement of the structure after rolling, the reheating temperature is preferably as low as possible, but the upper limit is limited to 1250 ° C. from the viewpoint of solutionizing Nb. It is.

【0033】再加熱後の熱間圧延は、750℃以上で圧
延を終了する必要がある。これは、圧延中にフェライト
が析出し、それを圧延する危険性を回避するためであ
る。加工フェライトは、靭性の劣化や材質の異方性を助
長する可能性が高く、好ましくない。
In the hot rolling after reheating, it is necessary to finish the rolling at 750 ° C. or higher. This is to avoid the danger of ferrite being precipitated during rolling and rolling it. The processed ferrite is likely to promote toughness degradation and material anisotropy, and is not preferred.

【0034】熱間圧延後は、直ちに焼き入れなければな
らない。圧延後放冷したり、水冷までの意図的な待ち
は、その間にNbが析出、粗大化する可能性があるため
である。放冷中の粗大析出物は、析出硬化として効果を
発揮せず、母材の強度が確保できない可能性があるばか
りでなく、これを再加熱焼入しても、Nbが溶体化され
ない限り、析出硬化を再度利用することはできない。な
お、「直ちに焼き入れ」というのは、圧延後意図的な待
ちのない、冷却装置までの搬送時間程度は許容されるこ
とはいうまでもなく、その時間は概ね1〜2分以内に焼
き入れることを意味している。また、「焼き入れ」自体
も、冶金的に定義されるオーステナイト単相域からの急
冷のみを意味するものではなく、若干フェライトが析出
した状態からの強制冷却も含まれ、強制冷却は200℃
以下まで行うものである。このような「焼き入れ」は、
Nb析出物の析出粗大化を防止する上で不可欠のもので
ある。
After hot rolling, it must be immediately quenched. The intentional waiting until cooling or water cooling after rolling is because Nb may precipitate and coarsen during that time. The coarse precipitate during cooling does not exert any effect as precipitation hardening, not only may not be able to secure the strength of the base material, but even if it is reheated and quenched, unless Nb is solutionized, Precipitation hardening cannot be reused. It should be noted that “immediate quenching” is, of course, acceptable for a transfer time to a cooling device without intentional waiting after rolling, and the time is quenched within approximately 1 to 2 minutes. Means that. Further, “quenching” itself does not only mean rapid cooling from the austenitic single phase region defined by metallurgy, but also includes forced cooling from a state in which ferrite is slightly precipitated.
The following is performed. Such "quenching"
This is indispensable for preventing the Nb precipitate from becoming coarse.

【0035】焼き入れ後は、Nbの微細析出、すなわち
析出硬化の発現と、焼き入れ組織の焼き戻しによる強靭
化のため、Ac1以下の温度での焼き戻しが必要であ
る。
After quenching, it is necessary to temper at a temperature of Ac 1 or lower for fine precipitation of Nb, that is, precipitation hardening and toughening by tempering of the quenched structure.

【0036】[0036]

【実施例】本願発明の有用性を例示するため、表1に示
す化学成分を有する鋼を転炉溶製し、表2に示す条件で
厚板圧延を行った。
EXAMPLES In order to exemplify the usefulness of the present invention, steels having the chemical components shown in Table 1 were melted in a converter and subjected to plate rolling under the conditions shown in Table 2.

【0037】機械的性質のうち、強度については、圧延
方向と直角方向に、板厚50mm以下の鋼板は全厚のJ
IS5号引張試験片、板厚50mm超の鋼板は1/4板
厚位置から採取したJIS4号丸棒引張試験片を用い
た。衝撃試験は、1/4板厚位置から圧延方向に切り出
したJIS4号シャルピー試験片を用い、延・脆性破面
遷移温度(vTrs)を求めた。
Among the mechanical properties, regarding the strength, in the direction perpendicular to the rolling direction, a steel sheet having a thickness of 50 mm or less
As a IS5 tensile test piece and a steel plate having a thickness of more than 50 mm, a JIS No. 4 round bar tensile test piece sampled from a quarter plate thickness position was used. In the impact test, a JIS No. 4 Charpy test piece cut out from the 1/4 sheet thickness position in the rolling direction was used to determine the transition temperature between brittle and brittle fracture surfaces (vTrs).

