JP2001073044A - Method for recovering metal magnesium - Google Patents

Method for recovering metal magnesium

Info

Publication number
JP2001073044A
JP2001073044A JP24663299A JP24663299A JP2001073044A JP 2001073044 A JP2001073044 A JP 2001073044A JP 24663299 A JP24663299 A JP 24663299A JP 24663299 A JP24663299 A JP 24663299A JP 2001073044 A JP2001073044 A JP 2001073044A
Authority
JP
Japan
Prior art keywords
vessel
reaction vessel
container
magnesium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24663299A
Other languages
Japanese (ja)
Other versions
JP3774339B2 (en
Inventor
Masami Hirota
正巳 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP24663299A priority Critical patent/JP3774339B2/en
Publication of JP2001073044A publication Critical patent/JP2001073044A/en
Application granted granted Critical
Publication of JP3774339B2 publication Critical patent/JP3774339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively recover metal magnesium from a transporting vessel of the metal magnesium containing impurities by accommodating the transporting vessel into a reaction vessel, connecting this reaction vessel with a condensing vessel, reducing the pressure in the reaction vessel and the condensing vessel and heating the reaction vessel in a specified temperature range. SOLUTION: A cover body 12 in a reaction vessel 10 is opened and a supporting member 40 is disposed in the reaction vessel 10. The connecting base part of a connecting part is disposed on the base part, and a receiving part is disposed at the upper part of the connecting part. The metal magnesium transporting vessel 50 is installed in the reaction vessel 10. The reaction vessel 10 and the condensing vessel are connected, and the heating of the reaction vessel 10 (750-1,000 deg.C) and the cooling of the condensing vessel are executed, and the reduction of the pressure in both vessels is started, and the reached degree of vacuum is made to be 0.05-0.1 Torr. When the degree of vacuum in each vessel is lowered to a prescribed degree of pressure reduction, the heating is stopped, the reaction vessel 10 and the condensing vessel are cut off an the reaction vessel 10 is cooled. After cooling near a room temperature, the metal magnesium in the condensing vessel is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は金属マグネシウムの
回収方法に係り、特にスポンジチタン製造用金属マグネ
シウム運搬容器等を含む容器に残存した金属マグネシウ
ムを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering metallic magnesium, and more particularly to a method for recovering metallic magnesium remaining in a container including a metallic magnesium transporting container for producing titanium sponge.

【0002】[0002]

【従来の技術】スポンジチタンは、例えば、四塩化チタ
ンを溶融マグネシウムで還元することにより製造され
る。そして、溶融マグネシウムは、四塩化チタンの還元
を行わせる反応容器に、溶融マグネシウムを収容した金
属マグネシウム運搬容器から注入するようにしている。
2. Description of the Related Art Titanium sponge is produced, for example, by reducing titanium tetrachloride with molten magnesium. Then, the molten magnesium is injected into the reaction vessel for reducing titanium tetrachloride from the metal magnesium transporting vessel containing the molten magnesium.

【0003】[0003]

【発明が解決しようとする課題】前記した金属マグネシ
ウム運搬容器の底部には、使用回数の増加に伴い、窒化
マグネシウムや酸化マグネシウムを含んだ金属マグネシ
ウムが沈積する。そして、このような金属マグネシウム
運搬容器の底部に沈積した窒化マグネシウムや酸化マグ
ネシウムは、金属マグネシウムの受け入れまたは排出時
に、溶融マグネシウム中を浮遊し、スポンジチタンの品
質低下をもたらす原因ともなっていた。
As the number of uses increases, metallic magnesium containing magnesium nitride and magnesium oxide deposits on the bottom of the metallic magnesium transport container. Then, the magnesium nitride or magnesium oxide deposited on the bottom of such a metal magnesium transport container floats in the molten magnesium when receiving or discharging the magnesium metal, which is a cause of lowering the quality of titanium sponge.