【0038】また、溶接熱影響部と母材との硬さ差を調
べるために、JIS Z 3101に規定される溶接熱
影響部の最高硬さ試験方法に準拠して、ビード・オン・
プレートを作製し、鋼板表面0.5mm下位置の溶接熱
影響部の最高硬さおよび最低硬さを調べるとともに、母
材硬さは溶接金属から十分離れた鋼板表面0.5mm下
位置の10点の平均値とした。なお、試験板は元厚まま
とし、溶接時の予熱はなしとした。
Further, in order to examine the difference in hardness between the weld heat affected zone and the base metal, a bead-on-hardness test was performed in accordance with the maximum hardness test method for the weld heat affected zone specified in JIS Z 3101.
A plate was prepared, the highest hardness and the lowest hardness of the weld heat affected zone at a position 0.5 mm below the steel plate surface were examined, and the base metal hardness was set at 10 points at a position 0.5 mm below the steel plate surface sufficiently separated from the weld metal. Was the average value. The test plate was kept at its original thickness, and was not preheated during welding.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表3に、上記方法による機械的性質、溶接
熱影響部と母材の硬さの測定値を示す。本願発明が規定
する成分および製造方法による鋼板は、いずれもSM5
70級鋼として十分な強度を有すると同時に靭性にも優
れ、さらに、本願発明の特徴である溶接熱影響部と母材
との硬さ差が小さい範囲に抑えられていることが分か
る。
Table 3 shows the measured values of the mechanical properties, the weld heat affected zone and the hardness of the base metal by the above method. The steel sheets according to the components and the production method specified by the present invention are all SM5
It can be seen that the steel has sufficient strength as a 70-grade steel and also has excellent toughness, and the difference in hardness between the weld heat affected zone and the base metal, which is a feature of the present invention, is suppressed to a small range.

【0042】これに対して、比較例に示す鋼はいずれも
成分あるいは製造条件のいずれかが本願発明が規定する
範囲を逸脱しているため、溶接熱影響部の硬化または軟
化が大きく、本願発明によってもたらされる最大効果で
ある溶接熱影響部と母材との硬さ差が相対的に大きい。
具体的に例示すると、比較例の鋼8では、C量が高く、
CMも高いため溶接熱影響部の硬化程度が大きい。ま
た、圧延に先立つ再加熱温度も低いため、Nbの析出硬
化が十分利用できておらず、強度がやや低めである。鋼
9は、Nb添加量が低く、Bも添加されているため、溶
接熱影響部の軟化および硬化が大きい。また、圧延終了
温度も低いため、必然的に直接焼入時の開始温度も低下
し、その間フェライトが析出するなどして、母材の強
度、靭性にも劣る。鋼10は、成分的にはTiが添加さ
れていないだけであるが、圧延後直接焼入ではなく、再
加熱焼入を行っているため、Nbの析出硬化が十分活用
できておらず、母材の強度が低い。Ti無添加の影響
は、再加熱時のオーステナイトの細粒化が不十分となっ
て、母材靭性にもやや劣る。鋼11は、Nbが添加され
ておらず、溶接熱影響部の軟化が大きい。また、C、P
CMとも高く、Bが添加されているため、溶接熱影響部の
硬化も大きい。
On the other hand, in all of the steels shown in the comparative examples, either the composition or the production conditions are out of the ranges specified by the present invention, and therefore, the hardening or softening of the weld heat affected zone is large. The hardness difference between the weld heat affected zone and the base metal, which is the maximum effect brought by the above, is relatively large.
To specifically illustrate, steel 8 of the comparative example has a high C content,
P CM even greater degree hardening of the heat affected zone due to the high. Further, since the reheating temperature prior to rolling is low, the precipitation hardening of Nb cannot be sufficiently utilized, and the strength is slightly lower. Steel 9 has a low Nb addition amount and also contains B, so that the softening and hardening of the heat affected zone is large. In addition, since the rolling end temperature is low, the starting temperature at the time of direct quenching is inevitably lowered, and during that time, ferrite is precipitated and the strength and toughness of the base material are poor. Steel 10 does not only contain Ti as a component, but since reheating and quenching are performed instead of direct quenching after rolling, the precipitation hardening of Nb cannot be fully utilized, and The strength of the material is low. The effect of the absence of Ti is that austenite is not sufficiently refined during reheating, and the base material toughness is slightly inferior. Steel 11 does not contain Nb and has a large softening of the weld heat affected zone. Also, C, P
Since CM is high and B is added, the hardening of the weld heat affected zone is large.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明により、引張強さ570〜720
N/mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼
板を大量かつ安価に提供できるようになり、溶接割れ感
受性組成PCMをはじめ、鋼組成を本願発明の通り限定す
ることで、溶接性が格段に優れ、さらに溶接熱影響部の
硬化性、軟化性も低減され、溶接熱影響部と母材の硬さ
差が小さくすることが可能となり、溶接部の硬さ(強
度)の不均質に起因する供用時の応力・歪みの集中(不
均一分布)が緩和され、溶接部の疲労強度や耐応力腐食
割れ性が向上し、溶接鋼構造物の安全性を高めることが
できた。
According to the present invention, the tensile strength is from 570 to 720.
Hardness difference HAZ and the base material of the N / mm 2 will be able to provide large quantities and at low cost the small steel plate, including welding crack susceptibility composition P CM, to limit as the present invention the steel composition In this way, the weldability is remarkably excellent, and the hardening and softening properties of the heat affected zone are reduced, and the difference in hardness between the heat affected zone and the base metal can be reduced. ) The concentration (non-uniform distribution) of stress and strain during operation due to the heterogeneity of () is alleviated, the fatigue strength and stress corrosion cracking resistance of the weld are improved, and the safety of the welded steel structure is improved. did it.

フロントページの続き (72)発明者 児島 明彦 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K032 AA00 AA01 AA04 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CB02 CC03 CD06 CF01 CF02Continued on the front page (72) Inventor Akihiko Kojima 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works F-term (reference) 4K032 AA00 AA01 AA04 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA BA01 CA02 CA03 CB02 CC03 CD06 CF01 CF02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.01〜0.1%、S
i:0.6%以下、Mn:0.4〜2.0%、P:0.
025%以下、S:0.008%以下、Al:0.06
%以下、Nb:0.05〜0.2%、Ti:0.005
〜0.035%、N:0.001〜0.005%、残部
が鉄および不可避的不純物からなり、かつ、 PCM=C+Si/30+(Mn+Cu+Cr)/20+
Ni/60+Mo/15+V/10+5B≦0.18% を同時に満足する鋼組成を有することを特徴とする引張
強さ570〜720N/mm2の溶接熱影響部と母材の
硬さ差が小さい厚鋼板。
1. C .: 0.01 to 0.1% by weight, S
i: 0.6% or less, Mn: 0.4 to 2.0%, P: 0.
025% or less, S: 0.008% or less, Al: 0.06
% Or less, Nb: 0.05 to 0.2%, Ti: 0.005
0.035%, N: 0.001 to 0.005%, the balance being iron and unavoidable impurities, and, P CM = C + Si / 30 + (Mn + Cu + Cr) / 20 +
A steel plate having a steel composition satisfying Ni / 60 + Mo / 15 + V / 10 + 5B ≦ 0.18% at the same time, and having a small difference in hardness between a weld heat affected zone and a base metal having a tensile strength of 570 to 720 N / mm 2. .
【請求項2】 鋼組成としてさらに、重量%で、Cu:
0.05〜0.5%、Ni:0.05〜0.5%、C
r:0.05〜0.5%、Mo:0.05〜0.5%、
V:0.005〜0.2%、Mg:0.0002〜0.
005%の範囲で1種または2種以上を含有することを
特徴とする請求項1記載の引張強さ570〜720N/
mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼板。
2. The steel composition further comprises Cu:
0.05-0.5%, Ni: 0.05-0.5%, C
r: 0.05 to 0.5%, Mo: 0.05 to 0.5%,
V: 0.005-0.2%, Mg: 0.0002-0.
The tensile strength of 570-720 N / according to claim 1, wherein one or more kinds are contained in a range of 005%.
A thick steel plate with a small difference in hardness between the weld heat affected zone of 2 mm and the base metal.
【請求項3】 鋼組成としてさらに、重量%で、Ca:
0.0005〜0.004%、REM:0.0005〜
0.004%のいずれかの少なくとも1種をさらに含有
することを特徴とする請求項1〜2のいずれか1項に記
載の引張強さ570〜720N/mm2の溶接熱影響部
と母材の硬さ差が小さい厚鋼板。
3. The steel composition further comprises Ca:
0.0005 to 0.004%, REM: 0.0005 to 0.005%
The weld heat-affected zone having a tensile strength of 570 to 720 N / mm 2 and a base material according to any one of claims 1 to 2, further comprising at least one of 0.004%. Steel plate with small hardness difference.
【請求項4】 請求項1〜3のいずれか1項に記載の鋼
組成からなる鋳片または鋼片を、1100〜1250℃
の温度に再加熱し、750℃以上の温度で圧延を終了し
た後、直ちに焼き入れし、引き続きAc1以下の温度で
焼き戻し処理することを特徴とする引張強さ570〜7
20N/mm2の溶接熱影響部と母材の硬さ差が小さい
厚鋼板の製造方法。
4. A slab or a slab made of the steel composition according to any one of claims 1 to 3, which is heated to 1100 to 1250 ° C.
After completion of rolling at a temperature of 750 ° C. or higher, quenching immediately, followed by tempering at a temperature of Ac 1 or lower.
A method for producing a thick steel plate having a small difference in hardness between a weld heat-affected zone of 20 N / mm 2 and a base metal.
JP24866099A 1999-09-02 1999-09-02 Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same Expired - Fee Related JP4276341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24866099A JP4276341B2 (en) 1999-09-02 1999-09-02 Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24866099A JP4276341B2 (en) 1999-09-02 1999-09-02 Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2001073071A true JP2001073071A (en) 2001-03-21
JP4276341B2 JP4276341B2 (en) 2009-06-10