【0004】このため、前記金属マグネシウム運搬容器
の底部に沈積した窒化マグネシウムや酸化マグネシウム
を含む金属マグネシウムは、水洗処理することにより廃
棄していた。このような金属マグネシウム運搬容器の水
洗処理時には、多量の水素ガスやアンモニアガスが発生
するため、かなりの処理時間が必要であった。さらに
は、金属マグネシウム運搬容器の水洗処理作業は熟練を
要するため、水洗処理作業者は、専任の作業員によって
行っていた。
[0004] For this reason, the metal magnesium containing magnesium nitride and magnesium oxide deposited on the bottom of the metal magnesium transport container has been disposed of by washing with water. At the time of the water washing treatment of such a metal magnesium transport container, a large amount of hydrogen gas and ammonia gas are generated, so that a considerable treatment time is required. Furthermore, since the water-washing operation of the metal magnesium transport container requires skill, the water-washing operator is performed by a dedicated worker.

【0005】本発明の目的は、不純物を含んだ金属マグ
ネシウム運搬容器から金属マグネシウムを効果的に回収
する方法を提供することにある。本発明の他の目的は、
不純物を効率的に金属マグネシウム運搬容器から除去す
る方法を提供することにある。さらに他の目的は、不純
物を含んだ金属マグネシウム運搬容器を安全に処理する
方法を提供することにある。
An object of the present invention is to provide a method for effectively recovering metallic magnesium from a metallic magnesium transporting vessel containing impurities. Another object of the present invention is to
An object of the present invention is to provide a method for efficiently removing impurities from a metal magnesium transport container. Still another object is to provide a method for safely treating a metal magnesium transport container containing impurities.

【0006】[0006]

【課題を解釈するための手段】前記課題は、本発明によ
れば、金属マグネシウム運搬容器を含む容器内に堆積し
た窒化マグネシウムを含有する金属マグネシウムから下
記の工程を行うことにより金属マグネシウムを分離除去
することを特徴とする金属マグネシウムの回収方法。 前記運搬容器を反応容器に収納する工程。 前記反応容器と凝縮容器を連結する工程。 前記反応容器と凝縮容器内を減圧する工程。 前記反応容器を750−1000℃の範囲で加熱する
工程。 によって、解決される。
According to the present invention, the object of the present invention is to separate and remove metallic magnesium from a metallic magnesium containing magnesium nitride deposited in a container including a metallic magnesium carrying container by performing the following steps. A method for recovering metallic magnesium. Storing the transport container in a reaction container. Connecting the reaction vessel and the condensation vessel. A step of reducing the pressure inside the reaction vessel and the condensation vessel. Heating the reaction vessel in the range of 750-1000 ° C. Is solved by

【0007】なお、金属マグネシウム運搬容器は、スポ
ンジチタン製造用金属マグネシウム運搬容器であり、反
応容器はスポンジチタン製造反応容器とすると、好適で
ある。
[0007] It is preferable that the metallic magnesium transport container is a metallic magnesium transport container for producing titanium sponge, and the reaction container is a titanium sponge producing reaction container.

【0008】以上のように、金属マグネシウム運搬容器
を反応容器内に収納してから、反応容器と凝縮容器とを
連結し、反応容器を加熱後、凝縮容器と反応容器を減圧
し、金属マグネシウム運搬容器内の残留物である金属マ
グネシウムを蒸発させる。金属マグネシウム運搬容器か
ら蒸発した金属マグネシウムは、反応容器外の凝縮容器
によって冷却して回収される。このように、金属マグネ
シウム運搬容器内に沈積した金属マグネシウムをリサイ
クル資源として回収することが可能となると共に、回収
装置としては、従来からあるチタンの製造設備を、その
まま利用することでが可能となるので、実用上非常に経
済的である。
[0008] As described above, after the metal magnesium transport container is housed in the reaction container, the reaction container and the condensing container are connected, and after heating the reaction container, the condensing container and the reaction container are depressurized to transport the metal magnesium. The residual magnesium metal in the container is evaporated. The metallic magnesium evaporated from the metallic magnesium transport container is cooled and collected by a condensing container outside the reaction container. As described above, it becomes possible to recover the metal magnesium deposited in the metal magnesium transport container as a recyclable resource, and as a recovery apparatus, it is possible to use a conventional titanium manufacturing facility as it is. It is very economical in practice.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。なお、以下に説明する部材,配
置等は本発明を限定するものでなく、本発明の趣旨の範
囲内で種々改変することができるものである。
An embodiment of the present invention will be described below with reference to the drawings. The members, arrangements, and the like described below do not limit the present invention, and can be variously modified within the scope of the present invention.

【0010】図1及び図2は、本発明方法に用いられる
回収装置を示すもので、図1は概略構成図、図2は反応
容器内に金属マグネシウム運搬容器を収容した状態を示
す概略構成図であり、図3は本発明方法の工程を示すブ
ロック図である。
FIGS. 1 and 2 show a recovery apparatus used in the method of the present invention. FIG. 1 is a schematic configuration diagram, and FIG. 2 is a schematic configuration diagram showing a state in which a metal magnesium transport container is accommodated in a reaction container. FIG. 3 is a block diagram showing the steps of the method of the present invention.

【0011】図1及び図2で示すように、本発明に用い
られる金属マグネシウム回収装置Sは、反応容器10
と、凝縮容器20と、反応容器10と凝縮容器20との
接続管30と、反応容器10内に配置される支持部材4
0と、金属マグネシウム運搬容器50と、から構成され
ている。
As shown in FIG. 1 and FIG. 2, a metal magnesium recovery apparatus S used in the present invention comprises a reaction vessel 10
, A condensing container 20, a connecting pipe 30 between the reaction container 10 and the condensing container 20, and a support member 4 disposed in the reaction container 10.
0 and a metal magnesium transport container 50.

【0012】本例では、反応容器10として、スポンジ
チタン製造用分離設備を流用している。即ち、図1で示
すように、反応容器10は、中空円筒状をしており、材
質としてはSUS316を用いている。反応容器10の
上面は大きな開口部となっており、この開口部に開閉可
能な蓋体12が設けられている。この反応容器10の蓋
体12に、接続管30との接続部14が形成されていい
る。
In this embodiment, a separation facility for producing titanium sponge is used as the reaction vessel 10. That is, as shown in FIG. 1, the reaction vessel 10 has a hollow cylindrical shape, and SUS316 is used as a material. The upper surface of the reaction vessel 10 has a large opening, and a lid 12 that can be opened and closed is provided in this opening. A connection portion 14 with a connection pipe 30 is formed on the lid 12 of the reaction vessel 10.

【0013】この反応容器10には、加熱炉(図示せ
ず)が設けられており、本例の加熱炉は、抵抗加熱によ
る方式を採用している。本例の加熱炉は、チタン製造に
おける公知・周知の技術を用いている。また、反応容器
10は上記蓋体12により閉塞可能になっており、減圧
を可能とする密閉構造としている。
The reaction vessel 10 is provided with a heating furnace (not shown), and the heating furnace of this embodiment employs a resistance heating method. The heating furnace of this example uses a well-known technique in titanium production. Further, the reaction vessel 10 can be closed by the lid 12, and has a hermetically sealed structure capable of reducing pressure.

【0014】また、凝縮容器20については、円筒状を
しており、材質はSUS316から構成されている。こ
の凝縮容器20についてもスポンジチタン製造用凝縮設
備を流用することができる。凝縮容器20は上記反応容
器10と接続管30により連結される。また、凝縮容器
20には冷却装置(図示せず)が設けられている。本例
の冷却装置は、水冷であり、凝縮容器20上部を冷却可
能に構成している。本例の冷却装置は、チタン製造にお
ける公知・周知の技術を用いている。また凝縮容器20
の所定位置には真空装置(図示せず)と連結された吸引
管22が接続されている。この吸引管22から凝縮容器
20と反応容器10が減圧されるように構成されてい
る。
The condensing container 20 has a cylindrical shape and is made of SUS316. The condensing equipment for producing sponge titanium can also be used for the condensing container 20. The condensation vessel 20 is connected to the reaction vessel 10 by a connection pipe 30. The condenser 20 is provided with a cooling device (not shown). The cooling device of this example is water-cooled, and is configured to be able to cool the upper part of the condensation container 20. The cooling device of this example uses a well-known technology in titanium production. In addition, the condensation vessel 20
Is connected to a vacuum tube (not shown) at a predetermined position. The condensing container 20 and the reaction container 10 are configured to be depressurized from the suction pipe 22.

【0015】そして、上記反応容器10内には支持部材
40が配設される。本例の支持部材40は、図2で示す
ように、基部41と、受け部42と、連結部43と、か
ら構成されている。基部41は反応容器10の底部に配
置し、支持部材40を反応容器10内に安定して配設す
るものであり、本例では図1で示すように、円盤状に形
成されている。
A support member 40 is provided in the reaction vessel 10. As shown in FIG. 2, the support member 40 of the present embodiment includes a base 41, a receiving part 42, and a connecting part 43. The base 41 is disposed at the bottom of the reaction vessel 10 and the support member 40 is stably disposed in the reaction vessel 10. In this example, as shown in FIG. 1, the support 41 is formed in a disk shape.

【0016】この基部41には連結部43が配設される
ものであり、本例の連結部43は基部41上に配置され
る連結基部43aと、連結基部43aと反対側に形成さ
れる受け支持部43bとを連結するものである。そし
て、受け支持部43bには金属マグネシウム運搬容器5
0を支持する受け部42が配置される。本例の受け部4
2は皿状に形成されており、金属マグネシウム運搬容器
50の底部の外形形状に合った形状としている。なお、
受け部42と連結部43とを一体に構成することもでき
る。また、上記基部41と、受け部42と、連結部43
とを一体に連結するように構成してもよい。
The connecting portion 43 is provided on the base portion 41. The connecting portion 43 of this embodiment has a connecting base portion 43a disposed on the base portion 41 and a receiving portion formed on the opposite side to the connecting base portion 43a. This is for connecting the support portion 43b. Then, the metallic magnesium transport container 5 is provided on the receiving support 43b.
0 is provided. Receiving part 4 of this example
Numeral 2 is formed in a dish shape and has a shape conforming to the outer shape of the bottom of the metal magnesium transport container 50. In addition,
The receiving portion 42 and the connecting portion 43 may be integrally formed. Also, the base 41, the receiving part 42, and the connecting part 43
And may be configured to be integrally connected.

【0017】本例の金属マグネシウム運搬容器50は、
図2で示すように、たる類似の円筒状をしており、底面
は湾曲した膨出部52として構成され、上部には、連結
部54が形成されている。この連結部54は、本例では
開放した状態としている。なお、金属マグネシウム運搬
容器50は上記形状等に限定されないことは言うまでも
ない。
The metal magnesium transporting container 50 of this embodiment is
As shown in FIG. 2, it has a cylindrical shape similar to a barrel, and the bottom surface is configured as a curved bulging portion 52, and a connecting portion 54 is formed at an upper portion. The connecting portion 54 is open in this example. It is needless to say that the metal magnesium transport container 50 is not limited to the above-described shape and the like.

【0018】次に、金属マグネシウム運搬容器50に沈
積した金属マグネシウムの分離方法について、図3のブ
ロック図を参照して説明する。まず、工程100で、反
応容器10の蓋体12を開放し、支持部材40を反応容
器10内に配置する。このとき、本例の支持部材40の
基部が反応容器10の底部に、ガタ付かないように配置
される。次に連結部の連結基部を基部上に配置する。そ
して連結部の上部に受け部を配置する。本例では、支持
部材40を個別に形成した例をしめしているが、支持部
材40の基部と、受け部と、連結部を一体に形成してい
る場合には、一緒に配置することが可能である。
Next, a method of separating metallic magnesium deposited in the metallic magnesium transporting container 50 will be described with reference to the block diagram of FIG. First, in step 100, the lid 12 of the reaction container 10 is opened, and the support member 40 is disposed in the reaction container 10. At this time, the base of the support member 40 of the present example is arranged on the bottom of the reaction vessel 10 so as not to rattle. Next, the connecting base of the connecting part is arranged on the base. And a receiving part is arrange | positioned at the upper part of a connection part. In this example, an example in which the support members 40 are individually formed is shown. However, when the base portion, the receiving portion, and the connection portion of the support members 40 are integrally formed, they can be arranged together. It is.

【0019】次に、工程110で、金属マグネシウム運
搬容器50を反応容器10内に装着する。金属マグネシ
ウム運搬容器50の装着は、連結部を開放した状態で、
前記した受け部上に配置する。
Next, in step 110, the metallic magnesium transporting container 50 is mounted in the reaction container 10. Mounting of the metal magnesium transport container 50 is performed with the connecting portion opened.
It is arranged on the receiving part described above.

【0020】次に、工程120で、反応容器10と凝縮
容器20を連結する。これは、反応容器10の蓋体12
を閉じて、接続管30との接続部に連結管によって反応
容器10と凝縮容器20とを連結する。
Next, in step 120, the reaction vessel 10 and the condensation vessel 20 are connected. This corresponds to the lid 12 of the reaction vessel 10.
Is closed, and the reaction vessel 10 and the condensation vessel 20 are connected to the connection portion with the connection pipe 30 by a connection pipe.

【0021】そして、工程130で、反応容器10を加
熱する。加熱は加熱炉によって行う。次に、工程140
で、加熱と同時に凝縮容器20の冷却を行う。つまり、
反応容器10と凝縮容器20とを連結した後で、反応容
器10の加熱および凝縮容器20の冷却(水冷)を開始
する。
Then, in step 130, the reaction vessel 10 is heated. Heating is performed by a heating furnace. Next, step 140
Then, the condensing container 20 is cooled simultaneously with the heating. That is,
After connecting the reaction vessel 10 and the condensation vessel 20, heating of the reaction vessel 10 and cooling (water cooling) of the condensation vessel 20 are started.

【0022】上記反応容器10の加熱は、750℃〜1
000℃程度まで加熱する。このように750℃〜10
00℃程度まで加熱することにより、金属マグネシウム
分のみを蒸発させ凝縮容器内への捕集を行う。750℃
より低い温度では、分離速度が遅く、生産性が悪い。逆
に、1000℃より高い温度では、金属マグネシウムの
みならず窒化マグネシウムの蒸発も活発となり好ましく
ない。また、設備寿命の低下をもたらすためである。こ
のため実用として好ましい範囲は、850℃〜950℃
である。
The heating of the reaction vessel 10 is performed at 750 ° C. to 1
Heat to about 000 ° C. Thus, 750 ° C.-10
By heating to about 00 ° C., only the metallic magnesium is evaporated and collected in the condensation vessel. 750 ° C
At lower temperatures, the separation speed is slow and productivity is poor. Conversely, if the temperature is higher than 1000 ° C., evaporation of not only metallic magnesium but also magnesium nitride is activated, which is not preferable. Also, this is to bring about a reduction in equipment life. Therefore, a practically preferable range is 850 ° C. to 950 ° C.
It is.

【0023】次に、工程150で、反応容器10および
凝縮容器20内の減圧を開始する。この減圧は、凝縮容
器20の吸引管から真空装置によって行われる。到達真
空度としては、0.05−0.1 Torrである。
Next, in step 150, the pressure in the reaction vessel 10 and the condensation vessel 20 is started. This decompression is performed by a vacuum device from the suction pipe of the condensation container 20. The ultimate vacuum is 0.05-0.1 Torr.

【0024】次に、工程160で、各容器内の真空度が
所定の減圧度(例えば0.005Torr)まで低下し
たところで加熱を停止する。
Next, in step 160, the heating is stopped when the degree of vacuum in each container is reduced to a predetermined degree of reduced pressure (for example, 0.005 Torr).

【0025】そして、工程170で反応容器10と凝縮
容器とを切り離す。次いで工程180で、反応容器10
の冷却を開始する。室温近傍まで冷却後、凝縮容器内の
金属マグネシウムを回収し、また、反応容器内の運搬容
器50を取だし、運搬容器内に固化した残留物を排出す
る。
Then, in step 170, the reaction vessel 10 and the condensation vessel are separated. Next, in step 180, the reaction vessel 10
Start cooling. After cooling to around room temperature, the metallic magnesium in the condensing container is recovered, the transport container 50 in the reaction container is removed, and the solidified residue is discharged into the transport container.

【0026】(具体的実施例)前記した回収装置Sによ
って、上記した回収方法を実施した。反応容器10の条
件としては、470kgの堆積物を含んだ運搬容器を温
度が900℃となるまで加熱し、11時間かけて分離作
業を行った。その結果、分離Mg重量は、200Kgで
あり、残留Mg重量(窒化マグネシウムと考えられる)
は270Kgであった。これにより、従来、水洗により
廃棄していた約50%の金属マグネシウムを回収するこ
とができた。また、容器底部に残った窒化マグネシウム
は、紛砕して容易に除去できた。
(Specific embodiment) The above-mentioned collecting method was carried out by the collecting device S described above. As a condition of the reaction vessel 10, a transport vessel containing 470 kg of sediment was heated until the temperature reached 900 ° C., and the separation operation was performed for 11 hours. As a result, the separated Mg weight was 200 kg, and the residual Mg weight (considered as magnesium nitride)
Was 270 kg. As a result, about 50% of metallic magnesium conventionally discarded by washing could be recovered. The magnesium nitride remaining on the bottom of the container was crushed and easily removed.

【0027】[0027]

【発明の効果】本発明によれば、金属マグネシウム運搬
容器の底部に残留した窒化マグネシウムや酸化マグネシ
ウムを含む金属マグネシウムから金属マグネシウムを分
離回収できる。また、処理作業について、多量の水素ガ
スやアンモニアガスの発生を伴うことなく、金属マグネ
シウム運搬容器内の金属マグネシウムを分離回収作業を
進めることができる。さらに、従来、廃棄していたマグ
ネシウム運搬容器底部に蓄積していた金属マグネシウム
を廃棄することなく回収し、資源を有効活用することが
可能となる。
According to the present invention, metallic magnesium can be separated and recovered from metallic magnesium containing magnesium nitride and magnesium oxide remaining at the bottom of the metallic magnesium transporting container. Further, in the processing operation, the separation and recovery operation of the metallic magnesium in the metallic magnesium transport container can be performed without generating a large amount of hydrogen gas or ammonia gas. Furthermore, it is possible to recover the metal magnesium accumulated in the bottom of the magnesium transport container, which has been conventionally discarded, without discarding the metal magnesium, and to effectively use resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる回収装置を示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing a recovery device used in the present invention.

【図2】反応容器内に金属マグネシウム運搬容器を収容
した状態を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a state in which a metal magnesium transport container is accommodated in a reaction container.

【図3】本発明方法の工程を示すブロック図である。FIG. 3 is a block diagram showing the steps of the method of the present invention.

【符号の説明】[Explanation of symbols]

10 反応容器 12 蓋体 14 接続部 20 凝縮容器 22 吸引管 30 接続管 40 支持部材 41 基部 42 受け部 43 連結部 43a 連結基部 43b 受け支持部 50 金属マグネシウム運搬容器 52 膨出部 54 連結部 S 回収装置 DESCRIPTION OF SYMBOLS 10 Reaction container 12 Lid 14 Connecting part 20 Condensing container 22 Suction pipe 30 Connecting pipe 40 Supporting member 41 Base 42 Receiving part 43 Connecting part 43a Connecting base 43b Receiving supporting part 50 Metal magnesium transport container 52 Swelling part 54 Connecting part S Collection apparatus

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属マグネシウム運搬容器を含む容器内
に堆積した窒化マグネシウムを含有する金属マグネシウ
ムから下記の工程を行うことにより金属マグネシウムを
分離除去することを特徴とする金属マグネシウムの回収
方法。 前記運搬容器を反応容器に収納する工程。 前記反応容器と凝縮容器を連結する工程。 前記反応容器と凝縮容器内を減圧する工程。 前記反応容器を750−1000℃の範囲で加熱する
工程。
1. A method for recovering metallic magnesium, comprising separating and removing metallic magnesium from metallic magnesium containing magnesium nitride deposited in a container including a metallic magnesium transport container by performing the following steps. Storing the transport container in a reaction container. Connecting the reaction vessel and the condensation vessel. A step of reducing the pressure inside the reaction vessel and the condensation vessel. Heating the reaction vessel in the range of 750-1000 ° C.
【請求項2】 金属マグネシウム運搬容器は、スポンジ
チタン製造用金属マグネシウム運搬容器であり、反応容
器はスポンジチタン製造反応容器であることを特徴とす
る請求項1記載の金属マグネシウムの回収方法。
2. The method for recovering metallic magnesium according to claim 1, wherein the metallic magnesium transport container is a metallic magnesium transport container for producing titanium sponge, and the reaction container is a sponge titanium producing reaction container.
JP24663299A 1999-08-31 1999-08-31 Method for recovering metallic magnesium Expired - Lifetime JP3774339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24663299A JP3774339B2 (en) 1999-08-31 1999-08-31 Method for recovering metallic magnesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24663299A JP3774339B2 (en) 1999-08-31 1999-08-31 Method for recovering metallic magnesium

Publications (2)

Publication Number Publication Date
JP2001073044A true JP2001073044A (en) 2001-03-21
JP3774339B2 JP3774339B2 (en) 2006-05-10

Family

ID=17151299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24663299A Expired - Lifetime JP3774339B2 (en) 1999-08-31 1999-08-31 Method for recovering metallic magnesium

Country Status (1)

Country Link
JP (1) JP3774339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402215B (en) * 2007-01-29 2013-07-21 Jnc Corp Molten evaporation device of metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607446A (en) * 2019-09-24 2019-12-24 新疆湘晟新材料科技有限公司 Reduction distillation reactor barrel for producing high-efficiency titanium sponge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402215B (en) * 2007-01-29 2013-07-21 Jnc Corp Molten evaporation device of metals

Also Published As

Publication number Publication date
JP3774339B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
JP5140770B1 (en) Low oxygen titanium powder production method
JP5140769B1 (en) Deoxidizer for low oxygen titanium powder production
JP2010504431A (en) Method and apparatus for continuously producing titanium metal or titanium-based alloys
EP2450311A1 (en) Method for producing silicon, silicon, and panel for solar cell
JP2001073044A (en) Method for recovering metal magnesium
JP5410673B2 (en) Reaction container for producing refractory metal and its processing method
US4242136A (en) Process for producing metallic zirconium
JP5879369B2 (en) Silicon purification apparatus and silicon purification method
EP0091414B1 (en) Apparatus and method for production of refractory metal from a chloride thereof
JP3464380B2 (en) Continuous vacuum purification method and device for aluminum alloy scrap
JP4781555B2 (en) Collection method of valuable metals
JPH04232216A (en) Device for removing low melting point metal
US3663001A (en) Vacuum separator
JPS6160839A (en) Refining method refractory metal
JP2012025646A (en) Silicon refining unit and method for refining silicon
JPH0255490B2 (en)
JP3565748B2 (en) Clog remover for sponge titanium production
KR102569313B1 (en) MAX phase with low oxygen concentration manufacturing method and apparatus
JP4007447B2 (en) Method for producing high purity chromium
JP7261701B2 (en) Method for treating activated carbon after use and method for producing titanium tetrachloride
KR101037444B1 (en) Device for producing sponge titanium and method in using same
JPH10324930A (en) Process for producing high-purity cadmium and apparatus for production
JPH06145831A (en) Treatment of molten aluminum or molten aluminum alloy
JP3979518B2 (en) Manufacturing method of high purity metal
JP2002167630A (en) METHOD FOR PRODUCING LOW OXYGEN Mn MATERIAL

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3774339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term