Family

ID=17181449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24866099A Expired - Fee Related JP4276341B2 (en) 1999-09-02 1999-09-02 Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same

Country Status (1)

Country Link
JP (1) JP4276341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695785A1 (en) * 2003-10-22 2006-08-30 Nippon Steel Corporation High heat input butt welding joint exhibiting excellent characteristics in resistance to occurrence of brittle fracture
US8246768B2 (en) * 2005-11-09 2012-08-21 Nippon Steel Corporation High-tensile steel plate of low acoustic anisotropy and high weldability having yield stress of 450 MPa or greater and tensile strength of 570 MPa or greater, and process for producing the same
WO2017206418A1 (en) * 2016-05-31 2017-12-07 江阴兴澄特种钢铁有限公司 Normalized-condition delivered 180-200 mm-thick eh36 steel plate and preparation method therefor
CN109477173A (en) * 2016-07-11 2019-03-15 新日铁住金株式会社 Anticorrosion stress-resistant anti-thread breakage excellent boiler electric-resistance-welded steel pipe and its manufacturing method
WO2021144953A1 (en) 2020-01-17 2021-07-22 日本製鉄株式会社 Steel sheet and steel pipe
CN115094322A (en) * 2022-06-29 2022-09-23 山东钢铁股份有限公司 80 mm-thick 690 MPa-grade ultrahigh-strength and toughness marine steel plate and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO339500B1 (en) * 2003-10-22 2016-12-19 Nippon Steel Corp High-heat butcher-welded compound exhibiting excellent properties in connection with the occurrence of fractures.
EP1695785A4 (en) * 2003-10-22 2008-10-29 Nippon Steel Corp High heat input butt welding joint exhibiting excellent characteristics in resistance to occurrence of brittle fracture
US7829202B2 (en) 2003-10-22 2010-11-09 Nippon Steel Corporation Large-heat-input butt welded joints having excellent brittle fracture resistance
EP2279823A1 (en) * 2003-10-22 2011-02-02 Nippon Steel Corporation Large-heat-input butt welded joint having controlled hardness and controlled size of the heat affected zone for excellent brittle fracture resistance
NO20161562A1 (en) * 2003-10-22 2016-09-29 Nippon Steel Corp High-heat butcher-weld connection which exhibits excellent properties in connection with the occurrence of fractures
EP1695785A1 (en) * 2003-10-22 2006-08-30 Nippon Steel Corporation High heat input butt welding joint exhibiting excellent characteristics in resistance to occurrence of brittle fracture
NO342770B1 (en) * 2003-10-22 2018-08-06 Nippon Steel & Sumitomo Metal Corp High-heat butcher-weld connection which exhibits excellent properties in connection with the occurrence of fractures
US8246768B2 (en) * 2005-11-09 2012-08-21 Nippon Steel Corporation High-tensile steel plate of low acoustic anisotropy and high weldability having yield stress of 450 MPa or greater and tensile strength of 570 MPa or greater, and process for producing the same
WO2017206418A1 (en) * 2016-05-31 2017-12-07 江阴兴澄特种钢铁有限公司 Normalized-condition delivered 180-200 mm-thick eh36 steel plate and preparation method therefor
CN109477173A (en) * 2016-07-11 2019-03-15 新日铁住金株式会社 Anticorrosion stress-resistant anti-thread breakage excellent boiler electric-resistance-welded steel pipe and its manufacturing method
WO2021144953A1 (en) 2020-01-17 2021-07-22 日本製鉄株式会社 Steel sheet and steel pipe
KR20220098786A (en) 2020-01-17 2022-07-12 닛폰세이테츠 가부시키가이샤 steel plate and steel pipe
CN115094322A (en) * 2022-06-29 2022-09-23 山东钢铁股份有限公司 80 mm-thick 690 MPa-grade ultrahigh-strength and toughness marine steel plate and preparation method thereof

Also Published As

Publication number Publication date
JP4276341B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JP2000160245A (en) Production of high strength steel excellent in hic resistance
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP2001073071A (en) THICK STEEL PLATE HAVING 570 TO 720 N/mm2 TENSILE STRENGTH AND SMALL IN DIFFERENCE IN HARDNESS BETWEEN WELDING HEAT-AFFECTED ZONE AND BASE MATERIAL AND ITS PRODUCTION
JP2002173734A (en) Steel having excellent weldability and its production method
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP2003342638A (en) Process for manufacturing high-strength bent tube
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JP2001288533A (en) Steel small in hardening and softening of welding heat- affected zone and its producing method
JP2001107198A (en) Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JPH10306348A (en) Ultrahigh strength steel pipe excellent in low temperature cracking resistance
JP2001011566A (en) High tensile strength steel excellent in toughness of weld zone and its production
JP3569499B2 (en) High strength steel excellent in weldability and method for producing the same
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees