JP2001068076A - Set battery - Google Patents

Set battery

Info

Publication number
JP2001068076A
JP2001068076A JP23946999A JP23946999A JP2001068076A JP 2001068076 A JP2001068076 A JP 2001068076A JP 23946999 A JP23946999 A JP 23946999A JP 23946999 A JP23946999 A JP 23946999A JP 2001068076 A JP2001068076 A JP 2001068076A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
temperature coefficient
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23946999A
Other languages
Japanese (ja)
Other versions
JP3635995B2 (en
Inventor
Toshikazu Maejima
敏和 前島
Nobukazu Tanaka
伸和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP23946999A priority Critical patent/JP3635995B2/en
Publication of JP2001068076A publication Critical patent/JP2001068076A/en
Application granted granted Critical
Publication of JP3635995B2 publication Critical patent/JP3635995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a set battery capable of preventing ruptures or firings, without causing thermal runaway when it is over-charged. SOLUTION: A set battery consists of a series connection of three (Y) assemblies 2A, 2B, 2C, each consisting of a parallel connection of two (X) lithium ion secondary batteries (1A1 and 1A2), two others (1B1 and 1B2) and two others (1C1 and 1C2), respectively. At least one of the assemblies is formed as a combination of the lithium ion secondary battery 1A1 furnished internally with a positive thermal coefficient element 4A1, having a resistance A of 25 mΩ and the lithium ion secondary battery 1A2 furnished internally with a positive thermal coefficient element 4A2 having a resistance B of 50 mΩ. The conditions A≠B, 1<=L<=X-1, 1<=M<=X-1, and L+M<=X are to be made, where X and Y are the numbers of lithium ion secondary batteries and assemblies, respectively, L is the number of these lithium ion secondary batteries in the assembly 2A having different resistance values in its positive thermal coefficient elements which are furnished internally with a positive thermal coefficient element of A mΩ, and M is the number of the lithium ion secondary batteries furnished internally with a positive thermal coefficient element of BmΩ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池を用いた組電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack using a lithium ion secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、過充電時に
は負極に金属リチウムが樹枝状に析出するため短絡が発
生し、その後の放電には十分な容量が得られない。ある
いは、更なる過充電によって最悪の場合、正極の分解反
応により電池の内圧が上昇して破裂、発火を引き起こす
という問題点がある。また、過放電時には負極の集電体
の銅が電解液中に溶出し、その後の充電によって負極上
に析出するため、容量が得られなくなるという問題点も
ある。そのためリチウムイオン二次電池を用いた組電池
では、保護回路を設けて過放電と過充電を防いでいた。
しかしながら、保護回路及び充電回路等の故障時には、
上記問題が発生する問題点があった。
2. Description of the Related Art In a lithium ion secondary battery, when overcharged, metallic lithium is deposited on the negative electrode in a dendritic manner, causing a short circuit, and a sufficient capacity cannot be obtained for the subsequent discharge. Or, in the worst case due to further overcharging, there is a problem that the internal pressure of the battery rises due to the decomposition reaction of the positive electrode, causing rupture and ignition. In addition, at the time of overdischarge, the current collector copper of the negative electrode elutes into the electrolytic solution, and is deposited on the negative electrode by subsequent charging, so that there is a problem that the capacity cannot be obtained. Therefore, in a battery pack using a lithium ion secondary battery, a protection circuit is provided to prevent overdischarge and overcharge.
However, at the time of failure of the protection circuit and charging circuit,
There is a problem that the above problem occurs.

【0003】これを解決するために、電池の上蓋内に、
該電池の内圧が上昇した場合に物理的に電池への通電を
遮断する圧力スイッチを設け、過充電時に充電電流を遮
断し、破裂、発火を防ぎ、安全性を確保することが提案
されている。
[0003] To solve this, in the top lid of the battery,
It has been proposed to provide a pressure switch that physically shuts off the current supply to the battery when the internal pressure of the battery increases, to cut off the charging current when overcharging, prevent rupture and ignition, and ensure safety. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、圧力ス
イッチにより安全性が確保できるのは単セルによる場合
であって、組電池にした場合は他の電池の持つ過充電に
よる熱が原因となり、電池が熱逸走を起こし、破裂、発
火を起こす問題点があった。
However, safety can be ensured by the pressure switch only in the case of a single cell, and in the case of an assembled battery, the heat due to overcharging of other batteries causes the battery to fail. There was a problem of causing a thermal runaway, bursting and firing.

【0005】本発明の目的は、過充電時に熱逸走を起こ
さず、破裂、発火を防止できる組電池を提供することに
ある。
An object of the present invention is to provide an assembled battery that does not cause thermal runaway during overcharge and can prevent bursting and ignition.

【0006】[0006]

【課題を解決するための手段】本発明は、X個(X≧
2)のリチウムイオン二次電池が並列接続された集合体
がY個(Y≧1)直列接続された組電池を改良するもの
である。
According to the present invention, X pieces (X ≧
The present invention is to improve an assembled battery in which Y (Y ≧ 1) serially connected lithium ion secondary batteries of 2) are connected in series.

【0007】本発明に係る1つの組電池においては、前
記集合体のうち少なくとも1つがAmΩの抵抗値をもつ
正の温度係数素子を内蔵するリチウムイオン二次電池と
BmΩの抵抗値をもつ正の温度係数素子を内蔵するリチ
ウムイオン二次電池を含む組み合わせよりなり、この正
の温度係数素子の抵抗値が異なる1つの前記集合体にお
けるAmΩの正の温度係数素子を内蔵するリチウムイオ
ン二次電池の個数をL、BmΩの正の温度係数素子を内
蔵するリチウムイオン二次電池の個数をMとして、A≠
B、1≦L≦X−1、1≦M≦X−1、且つL+M≦X
の関係を有することを特徴とする。
In one assembled battery according to the present invention, at least one of the assemblies has a lithium ion secondary battery incorporating a positive temperature coefficient element having a resistance value of AmΩ and a positive electrode having a resistance value of BmΩ. A combination comprising a lithium ion secondary battery having a built-in temperature coefficient element, wherein the resistance value of this positive temperature coefficient element is different from that of the lithium ion secondary battery having a built-in AmΩ positive temperature coefficient element. Let L be the number, and let M be the number of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ.
B, 1≤L≤X-1, 1≤M≤X-1, and L + M≤X
Is characterized by having the following relationship.

【0008】また本発明に係る他の組電池においては、
該組電池の充電時に前記集合体のうち少なくとも1つが
a℃になる正の温度係数素子を内蔵するリチウムイオン
二次電池とb℃になる正の温度係数素子を内蔵するリチ
ウムイオン二次電池を含む組み合わせよりなり、この正
の温度係数素子の抵抗値が異なる1つの前記集合体にお
けるa℃になるリチウムイオン二次電池の個数をL、b
℃になるリチウムイオン二次電池の個数をMとして、a
≠b、1≦L≦X−1、1≦M≦X−1、且つL+M≦
Xの関係を有することを特徴とする。
In another battery pack according to the present invention,
A lithium ion secondary battery incorporating a positive temperature coefficient element at which at least one of the assemblies becomes a ° C. when charging the assembled battery, and a lithium ion secondary battery incorporating a positive temperature coefficient element becoming b ° C. L, b are the numbers of lithium ion secondary batteries at a ° C. in one of the above-mentioned assemblies, each of which has a different resistance value of the positive temperature coefficient element.
A, the number of lithium ion secondary batteries that will be at
≠ b, 1≤L≤X-1, 1≤M≤X-1, and L + M≤
X.

【0009】本発明においては、X個(X≧2)のリチ
ウムイオン二次電池が並列接続された集合体を構成する
各リチウムイオン二次電池の抵抗に差をもたせたため、
充電時に並列に接続されている電池は抵抗の少ない電池
に電流が集中して充電が行われる。また、抵抗の少ない
電池が先に過充電状態になり、電池の温度が上昇し始め
ると、この抵抗の少ない電池に接続されている抵抗の少
ない正の温度係数素子のトリップ温度(急激に抵抗値が
増大する温度)が急上昇して、該抵抗の少ない正の温度
係数素子の抵抗値が急上昇し、並列接続された電池にお
いて電池温度上昇時に抵抗の差が大きくなる。このた
め、今度は最初に抵抗が多かった電池に電流が集中して
充電が行われ、この電池が過充電状態になってこの電池
に接続されている最初に抵抗が多かった正の温度係数素
子のトリップ温度が急上昇する。このようにして並列接
続された電池間で、電池の急激な温度上昇のタイミング
をずらすことになり、熱逸走を起こさずに、破裂、発火
を防止できる。
In the present invention, the resistance of each of the lithium ion secondary batteries constituting an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel is made different.
In a battery connected in parallel at the time of charging, current is concentrated on a battery having low resistance and charging is performed. Also, when the battery with a low resistance is overcharged first and the temperature of the battery starts to rise, the trip temperature of the positive temperature coefficient element with a low resistance connected to the battery with a low resistance (the resistance value suddenly rises) Rapidly increases), the resistance value of the positive temperature coefficient element having a low resistance sharply increases, and the difference in resistance increases when the battery temperature rises in the batteries connected in parallel. For this reason, the current is concentrated on the battery with the first high resistance and charging is performed, and this battery is overcharged and the positive temperature coefficient element connected to this battery with the first high resistance is connected. Trip temperature rises rapidly. The timing of the rapid temperature rise of the batteries is shifted between the batteries connected in parallel in this manner, so that the batteries can be prevented from bursting or firing without causing thermal runaway.

【0010】一方、組電池の充電時に正の温度係数素子
の温度を変化させたものは、抵抗は温度の関数で現わせ
るため抵抗値が異なり、上記した抵抗が異なる場合と同
様な作用により、組電池の破裂、発火を防ぐことができ
る。
On the other hand, when the temperature of the positive temperature coefficient element is changed at the time of charging the battery pack, the resistance is expressed as a function of the temperature, so that the resistance value is different. The battery can be prevented from rupture and fire.

【0011】なお、普通の充電では、定電圧充電となる
ため、充電終了時には電池間で充電量が同じとなり、上
記した特徴が充電特性に影響することはない。
Incidentally, in normal charging, since constant voltage charging is performed, the amount of charge is the same between batteries at the end of charging, and the above-mentioned characteristics do not affect the charging characteristics.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を実施
例により説明する。
Embodiments of the present invention will be described below with reference to examples.

【0013】図1は本発明に係る組電池の実施例1−1
と実施例2−1の構成を示す回路図である。
FIG. 1 shows an embodiment 1-1 of an assembled battery according to the present invention.
FIG. 3 is a circuit diagram showing a configuration of a second embodiment and Example 2-1.

【0014】この実施例1−1と実施例2−1の組電池
は、X=2即ち2個づつのリチウムイオン二次電池(1
A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,
1C2 )とがそれぞれ並列接続された集合体2A,2
B,2Cが、Y=3即ち3個直列接続されて、2並列3
直列に構成されている。
The assembled batteries of Examples 1-1 and 2-1 have X = 2, that is, two lithium ion secondary batteries (1).
A1, 1A2), (1B1, 1B2), (1C1,
1C2) are connected in parallel with each other.
B and 2C are connected in series with Y = 3, that is, 3
They are configured in series.

【0015】実施例1−1の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され、これらが並列接続されて集合体2Aが構成され
ている。リチウムイオン二次電池1B1 はリチウムイオ
ン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度
係数素子4B1 が直列接続されて構成され、リチウムイ
オン二次電池1B2 はリチウムイオン二次電池本体3B
2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直
列接続されて構成され、これらが並列接続されて集合体
2Bが構成されている。リチウムイオン二次電池1C1
はリチウムイオン二次電池本体3C1 に50mΩの抵抗値
をもつ正の温度係数素子4C1 が直列接続されて構成さ
れ、リチウムイオン二次電池1C2 はリチウムイオン二
次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the assembled battery of the embodiment 1-1, the lithium ion secondary battery 1A1 has a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in the lithium ion secondary battery main body 3A1.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance of 50 mΩ connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is configured by connecting a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series to a lithium ion secondary battery main body 3B1, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B1.
2, a positive temperature coefficient element 4B2 having a resistance value of 50 m.OMEGA. Is connected in series, and these are connected in parallel to form an assembly 2B. Lithium ion secondary battery 1C1
Is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3C1 in series. The lithium ion secondary battery 1C2 has a resistance value of 50 mΩ to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0016】この例では、集合体2A,2Bの2つが、
AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1
,4B1 を内蔵するリチウムイオン二次電池1A1 ,
1B1と、BmΩ=50mΩの抵抗値をもつ正の温度係数
素子4A2 ,4B2 を内蔵するリチウムイオン二次電池
1A2 ,1B2 を含む組み合わせよりなっている。
In this example, two of the aggregates 2A and 2B are:
A positive temperature coefficient element 4A1 having a resistance value of AmΩ = 25 mΩ
, 4B1 built-in lithium ion secondary battery 1A1,
1B1 and a combination including lithium ion secondary batteries 1A2 and 1B2 incorporating positive temperature coefficient elements 4A2 and 4B2 having a resistance value of BmΩ = 50 mΩ.

【0017】この正の温度係数素子の抵抗値が異なる1
つの集合体2AにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
1、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1=1=2−1
即ち1=1=1、1≦M≦X−1は1=1=2−1即ち
1=1=1、且つL+M≦Xは1+1=2即ち2=2の
関係を有している。
The resistance value of the positive temperature coefficient element is different
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2A is L =
1. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1.
That is, 1 = 1 = 1, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 = 2-1, that is, 1 = 1 = 1, and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0018】実施例2−1の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、これらが並
列接続されて集合体2Aが構成されている。リチウムイ
オン二次電池1B1 はリチウムイオン二次電池本体3B
1 に、1CmA充電時に温度が100 ℃になる正の温度係
数素子4B1 が直列接続されて構成され、リチウムイオ
ン二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the assembled battery of the embodiment 2-1, the lithium ion secondary battery 1A1 includes a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charge. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is composed of A2 and a positive temperature coefficient element 4A2 whose temperature becomes 120 ° C. at the time of 1 CmA charge, and these elements are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B
1, a positive temperature coefficient element 4B1 whose temperature becomes 100 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
In addition, a positive temperature coefficient element 4B2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 which has a temperature of 120 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 is composed of a lithium ion secondary battery body 3C2.
Further, a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0019】この例では、集合体2A,2Bの2つが、
1CmA充電時に温度がa℃=100℃になる正の温度係
数素子4A1 ,4B1 を内蔵するリチウムイオン二次電
池1A1 ,1B1 と、1CmA充電時に温度がb℃=12
0 ℃になる正の温度係数素子4A2 ,4B2 を内蔵する
リチウムイオン二次電池1A2 ,1B2 を含む組み合わ
せよりなっている。
In this example, two of the aggregates 2A and 2B are:
Lithium ion secondary batteries 1A1 and 1B1 incorporating positive temperature coefficient elements 4A1 and 4B1 whose temperature becomes a.degree. C. = 100.degree. C. at 1 CmA charge, and b.degree. C. = 12 at 1 CmA charge
It is composed of a combination including lithium ion secondary batteries 1A2 and 1B2 having positive temperature coefficient elements 4A2 and 4B2 at 0 ° C.

【0020】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
1、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち
1=1=1、1≦M≦X−1は1=1=2−1即ち1=
1=1、且つL+M≦Xは1+1=2即ち2=2の関係
を有している。
The positive temperature coefficient element has a different resistance value.
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 1, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 =
1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0021】図2は本発明に係る組電池の実施例1−2
と実施例2−2の構成を示す回路図である。
FIG. 2 shows an embodiment 1-2 of the battery pack according to the present invention.
FIG. 4 is a circuit diagram illustrating a configuration of a second embodiment.

【0022】この実施例1−2と実施例2−2の組電池
は、X=2即ち2個のリチウムイオン二次電池1A1 ,
1A2 が並列接続された集合体2AがY=1即ち1個設
けられて、2並列に構成されている。
The assembled batteries of Embodiments 1-2 and 2-2 have X = 2, that is, two lithium ion secondary batteries 1A1,
An assembly 2A in which 1A2 is connected in parallel is provided as Y = 1, that is, one assembly 2A is configured in two parallel.

【0023】実施例1−2の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され構成され、これらが並列接続されて集合体2Aが
構成されている。
In the assembled battery of Embodiment 1-2, the lithium ion secondary battery 1A1 is provided with a positive temperature coefficient element 4A1 having a resistance of 25 mΩ in the main body 3A1 of the lithium ion secondary battery.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery body 3A2 and a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ connected in series, and these are connected in parallel to form an assembly 2A.

【0024】この例では、集合体2Aが、AmΩ=25m
Ωの抵抗値をもつ正の温度係数素子4A1 を内蔵するリ
チウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗
値をもつ正の温度係数素子4A2 を内蔵するリチウムイ
オン二次電池1A2 を含む組み合わせよりなっている。
In this example, the aggregate 2A has an AmΩ = 25 m
From a combination including a lithium ion secondary battery 1A1 containing a positive temperature coefficient element 4A1 having a resistance value of Ω and a lithium ion secondary battery 1A2 containing a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. Has become.

【0025】この正の温度係数素子の抵抗値が異なる1
つの集合体2AにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
1、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1=1=2−1
即ち1=1=1、1≦M≦X−1は1=1=2−1即ち
1=1=1、且つL+M≦Xは1+1=2即ち2=2の
関係を有している。
This positive temperature coefficient element has a different resistance value.
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2A is L =
1. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1.
That is, 1 = 1 = 1, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 = 2-1, that is, 1 = 1 = 1, and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0026】実施例2−2の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成されている。
In the assembled battery of Embodiment 2-2, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 having a temperature of 100 ° C. at 1 CmA charging connected in series. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected in series with a positive temperature coefficient element 4A2 which becomes 120 ° C. at the time of 1 CmA charging.

【0027】この例では、集合体2Aが、1CmA充電
時に温度がa℃=100 ℃になる正の温度係数素子4A1
を内蔵するリチウムイオン二次電池1A1 と、1CmA
充電時に温度がb℃=120 ℃になる正の温度係数素子4
A2 を内蔵するリチウムイオン二次電池1A2 を含む組
み合わせよりなっている。
In this example, the assembly 2A has a positive temperature coefficient element 4A1 at which the temperature is a.degree. C. = 100.degree. C. when charged at 1 CmA.
Lithium-ion rechargeable battery 1A1 and 1CmA
Positive temperature coefficient element 4 whose temperature becomes b ° C = 120 ° C during charging
It is a combination including a lithium ion secondary battery 1A2 containing A2.

【0028】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
1、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち
1=1=1、1≦M≦X−1は1=1=2−1即ち1=
1=1、且つL+M≦Xは1+1=2即ち2=2の関係
を有している。
This positive temperature coefficient element has a different resistance 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 1, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 =
1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0029】図3は本発明に係る組電池の実施例1−3
と実施例2−3の構成を示す回路図である。
FIG. 3 shows an embodiment 1-3 of the battery pack according to the present invention.
FIG. 4 is a circuit diagram illustrating a configuration of a second embodiment and a second embodiment.

【0030】この実施例1−3と実施例2−3の組電池
は、X=2即ち2個づつのリチウムイオン二次電池(1
A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,
1C2 )とがそれぞれ並列接続された集合体2A,2
B,2CがY=3即ち3個直列接続されて、2並列3直
列に構成されている。
In the assembled batteries of Examples 1-3 and 2-3, X = 2, that is, two lithium ion secondary batteries (1
A1, 1A2), (1B1, 1B2), (1C1,
1C2) are connected in parallel with each other.
B and 2C are connected in series, that is, Y = 3, that is, three, and are configured in two parallel and three series.

【0031】実施例1−3の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され、これらが並列接続されて集合体2Aが構成され
ている。リチウムイオン二次電池1B1 はリチウムイオ
ン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度
係数素子4B1 が直列接続されて構成され、リチウムイ
オン二次電池1B2 はリチウムイオン二次電池本体3B
2 に25mΩの抵抗値をもつ正の温度係数素子4B2 が直
列接続されて構成され、これらが並列接続されて集合体
2Bが構成されている。リチウムイオン二次電池1C1
はリチウムイオン二次電池本体3C1 に25mΩの抵抗値
をもつ正の温度係数素子4C1 が直列接続されて構成さ
れ、リチウムイオン二次電池1C2 はリチウムイオン二
次電池本体3C2 に25mΩの抵抗値をもつ正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the assembled battery of the embodiment 1-3, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery main body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 25 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance of 50 mΩ connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is configured by connecting a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series to a lithium ion secondary battery main body 3B1, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B1.
2, a positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series, and these are connected in parallel to form an assembly 2B. Lithium ion secondary battery 1C1
Is composed of a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ connected in series to the lithium ion secondary battery main body 3C1, and a lithium ion secondary battery 1C2 having a resistance value of 25 mΩ to the lithium ion secondary battery main body 3C2. A positive temperature coefficient element 4C2 is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0032】この例では、集合体2Aが、AmΩ=25m
Ωの抵抗値をもつ正の温度係数素子4A1 を内蔵するリ
チウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗
値をもつ正の温度係数素子4A2 を内蔵するリチウムイ
オン二次電池1A2 を含む組み合わせよりなっている。
In this example, the aggregate 2A has an AmΩ = 25 m
From a combination including a lithium ion secondary battery 1A1 containing a positive temperature coefficient element 4A1 having a resistance value of Ω and a lithium ion secondary battery 1A2 containing a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. Has become.

【0033】この正の温度係数素子の抵抗値が異なる1
つの集合体2AにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
1、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1=1=2−1
即ち1=1=1、1≦M≦X−1は1=1=2−1即ち
1=1=1、且つL+M≦Xは1+1=2即ち2=2の
関係を有している。
This positive temperature coefficient element has a different resistance value 1
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2A is L =
1. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1.
That is, 1 = 1 = 1, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 = 2-1, that is, 1 = 1 = 1, and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0034】実施例2−3の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、これらが並
列接続されて集合体2Aが構成されている。リチウムイ
オン二次電池1B1 はリチウムイオン二次電池本体3B
1 に、1CmA充電時に温度が100 ℃になる正の温度係
数素子4B1 が直列接続されて構成され、リチウムイオ
ン二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。
In the assembled battery of Embodiment 2-3, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 connected in series with a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charging. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is composed of A2 and a positive temperature coefficient element 4A2 whose temperature becomes 120 ° C. at the time of 1 CmA charge, and these elements are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B
1, a positive temperature coefficient element 4B1 whose temperature becomes 100 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
In addition, a positive temperature coefficient element 4B2 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 having a temperature of 100 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 comprises a lithium ion secondary battery main body 3C2.
In addition, a positive temperature coefficient element 4C2 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2C.

【0035】この例では、集合体2Aが、1CmA充電
時に温度がa℃=100 ℃になる正の温度係数素子4A1
を内蔵するリチウムイオン二次電池1A1 と、1CmA
充電時に温度がb℃=120 ℃になる正の温度係数素子4
A2 を内蔵するリチウムイオン二次電池1A2 を含む組
み合わせよりなっている。
In this example, the assembly 2A has a positive temperature coefficient element 4A1 whose temperature becomes a.degree. C. = 100.degree. C. when charged at 1 CmA.
Lithium-ion rechargeable battery 1A1 and 1CmA
Positive temperature coefficient element 4 whose temperature becomes b ° C = 120 ° C during charging
It is a combination including a lithium ion secondary battery 1A2 containing A2.

【0036】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
1、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち
1=1=1、1≦M≦X−1は1=1=2−1即ち1=
1=1、且つL+M≦Xは1+1=2即ち2=2の関係
を有している。
The resistance value of this positive temperature coefficient element is different 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 1, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 =
1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0037】図4は本発明に係る組電池の実施例1−4
と実施例2−4の構成を示す回路図である。
FIG. 4 shows an embodiment 1-4 of the battery pack according to the present invention.
FIG. 4 is a circuit diagram illustrating a configuration of a second embodiment and a second embodiment.

【0038】この実施例1−4と実施例2−4の組電池
は、X=2即ち2個づつのリチウムイオン二次電池(1
A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,
1C2 )とが並列接続された集合体2A,2B,2Cが
Y=3即ち3個直列接続されて、2並列3直列に構成さ
れている。
In the assembled batteries of Examples 1-4 and 2-4, X = 2, that is, two lithium ion secondary batteries (1
A1, 1A2), (1B1, 1B2), (1C1,
1C2) are connected in parallel, and Y = 3, that is, three assemblies 2A, 2B, and 2C are connected in series, and are configured in two parallel and three series.

【0039】実施例1−4の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され、これらが並列接続されて集合体2Aが構成され
ている。リチウムイオン二次電池1B1 はリチウムイオ
ン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度
係数素子4B1 が直列接続されて構成され、リチウムイ
オン二次電池1B2 はリチウムイオン二次電池本体3B
2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直
列接続されて構成され、これらが並列接続されて集合体
2Bが構成されている。リチウムイオン二次電池1C1
はリチウムイオン二次電池本体3C1 に50mΩの抵抗値
をもつ正の温度係数素子4C1 が直列接続されて構成さ
れ、リチウムイオン二次電池1C2 はリチウムイオン二
次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the assembled battery of Embodiments 1-4, the lithium ion secondary battery 1A1 is provided with a positive temperature coefficient element 4A1 having a resistance of 25 mΩ in the lithium ion secondary battery body 3A1.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance of 50 mΩ connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 comprises a lithium ion secondary battery main body 3B1 and a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B1.
2, a positive temperature coefficient element 4B2 having a resistance value of 50 m.OMEGA. Is connected in series, and these are connected in parallel to form an assembly 2B. Lithium ion secondary battery 1C1
Is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3C1 in series. The lithium ion secondary battery 1C2 has a resistance value of 50 mΩ to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0040】この例では、集合体2Aが、AmΩ=25m
Ωの抵抗値をもつ正の温度係数素子4A1 を内蔵するリ
チウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗
値をもつ正の温度係数素子4A2 を内蔵するリチウムイ
オン二次電池1A2 と、CmΩ=50mΩの抵抗値をもつ
正の温度係数素子4A3 を内蔵するリチウムイオン二次
電池1A3 とを含む組み合わせよりなっている。
In this example, the aggregate 2A has an AmΩ = 25 m
A lithium ion secondary battery 1A1 containing a positive temperature coefficient element 4A1 having a resistance value of Ω, a lithium ion secondary battery 1A2 containing a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ, and CmΩ = It is a combination including a lithium ion secondary battery 1A3 having a built-in positive temperature coefficient element 4A3 having a resistance value of 50 mΩ.

【0041】この正の温度係数素子の抵抗値が異なる1
つの集合体2AにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
1、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1=1=2−1
即ち1=1=1、1≦M≦X−1は1=1=2−1即ち
1=1=1、且つL+M≦Xは1+1=2即ち2=2の
関係を有している。
This positive temperature coefficient element has a different resistance value 1
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2A is L =
1. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1.
That is, 1 = 1 = 1, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 = 2-1, that is, 1 = 1 = 1, and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0042】実施例2−4の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、これらが並
列接続されて集合体2Aが構成されている。リチウムイ
オン二次電池1B1 はリチウムイオン二次電池本体3B
1 に、1CmA充電時に温度が120 ℃になる正の温度係
数素子4B1 が直列接続されて構成され、リチウムイオ
ン二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続され、これらが並列接続されて集
合体2Cが構成されている。これら集合体2A,2B,
2Cは直列接続されている。
In the assembled battery of the embodiment 2-4, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charging is connected in series. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is composed of A2 and a positive temperature coefficient element 4A2 whose temperature becomes 120 ° C. at the time of 1 CmA charge, and these elements are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B
1, a positive temperature coefficient element 4B1 whose temperature becomes 120 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
In addition, a positive temperature coefficient element 4B2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 which has a temperature of 120 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 is composed of a lithium ion secondary battery body 3C2.
Further, a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at the time of 1 CmA charging is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2A, 2B,
2C is connected in series.

【0043】この例では、集合体2Aが、1CmA充電
時に温度がa℃=100 ℃になる正の温度係数素子4A1
を内蔵するリチウムイオン二次電池1A1 と、1CmA
充電時に温度がb℃=120 ℃になる正の温度係数素子4
A2 を内蔵するリチウムイオン二次電池1A2 を含む組
み合わせよりなっている。
In this example, the assembly 2A has a positive temperature coefficient element 4A1 whose temperature becomes a.degree. C. = 100.degree. C. when charged at 1 CmA.
Lithium-ion rechargeable battery 1A1 and 1CmA
Positive temperature coefficient element 4 whose temperature becomes b ° C = 120 ° C during charging
It is a combination including a lithium ion secondary battery 1A2 containing A2.

【0044】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
1、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち
1=1=1、1≦M≦X−1は1=1=2−1即ち1=
1=1、且つL+M≦Xは1+1=2即ち2=2の関係
を有している。
The positive temperature coefficient element has a different resistance 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 1, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 =
1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.

【0045】図5は本発明に係る組電池の実施例1−5
と実施例2−5の構成を示す回路図である。
FIG. 5 shows an embodiment 1-5 of the battery pack according to the present invention.
FIG. 9 is a circuit diagram illustrating a configuration of a second embodiment and a second embodiment.

【0046】この実施例1−5と実施例2−5の組電池
は、X=3即ち3個づつのリチウムイオン二次電池(1
A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3
)と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1
D2 ,1D3 )とが並列接続された集合体2A,2B,
2C,2DがY=4即ち4個直列接続されて、3並列4
直列に構成されている。
The assembled batteries of Examples 1-5 and 2-5 have X = 3, that is, three lithium ion secondary batteries (1).
A1, 1A2, 1A3) and (1B1, 1B2, 1B3).
), (1C1, 1C2, 1C3), (1D1, 1
D2, 1D3) and 2A, 2B,
2C and 2D are Y = 4, that is, four are connected in series, and three parallel
They are configured in series.

【0047】実施例1−5の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続され、リ
チウムイオン二次電池1A3 はリチウムイオン二次電池
本体3A3 に50mΩの抵抗値をもつ正の温度係数素子4
A3 が直列接続されて構成され、これらが並列接続され
て集合体2Aが構成されている。リチウムイオン二次電
池1B1 はリチウムイオン二次電池本体3B1 に50mΩ
の抵抗値をもつ正の温度係数素子4B1が直列接続され
て構成され、リチウムイオン二次電池1B2 はリチウム
イオン二次電池本体3B2 に50mΩの抵抗値をもつ正の
温度係数素子4B2 が直列接続されて構成され、リチウ
ムイオン二次電池1B3 はリチウムイオン二次電池本体
3B3 に50mΩの抵抗値をもつ正の温度係数素子4B3
が直列接続されて構成され、これらが並列接続されて集
合体2Bが構成されている。リチウムイオン二次電池1
C1 はリチウムイオン二次電池本体3C1 に50mΩの抵
抗値をもつ正の温度係数素子4C1 が直列接続されて構
成され、リチウムイオン二次電池1C2 はリチウムイオ
ン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度
係数素子4C2 が直列接続されて構成され、リチウムイ
オン二次電池1C3 はリチウムイオン二次電池本体3C
3 に50mΩの抵抗値をもつ正の温度係数素子4C3 が直
列接続されて構成され、これらが並列接続されて集合体
2Cが構成されている。リチウムイオン二次電池1D1
はリチウムイオン二次電池本体3D1 に50mΩの抵抗値
をもつ正の温度係数素子4D1 が直列接続されて構成さ
れ、リチウムイオン二次電池1D2 はリチウムイオン二
次電池本体3D2 に50mΩの抵抗値をもつ正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3 に
50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接
続されて構成され、これらが並列接続されて集合体2D
が構成されている。これら集合体2A,2B,2C,2
Dは直列接続されている。
In the assembled battery of the embodiment 1-5, the lithium ion secondary battery 1A1 has a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in the lithium ion secondary battery body 3A1.
Are connected in series, and the lithium ion secondary battery 1
A2 has a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ connected in series to the lithium ion secondary battery body 3A2, and a lithium ion secondary battery 1A3 has a positive temperature coefficient element having a resistance value of 50 mΩ connected to the lithium ion secondary battery body 3A3. Temperature coefficient element 4
A3 is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is connected to the lithium ion secondary battery body 3B1 by 50 mΩ.
And a positive temperature coefficient element 4B2 having a resistance of 50 mΩ is connected in series to the lithium ion secondary battery body 3B2. The lithium ion secondary battery 1B3 has a positive temperature coefficient element 4B3 having a resistance value of 50 mΩ added to the lithium ion secondary battery body 3B3.
Are connected in series, and these are connected in parallel to form an aggregate 2B. Lithium ion secondary battery 1
C1 is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3C1 in series, and a lithium ion secondary battery 1C2 is provided with a 50 mΩ resistance value to the lithium ion secondary battery body 3C2. The positive temperature coefficient element 4C2 is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C.
3, a positive temperature coefficient element 4C3 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an assembly 2C. Lithium ion secondary battery 1D1
Is composed of a positive temperature coefficient element 4D1 having a resistance of 50 mΩ connected in series to the main body 3D1 of the lithium ion secondary battery, and a lithium ion secondary battery 1D2 having a resistance of 50 mΩ to the main body 3D2 of the lithium ion secondary battery. The positive temperature coefficient element 4D2 is connected in series, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3.
A positive temperature coefficient element 4D3 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an assembly 2D
Is configured. These aggregates 2A, 2B, 2C, 2
D is connected in series.

【0048】この例では、集合体2Aが、AmΩ=25m
Ωの抵抗値をもつ正の温度係数素子4A1 を内蔵するリ
チウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗
値をもつ正の温度係数素子4A2 を内蔵するリチウムイ
オン二次電池1A2 と、BmΩ=50mΩの抵抗値をもつ
正の温度係数素子4A3 を内蔵するリチウムイオン二次
電池1A3 とを含む組み合わせよりなっている。
In this example, the aggregate 2A has an AmΩ = 25 m
A lithium ion secondary battery 1A1 containing a positive temperature coefficient element 4A1 having a resistance value of Ω, a lithium ion secondary battery 1A2 containing a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ, and BmΩ = It is a combination including a lithium ion secondary battery 1A3 having a built-in positive temperature coefficient element 4A3 having a resistance value of 50 mΩ.

【0049】この正の温度係数素子の抵抗値が異なる1
つの集合体2AにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
1、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=2である。このた
め、A≠Bは25≠50、1≦L≦X−1は1=1<3−1
即ち1=1<2、1≦M≦X−1は1<2=3−1即ち
1<2=2、且つL+M≦Xは1+2=3即ち3=3の
関係を有している。
The resistance value of the positive temperature coefficient element is different
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2A is L =
1. The number M of the lithium ion secondary batteries incorporating the positive temperature coefficient element of BmΩ = 50 mΩ is M = 2. Therefore, A ≠ B is 25 ≠ 50, and 1 ≦ L ≦ X−1 is 1 = 1 <3-1.
That is, 1 = 1 <2, 1 ≦ M ≦ X−1 has a relationship of 1 <2 = 3-1, ie, 1 <2 = 2, and L + M ≦ X has a relationship of 1 + 2 = 3, ie, 3 = 3.

【0050】実施例2−5の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、リチウムイ
オン二次電池1A3 はリチウムイオン二次電池本体3A
3 に、1CmA充電時に温度が120 ℃になる正の温度係
数素子4A3 が直列接続されて構成され、これらが並列
接続されて集合体2Aが構成されている。リチウムイオ
ン二次電池1B1 はリチウムイオン二次電池本体3B1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B1 が直列接続されて構成され、リチウムイオン
二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、リチウムイオン
二次電池1B3 はリチウムイオン二次電池本体3B3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B3 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、リチウムイオン
二次電池1C3 はリチウムイオン二次電池本体3C3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C3が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。リチウムイオン
二次電池1D1 はリチウムイオン二次電池本体3D1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D1 が直列接続されて構成され、リチウムイオン
二次電池1D2 はリチウムイオン二次電池本体3D2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D3 が直列接続されて構成され、これらが並列接
続されて集合体2Dが構成されている。これら集合体2
A,2B,2C,2Dは直列接続されている。
In the assembled battery of the embodiment 2-5, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at the time of charging 1 CmA. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected in series with a positive temperature coefficient element 4A2 whose temperature becomes 120 ° C. at the time of 1 CmA charging. The lithium ion secondary battery 1A3 is composed of a lithium ion secondary battery body 3A
3, a positive temperature coefficient element 4A3 whose temperature becomes 120 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B1.
And a positive temperature coefficient element 4B1 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
And a positive temperature coefficient element 4B2, whose temperature becomes 120 ° C. at the time of 1 CmA charge, is connected in series. The lithium ion secondary battery 1B3 is composed of a lithium ion secondary battery body 3B3
In addition, a positive temperature coefficient element 4B3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 which has a temperature of 120 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 is composed of a lithium ion secondary battery body 3C2.
And a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C3.
In addition, a positive temperature coefficient element 4C3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is configured to be connected in series, and these are connected in parallel to form an assembly 2C. The lithium ion secondary battery 1D1 is a lithium ion secondary battery body 3D1.
A positive temperature coefficient element 4D1 whose temperature becomes 120 ° C. at the time of 1 CmA charging is connected in series, and the lithium ion secondary battery 1D2 is a lithium ion secondary battery main body 3D2.
And a positive temperature coefficient element 4D2, whose temperature becomes 120 ° C. at the time of 1 CmA charging, is connected in series. The lithium ion secondary battery 1D3 is a lithium ion secondary battery main body 3D3.
Further, a positive temperature coefficient element 4D3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2D. These aggregates 2
A, 2B, 2C, and 2D are connected in series.

【0051】この例では、集合体2Aが、1CmA充電
時に温度がa℃=100 ℃になる正の温度係数素子4A1
を内蔵するリチウムイオン二次電池1A1 と、1CmA
充電時に温度がb℃=120 ℃になる正の温度係数素子4
A2 を内蔵するリチウムイオン二次電池1A2 と、1C
mA充電時に温度がb℃=120 ℃になる正の温度係数素
子4A3 を内蔵するリチウムイオン二次電池1A3 とを
含む組み合わせよりなっている。
In this example, the assembly 2A has a positive temperature coefficient element 4A1 whose temperature becomes a ° C. = 100 ° C. when charged at 1 CmA.
Lithium-ion rechargeable battery 1A1 and 1CmA
Positive temperature coefficient element 4 whose temperature becomes b ° C = 120 ° C during charging
Lithium-ion secondary battery 1A2 with built-in A2 and 1C
It is a combination including a lithium ion secondary battery 1A3 having a built-in positive temperature coefficient element 4A3 whose temperature becomes b.degree.

【0052】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
1、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=2である。このため、
A≠Bは25≠50、1≦L≦X−1は1=1<3−1即ち
1=1<2、1≦M≦X−1は1<2=3−1即ち1<
2=2、且つL+M≦Xは1+2=3即ち3=3の関係
を有している。
The resistance value of this positive temperature coefficient element is different 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. during the charge of 1,1 CmA is M = 2. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 <3-1, ie, 1 = 1 <2, and 1 ≦ M ≦ X−1 is 1 <2 = 3-1, 1 <
2 = 2 and L + M ≦ X have a relationship of 1 + 2 = 3, that is, 3 = 3.

【0053】図6は本発明に係る組電池の実施例1−6
と実施例2−6の構成を示す回路図である。
FIG. 6 shows an embodiment 1-6 of the assembled battery according to the present invention.
FIG. 9 is a circuit diagram illustrating a configuration of a second embodiment and a second embodiment.

【0054】この実施例1−6と実施例2−6の組電池
は、リチウムイオン二次電池(1A1 ,1A2 ,1A3
)と、(1B1 ,1B2 ,1B3 )と、(1C1 ,1
C2 ,1C3 )と、(1D1 ,1D2 ,1D3 )とが並
列接続された集合体2A,2B,2C,2DがY=4即
ち4個直列接続されて、3並列4直列に構成されてい
る。
The assembled batteries of Examples 1-6 and 2-6 are lithium ion secondary batteries (1A1, 1A2, 1A3).
), (1B1, 1B2, 1B3), (1C1, 1
C2, 1C3) and (1D1, 1D2, 1D3) are connected in parallel to form a set 2A, 2B, 2C, 2D of Y = 4, that is, four sets are connected in series to form three parallels and four series.

【0055】実施例1−6の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に25mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続され、リ
チウムイオン二次電池1A3 はリチウムイオン二次電池
本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4
A3 が直列接続されて構成され、これらが並列接続され
て集合体2Aが構成されている。リチウムイオン二次電
池1B1 はリチウムイオン二次電池本体3B1 に25mΩ
の抵抗値をもつ正の温度係数素子4B1が直列接続され
て構成され、リチウムイオン二次電池1B2 はリチウム
イオン二次電池本体3B2 に25mΩの抵抗値をもつ正の
温度係数素子4B2 が直列接続されて構成され、リチウ
ムイオン二次電池1B3 はリチウムイオン二次電池本体
3B3 に50mΩの抵抗値をもつ正の温度係数素子4B3
が直列接続されて構成され、これらが並列接続されて集
合体2Bが構成されている。リチウムイオン二次電池1
C1 はリチウムイオン二次電池本体3C1 に25mΩの抵
抗値をもつ正の温度係数素子4C1 が直列接続されて構
成され、リチウムイオン二次電池1C2 はリチウムイオ
ン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度
係数素子4C2 が直列接続されて構成され、リチウムイ
オン二次電池1C3 はリチウムイオン二次電池本体3C
3 に50mΩの抵抗値をもつ正の温度係数素子4C3 が直
列接続されて構成され、これらが並列接続されて集合体
2Cが構成されている。リチウムイオン二次電池1D1
はリチウムイオン二次電池本体3D1 に50mΩの抵抗値
をもつ正の温度係数素子4D1 が直列接続されて構成さ
れ、リチウムイオン二次電池1D2 はリチウムイオン二
次電池本体3D2 に50mΩの抵抗値をもつ正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3 に
50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接
続されて構成され、これらが並列接続されて集合体2D
が構成されている。これら集合体2A,2B,2C,2
Dは直列接続されている。
In the assembled battery of the embodiment 1-6, the lithium ion secondary battery 1A1 has a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ added to the lithium ion secondary battery body 3A1.
Are connected in series, and the lithium ion secondary battery 1
A2 has a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ connected in series to the lithium ion secondary battery main body 3A2, and a lithium ion secondary battery 1A3 has a positive resistance having a resistance value of 25 mΩ connected to the lithium ion secondary battery main body 3A3. Temperature coefficient element 4
A3 is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is connected to the lithium ion secondary battery body 3B1 by 25 mΩ.
The positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3B2 in the lithium ion secondary battery 1B2. The lithium ion secondary battery 1B3 has a positive temperature coefficient element 4B3 having a resistance value of 50 mΩ added to the lithium ion secondary battery body 3B3.
Are connected in series, and these are connected in parallel to form an aggregate 2B. Lithium ion secondary battery 1
C1 is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ in series to the lithium ion secondary battery main body 3C1. Lithium ion secondary battery 1C2 is provided with a 50 mΩ resistance value to the lithium ion secondary battery main body 3C2. The positive temperature coefficient element 4C2 is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C.
3, a positive temperature coefficient element 4C3 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an assembly 2C. Lithium ion secondary battery 1D1
Is composed of a positive temperature coefficient element 4D1 having a resistance of 50 mΩ connected in series to the main body 3D1 of the lithium ion secondary battery, and a lithium ion secondary battery 1D2 having a resistance of 50 mΩ to the main body 3D2 of the lithium ion secondary battery. The positive temperature coefficient element 4D2 is connected in series, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3.
A positive temperature coefficient element 4D3 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an assembly 2D
Is configured. These aggregates 2A, 2B, 2C, 2
D is connected in series.

【0056】この例では、集合体2B,2Cが、AmΩ
=25mΩの抵抗値をもつ正の温度係数素子4B1 ,4C
1 ,4B2 を内蔵するリチウムイオン二次電池1B1 ,
1C1 ,1B2 と、BmΩ=50mΩの抵抗値をもつ正の
温度係数素子4C2 ,4B3,4C3 を内蔵するリチウ
ムイオン二次電池1C2 ,1B3 ,1C3 とを含む組み
合わせよりなっている。
In this example, the aggregates 2B and 2C
= Positive temperature coefficient elements 4B1, 4C having a resistance value of 25 mΩ
Lithium ion secondary battery 1B1 with built-in 1,4B2
1C1 and 1B2 and a combination including lithium ion secondary batteries 1C2, 1B3 and 1C3 containing positive temperature coefficient elements 4C2, 4B3 and 4C3 having a resistance value of BmΩ = 50 mΩ.

【0057】この正の温度係数素子の抵抗値が異なる1
つの集合体2BにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
2、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1<2=3−1
即ち1<2=2、1≦M≦X−1は1=1<3−1即ち
1=1<2、且つL+M≦Xは2+1=3即ち3=3の
関係を有している。
This positive temperature coefficient element has a different resistance value.
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2B is L =
2. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, and 1 ≦ L ≦ X−1 is 1 <2 = 3-1.
That is, 1 <2 = 2, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 <3-1, ie, 1 = 1 <2, and L + M ≦ X has a relationship of 2 + 1 = 3, ie, 3 = 3.

【0058】実施例2−6の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が100 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、リチウムイ
オン二次電池1A3 はリチウムイオン二次電池本体3A
3 に、1CmA充電時に温度が100 ℃になる正の温度係
数素子4A3 が直列接続されて構成され、これらが並列
接続されて集合体2Aが構成されている。リチウムイオ
ン二次電池1B1 はリチウムイオン二次電池本体3B1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B1 が直列接続されて構成され、リチウムイオン
二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、リチウムイオン
二次電池1B3 はリチウムイオン二次電池本体3B3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B3 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、リチウムイオン
二次電池1C3 はリチウムイオン二次電池本体3C3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C3が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1D1 はリチウムイオン二次電池本体3D1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D1 が直列接続されて構成され、リチウムイオン
二次電池1D2 はリチウムイオン二次電池本体3D2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D3 が直列接続されて構成され、これらが並列接
続されて集合体2Dが構成されている。これら集合体2
A,2B,2C,2Dは直列接続されている。
In the assembled battery of Example 2-6, the lithium ion secondary battery 1A1 is composed of a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charge. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected to a positive temperature coefficient element 4A2 which becomes 100 ° C. at the time of 1 CmA charge. The lithium ion secondary battery 1A3 is composed of a lithium ion secondary battery main body 3A.
3, a positive temperature coefficient element 4A3 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B1.
And a positive temperature coefficient element 4B1 having a temperature of 100 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B2.
And a positive temperature coefficient element 4B2, whose temperature rises to 100 ° C. at the time of 1 CmA charge, is connected in series. The lithium ion secondary battery 1B3 comprises a lithium ion secondary battery body 3B3.
In addition, a positive temperature coefficient element 4B3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 having a temperature of 100 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 comprises a lithium ion secondary battery main body 3C2.
And a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C3.
Further, a positive temperature coefficient element 4C3 whose temperature becomes 120 ° C. at the time of 1 CmA charging is configured to be connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1D1 is a lithium ion secondary battery body 3D1.
A positive temperature coefficient element 4D1 whose temperature becomes 120 ° C. at the time of 1 CmA charging is connected in series, and the lithium ion secondary battery 1D2 is a lithium ion secondary battery main body 3D2.
And a positive temperature coefficient element 4D2, whose temperature becomes 120 ° C. at the time of 1 CmA charging, is connected in series. The lithium ion secondary battery 1D3 is a lithium ion secondary battery main body 3D3.
Further, a positive temperature coefficient element 4D3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2D. These aggregates 2
A, 2B, 2C, and 2D are connected in series.

【0059】この例では、集合体2B,2Cが、1Cm
A充電時に温度がa℃=100 ℃になる正の温度係数素子
4B1 ,4C1 ,4B2 を内蔵するリチウムイオン二次
電池1B1 ,1C1 ,1B2 と、1CmA充電時に温度
がb℃=120 ℃になる正の温度係数素子4C2 ,4B3
,4C3 を内蔵するリチウムイオン二次電池1C2 ,
1B3 ,1C3 とを含む組み合わせよりなっている。
In this example, the aggregates 2B and 2C are 1 Cm
During charging A, the temperature rises to a.degree. C. = 100.degree. C. The positive temperature coefficient elements 4B1, 4C.sub.1, and 4B.sub.2 have built-in positive temperature coefficient elements 4B1, 1C1, and 1B2. Temperature coefficient elements 4C2, 4B3
, 4C3 built-in lithium ion secondary battery 1C2,
1B3 and 1C3.

【0060】この正の温度係数素子の抵抗値が異なる1
つの集合体2Aにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
2、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち
1<2=2、1≦M≦X−1は1=1=2−1即ち1=
1=1、且つL+M≦Xは2+1=3即ち3=3の関係
を有している。
The positive temperature coefficient element has a different resistance value 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2A =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 2, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 =
1 = 1 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.

【0061】図7は本発明に係る組電池の実施例1−7
と実施例2−7の構成を示す回路図である。
FIG. 7 shows an embodiment 1-7 of the assembled battery according to the present invention.
FIG. 9 is a circuit diagram illustrating a configuration of a second embodiment and a second embodiment.

【0062】この実施例1−7と実施例2−7の組電池
は、X=3即ち3個づつのリチウムイオン二次電池(1
A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3
)と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1
D2 ,1D3 )とが並列接続された集合体2A,2B,
2C,2DがY=4即ち4個直列接続されて、3並列4
直列に構成されている。
The battery packs of Examples 1-7 and 2-7 have X = 3, that is, three lithium ion secondary batteries (1).
A1, 1A2, 1A3) and (1B1, 1B2, 1B3).
), (1C1, 1C2, 1C3), (1D1, 1
D2, 1D3) and 2A, 2B,
2C and 2D are Y = 4, that is, four are connected in series, and three parallel
They are configured in series.

【0063】実施例1−7の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に25mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続され、リ
チウムイオン二次電池1A3 はリチウムイオン二次電池
本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4
A3 が直列接続されて構成され、これらが並列接続され
て集合体2Aが構成されている。リチウムイオン二次電
池1B1 はリチウムイオン二次電池本体3B1 に25mΩ
の抵抗値をもつ正の温度係数素子4B1が直列接続され
て構成され、リチウムイオン二次電池1B2 はリチウム
イオン二次電池本体3B2 に25mΩの抵抗値をもつ正の
温度係数素子4B2 が直列接続されて構成され、リチウ
ムイオン二次電池1B3 はリチウムイオン二次電池本体
3B3 に25mΩの抵抗値をもつ正の温度係数素子4B3
が直列接続されて構成され、これらが並列接続されて集
合体2Bが構成されている。リチウムイオン二次電池1
C1 はリチウムイオン二次電池本体3C1 に25mΩの抵
抗値をもつ正の温度係数素子4C1 が直列接続されて構
成され、リチウムイオン二次電池1C2 はリチウムイオ
ン二次電池本体3C2 に25mΩの抵抗値をもつ正の温度
係数素子4C2 が直列接続されて構成され、リチウムイ
オン二次電池1C3 はリチウムイオン二次電池本体3C
3 に25mΩの抵抗値をもつ正の温度係数素子4C3 が直
列接続されて構成され、これらが並列接続されて集合体
2Cが構成されている。リチウムイオン二次電池1D1
はリチウムイオン二次電池本体3D1 に25mΩの抵抗値
をもつ正の温度係数素子4D1 が直列接続されて構成さ
れ、リチウムイオン二次電池1D2 はリチウムイオン二
次電池本体3D2 に25mΩの抵抗値をもつ正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3 に
50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接
続されて構成され、これらが並列接続されて集合体2D
が構成されている。これら集合体2A,2B,2C,2
Dは直列接続されている。
In the assembled battery of Embodiment 1-7, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery main body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 25 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 has a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ connected in series to the lithium ion secondary battery main body 3A2, and a lithium ion secondary battery 1A3 has a positive resistance having a resistance value of 25 mΩ connected to the lithium ion secondary battery main body 3A3. Temperature coefficient element 4
A3 is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is connected to the lithium ion secondary battery body 3B1 by 25 mΩ.
The positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3B2 in the lithium ion secondary battery 1B2. The lithium ion secondary battery 1B3 has a positive temperature coefficient element 4B3 having a resistance value of 25 m.OMEGA.
Are connected in series, and these are connected in parallel to form an aggregate 2B. Lithium ion secondary battery 1
C1 is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3C1 in series, and the lithium ion secondary battery 1C2 is provided with a resistance value of 25 mΩ to the lithium ion secondary battery body 3C2. The positive temperature coefficient element 4C2 is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C.
3, a positive temperature coefficient element 4C3 having a resistance value of 25 mΩ is connected in series, and these are connected in parallel to form an assembly 2C. Lithium ion secondary battery 1D1
Is constituted by connecting a positive temperature coefficient element 4D1 having a resistance value of 25 mΩ to the lithium ion secondary battery main body 3D1 in series. The lithium ion secondary battery 1D2 has a resistance value of 25 mΩ to the lithium ion secondary battery main body 3D2. The positive temperature coefficient element 4D2 is connected in series, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3.
A positive temperature coefficient element 4D3 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an assembly 2D
Is configured. These aggregates 2A, 2B, 2C, 2
D is connected in series.

【0064】この例では、集合体2Dが、AmΩ=25m
Ωの抵抗値をもつ正の温度係数素子4D1 ,4D2 を内
蔵するリチウムイオン二次電池1D1 ,1D2 と、Bm
Ω=50mΩの抵抗値をもつ正の温度係数素子4D3 を内
蔵するリチウムイオン二次電池1D3 とを含む組み合わ
せよりなっている。
In this example, the aggregate 2D is expressed as AmΩ = 25 m
Lithium ion secondary batteries 1D1 and 1D2 incorporating positive temperature coefficient elements 4D1 and 4D2 having a resistance of Ω, and Bm
It is a combination including a lithium ion secondary battery 1D3 having a built-in positive temperature coefficient element 4D3 having a resistance value of Ω = 50 mΩ.

【0065】この正の温度係数素子の抵抗値が異なる1
つの集合体2DにおけるAmΩ=25mΩの正の温度係数
素子を内蔵するリチウムイオン二次電池の個数LはL=
2、BmΩ=50mΩの正の温度係数素子を内蔵するリチ
ウムイオン二次電池の個数MはM=1である。このた
め、A≠Bは25≠50、1≦L≦X−1は1<2=3−1
即ち1<2=2、1≦M≦X−1は1=1<3−1即ち
1=1<2、且つL+M≦Xは2+1=3即ち3=3の
関係を有している。
This positive temperature coefficient element has a different resistance value 1
The number L of lithium ion secondary batteries having a built-in positive temperature coefficient element of AmΩ = 25 mΩ in one set 2D is L =
2. The number M of lithium ion secondary batteries incorporating a positive temperature coefficient element of BmΩ = 50 mΩ is M = 1. Therefore, A ≠ B is 25 ≠ 50, and 1 ≦ L ≦ X−1 is 1 <2 = 3-1.
That is, 1 <2 = 2, 1 ≦ M ≦ X−1 has a relationship of 1 = 1 <3-1, ie, 1 = 1 <2, and L + M ≦ X has a relationship of 2 + 1 = 3, ie, 3 = 3.

【0066】実施例2−7の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が100 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、リチウムイ
オン二次電池1A3 はリチウムイオン二次電池本体3A
3 に、1CmA充電時に温度が100 ℃になる正の温度係
数素子4A3 が直列接続されて構成され、これらが並列
接続されて集合体2Aが構成されている。リチウムイオ
ン二次電池1B1 はリチウムイオン二次電池本体3B1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B1 が直列接続されて構成され、リチウムイオン
二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、リチウムイオン
二次電池1B3 はリチウムイオン二次電池本体3B3
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B3 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、リチウムイオン
二次電池1C3 はリチウムイオン二次電池本体3C3
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C3が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1D1 はリチウムイオン二次電池本体3D1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4D1 が直列接続されて構成され、リチウムイオン
二次電池1D2 はリチウムイオン二次電池本体3D2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4D3 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。
In the assembled battery of Example 2-7, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 connected in series with a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charge. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected to a positive temperature coefficient element 4A2 which becomes 100 ° C. at the time of 1 CmA charge. The lithium ion secondary battery 1A3 is composed of a lithium ion secondary battery main body 3A.
3, a positive temperature coefficient element 4A3 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B1.
And a positive temperature coefficient element 4B1 having a temperature of 100 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B2.
And a positive temperature coefficient element 4B2, whose temperature rises to 100 ° C. at the time of 1 CmA charge, is connected in series. The lithium ion secondary battery 1B3 comprises a lithium ion secondary battery body 3B3
In addition, a positive temperature coefficient element 4B3 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 having a temperature of 100 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 comprises a lithium ion secondary battery main body 3C2.
And a positive temperature coefficient element 4C2, whose temperature becomes 100 ° C. at the time of 1 CmA charging, is connected in series. The lithium ion secondary battery 1C3 is a lithium ion secondary battery body 3C3.
Further, a positive temperature coefficient element 4C3 whose temperature becomes 100 ° C. at the time of 1 CmA charging is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1D1 is a lithium ion secondary battery body 3D1.
And a positive temperature coefficient element 4D1 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and the lithium ion secondary battery 1D2 is a lithium ion secondary battery main body 3D2.
And a positive temperature coefficient element 4D2 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and the lithium ion secondary battery 1D3 is a lithium ion secondary battery body 3D3.
In addition, a positive temperature coefficient element 4D3 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B.

【0067】この例では、集合体2Dが、1CmA充電
時に温度がa℃=100 ℃になる正の温度係数素子4D1
,4D2 を内蔵するリチウムイオン二次電池1D1 ,
1D2と、1CmA充電時に温度がb℃=120 ℃になる
正の温度係数素子4D3 を内蔵するリチウムイオン二次
電池1D3 を含む組み合わせよりなっている。
In this example, the assembly 2D has a positive temperature coefficient element 4D1 at a temperature of a.degree. C. = 100.degree. C. when charged at 1 CmA.
, 4D2 built-in lithium ion secondary battery 1D1,
1D2 and a combination including a lithium-ion secondary battery 1D3 having a built-in positive temperature coefficient element 4D3 at a temperature of b ° C. = 120 ° C. when charged at 1 CmA.

【0068】この正の温度係数素子の抵抗値が異なる1
つの集合体2Dにおける1CmA充電時に温度がa℃=
100 ℃になるリチウムイオン二次電池の個数LはL=
2、1CmA充電時に温度がb℃=120 ℃になるリチウ
ムイオン二次電池の個数MはM=1である。このため、
A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち
1<2=2、1≦M≦X−1は1=1<3−1即ち1=
1<2、且つL+M≦Xは2+1=3即ち3=3の関係
を有している。
The resistance value of this positive temperature coefficient element is different 1
The temperature is a ° C. at the time of charging 1 CmA in the two assemblies 2D =
The number L of the lithium ion secondary batteries at 100 ° C. is L =
The number M of the lithium ion secondary batteries whose temperature becomes b ° C. = 120 ° C. at the time of 2, 1 CmA charging is M = 1. For this reason,
A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, 1 ≦ M ≦ X-1 is 1 = 1 <3-1, that is, 1 =
1 <2 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.

【0069】図8は比較例の組電池の比較例1−1と比
較例2−1の構成を示す回路図である。
FIG. 8 is a circuit diagram showing the configuration of Comparative Example 1-1 and Comparative Example 2-1 of the battery pack of the comparative example.

【0070】この比較例1−1と比較例2−1の組電池
は、X=2即ち2個づつのリチウムイオン二次電池(1
A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,
1C2 )とがそれぞれ並列接続された集合体2A,2
B,2Cが、Y=3即ち3個直列接続されて、2並列3
直列に構成されている。
The battery packs of Comparative Example 1-1 and Comparative Example 2-1 have X = 2, that is, two lithium ion secondary batteries (1).
A1, 1A2), (1B1, 1B2), (1C1,
1C2) are connected in parallel with each other.
B and 2C are connected in series with Y = 3, that is, 3
They are configured in series.

【0071】比較例1−1の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に25mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され、これらが並列接続されて集合体2Aが構成され
ている。リチウムイオン二次電池1B1 はリチウムイオ
ン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度
係数素子4B1 が直列接続されて構成され、リチウムイ
オン二次電池1B2 はリチウムイオン二次電池本体3B
2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直
列接続されて構成され、これらが並列接続されて集合体
2Bが構成されている。リチウムイオン二次電池1C1
はリチウムイオン二次電池本体3C1 に50mΩの抵抗値
をもつ正の温度係数素子4C1 が直列接続されて構成さ
れ、リチウムイオン二次電池1C2 はリチウムイオン二
次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the battery pack of Comparative Example 1-1, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 25 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance of 25 mΩ connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 comprises a lithium ion secondary battery main body 3B1 and a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B1.
2, a positive temperature coefficient element 4B2 having a resistance value of 50 m.OMEGA. Is connected in series, and these are connected in parallel to form an assembly 2B. Lithium ion secondary battery 1C1
Is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3C1 in series. The lithium ion secondary battery 1C2 has a resistance value of 50 mΩ to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0072】この例では、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
In this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0073】比較例2−1の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が100 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、これらが並
列接続されて集合体2Aが構成されている。リチウムイ
オン二次電池1B1 はリチウムイオン二次電池本体3B
1 に、1CmA充電時に温度が120 ℃になる正の温度係
数素子4B1 が直列接続されて構成され、リチウムイオ
ン二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the battery pack of Comparative Example 2-1, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is composed of a positive temperature coefficient element 4A2 whose temperature becomes 100 DEG C. at the time of 1 CmA charging, and these elements are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B
1, a positive temperature coefficient element 4B1 whose temperature becomes 120 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
In addition, a positive temperature coefficient element 4B2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 which has a temperature of 120 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 is composed of a lithium ion secondary battery body 3C2.
Further, a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0074】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0075】図9は比較例の組電池の比較例1−2と比
較例2−2の構成を示す回路図である。
FIG. 9 is a circuit diagram showing the configuration of Comparative Example 1-2 and Comparative Example 2-2 of the battery pack of the comparative example.

【0076】この比較例1−2と比較例2−2の組電池
は、X=2即ち2個のリチウムイオン二次電池1A1 ,
1A2 が並列接続された集合体2AがY=1即ち1個設
けられて、2並列に構成されている。
The assembled batteries of Comparative Example 1-2 and Comparative Example 2-2 have X = 2, that is, two lithium ion secondary batteries 1A 1,
An assembly 2A in which 1A2 is connected in parallel is provided as Y = 1, that is, one assembly 2A is configured in two parallel.

【0077】比較例1−2の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に25mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され構成され、これらが並列接続されて集合体2Aが
構成されている。
In the battery pack of Comparative Example 1-2, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery main body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 25 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ connected in series, and these are connected in parallel to form an assembly 2A.

【0078】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0079】比較例2−2の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が100 ℃になる正の温度
係数素子4A2 が直列接続されて構成されている。
In the battery pack of Comparative Example 2-2, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected in series with a positive temperature coefficient element 4A2 which becomes 100 ° C. at the time of 1 CmA charging.

【0080】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0081】図10は比較例の組電池の比較例1−3と
比較例2−3の構成を示す回路図である。
FIG. 10 is a circuit diagram showing the configuration of Comparative Example 1-3 and Comparative Example 2-3 of the battery pack of the comparative example.

【0082】この比較例1−3と比較例2−3の組電池
は、X=2即ち2個づつのリチウムイオン二次電池(1
A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,
1C2 )とがそれぞれ並列接続された集合体2A,2
B,2CがY=3即ち3個直列接続されて、2並列3直
列に構成されている。
The assembled batteries of Comparative Example 1-3 and Comparative Example 2-3 have X = 2, that is, two lithium ion secondary batteries (1).
A1, 1A2), (1B1, 1B2), (1C1,
1C2) are connected in parallel with each other.
B and 2C are connected in series, that is, Y = 3, that is, three, and are configured in two parallel and three series.

【0083】比較例1−3の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に50mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に50mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続されて構
成され、これらが並列接続されて集合体2Aが構成され
ている。リチウムイオン二次電池1B1 はリチウムイオ
ン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度
係数素子4B1 が直列接続されて構成され、リチウムイ
オン二次電池1B2 はリチウムイオン二次電池本体3B
2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直
列接続されて構成され、これらが並列接続されて集合体
2Bが構成されている。リチウムイオン二次電池1C1
はリチウムイオン二次電池本体3C1 に50mΩの抵抗値
をもつ正の温度係数素子4C1 が直列接続されて構成さ
れ、リチウムイオン二次電池1C2 はリチウムイオン二
次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。これら集合体2
A,2B,2Cは直列接続されている。
In the assembled battery of Comparative Example 1-3, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery main body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 50 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 having a resistance of 50 mΩ connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 comprises a lithium ion secondary battery main body 3B1 and a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B1.
2, a positive temperature coefficient element 4B2 having a resistance value of 50 m.OMEGA. Is connected in series, and these are connected in parallel to form an assembly 2B. Lithium ion secondary battery 1C1
Is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3C1 in series. The lithium ion secondary battery 1C2 has a resistance value of 50 mΩ to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 is connected in series, and these are connected in parallel to form an assembly 2C. These aggregates 2
A, 2B and 2C are connected in series.

【0084】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0085】比較例2−3の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が120 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が120 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、これらが並
列接続されて集合体2Aが構成されている。リチウムイ
オン二次電池1B1 はリチウムイオン二次電池本体3B
1 に、1CmA充電時に温度が120 ℃になる正の温度係
数素子4B1 が直列接続されて構成され、リチウムイオ
ン二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が120 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。
In the battery pack of Comparative Example 2-3, the lithium ion secondary battery 1A1 has a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature becomes 120 ° C. at the time of charging 1 CmA. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is composed of A2 and a positive temperature coefficient element 4A2 whose temperature becomes 120 ° C. at the time of 1 CmA charge, and these elements are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B
1, a positive temperature coefficient element 4B1 whose temperature becomes 120 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery main body 3B2.
In addition, a positive temperature coefficient element 4B2 whose temperature becomes 120 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 which has a temperature of 120 ° C. when charged at 1 CmA is connected in series, and the lithium ion secondary battery 1C2 is composed of a lithium ion secondary battery main body 3C2.
Further, a positive temperature coefficient element 4C2 whose temperature becomes 120 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2C.

【0086】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0087】図11は比較例の組電池の比較例1−4と
比較例2−4の構成を示す回路図である。
FIG. 11 is a circuit diagram showing the configuration of Comparative Examples 1-4 and 2-4 of the assembled battery of the comparative example.

【0088】この比較例1−4と比較例2−4の組電池
は、X=3即ち3個づつのリチウムイオン二次電池(1
A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3
)と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1
D2 ,1D3 )とが並列接続された集合体2A,2B,
2C,2DがY=4即ち4個直列接続されて、3並列4
直列に構成されている。
The battery packs of Comparative Examples 1-4 and 2-4 have X = 3, that is, three lithium ion secondary batteries (1).
A1, 1A2, 1A3) and (1B1, 1B2, 1B3).
), (1C1, 1C2, 1C3), (1D1, 1
D2, 1D3) and 2A, 2B,
2C and 2D are Y = 4, that is, four are connected in series, and three parallel
They are configured in series.

【0089】比較例1−4の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1
が直列接続されて構成され、リチウムイオン二次電池1
A2 はリチウムイオン二次電池本体3A2 に25mΩの抵
抗値をもつ正の温度係数素子4A2 が直列接続され、リ
チウムイオン二次電池1A3 はリチウムイオン二次電池
本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4
A3 が直列接続されて構成され、これらが並列接続され
て集合体2Aが構成されている。リチウムイオン二次電
池1B1 はリチウムイオン二次電池本体3B1 に25mΩ
の抵抗値をもつ正の温度係数素子4B1が直列接続され
て構成され、リチウムイオン二次電池1B2 はリチウム
イオン二次電池本体3B2 に25mΩの抵抗値をもつ正の
温度係数素子4B2 が直列接続されて構成され、リチウ
ムイオン二次電池1B3 はリチウムイオン二次電池本体
3B3 に25mΩの抵抗値をもつ正の温度係数素子4B3
が直列接続されて構成され、これらが並列接続されて集
合体2Bが構成されている。リチウムイオン二次電池1
C1 はリチウムイオン二次電池本体3C1 に25mΩの抵
抗値をもつ正の温度係数素子4C1 が直列接続されて構
成され、リチウムイオン二次電池1C2 はリチウムイオ
ン二次電池本体3C2 に25mΩの抵抗値をもつ正の温度
係数素子4C2 が直列接続されて構成され、リチウムイ
オン二次電池1C3 はリチウムイオン二次電池本体3C
3 に25mΩの抵抗値をもつ正の温度係数素子4C3 が直
列接続されて構成され、これらが並列接続されて集合体
2Cが構成されている。リチウムイオン二次電池1D1
はリチウムイオン二次電池本体3D1 に25mΩの抵抗値
をもつ正の温度係数素子4D1 が直列接続されて構成さ
れ、リチウムイオン二次電池1D2 はリチウムイオン二
次電池本体3D2 に25mΩの抵抗値をもつ正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3 に
25mΩの抵抗値をもつ正の温度係数素子4D3 が直列接
続されて構成され、これらが並列接続されて集合体2D
が構成されている。これら集合体2A,2B,2C,2
Dは直列接続されている。
In the battery pack of Comparative Examples 1-4, the lithium ion secondary battery 1A1 is connected to the lithium ion secondary battery main body 3A1 by a positive temperature coefficient element 4A1 having a resistance of 25 mΩ.
Are connected in series, and the lithium ion secondary battery 1
A2 has a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ connected in series to the lithium ion secondary battery main body 3A2, and a lithium ion secondary battery 1A3 has a positive resistance having a resistance value of 25 mΩ connected to the lithium ion secondary battery main body 3A3. Temperature coefficient element 4
A3 is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is connected to the lithium ion secondary battery body 3B1 by 25 mΩ.
The positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3B2 in the lithium ion secondary battery 1B2. The lithium ion secondary battery 1B3 has a positive temperature coefficient element 4B3 having a resistance value of 25 m.OMEGA.
Are connected in series, and these are connected in parallel to form an aggregate 2B. Lithium ion secondary battery 1
C1 is constituted by connecting a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3C1 in series, and the lithium ion secondary battery 1C2 is provided with a resistance value of 25 mΩ to the lithium ion secondary battery body 3C2. The positive temperature coefficient element 4C2 is connected in series, and the lithium ion secondary battery 1C3 is a lithium ion secondary battery main body 3C.
3, a positive temperature coefficient element 4C3 having a resistance value of 25 mΩ is connected in series, and these are connected in parallel to form an assembly 2C. Lithium ion secondary battery 1D1
Is constituted by connecting a positive temperature coefficient element 4D1 having a resistance value of 25 mΩ to the lithium ion secondary battery main body 3D1 in series. The lithium ion secondary battery 1D2 has a resistance value of 25 mΩ to the lithium ion secondary battery main body 3D2. The positive temperature coefficient element 4D2 is connected in series, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3.
A positive temperature coefficient element 4D3 having a resistance of 25 mΩ is connected in series, and these elements are connected in parallel to form an assembly 2D
Is configured. These aggregates 2A, 2B, 2C, 2
D is connected in series.

【0090】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0091】比較例2−4の組電池においては、リチウ
ムイオン二次電池1A1 はリチウムイオン二次電池本体
3A1 に、1CmA充電時に温度が100 ℃になる正の温
度係数素子4A1 が直列接続されて構成され、リチウム
イオン二次電池1A2 はリチウムイオン二次電池本体3
A2 に、1CmA充電時に温度が100 ℃になる正の温度
係数素子4A2 が直列接続されて構成され、リチウムイ
オン二次電池1A3 はリチウムイオン二次電池本体3A
3 に、1CmA充電時に温度が100 ℃になる正の温度係
数素子4A3 が直列接続されて構成され、これらが並列
接続されて集合体2Aが構成されている。リチウムイオ
ン二次電池1B1 はリチウムイオン二次電池本体3B1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B1 が直列接続されて構成され、リチウムイオン
二次電池1B2 はリチウムイオン二次電池本体3B2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B2 が直列接続されて構成され、リチウムイオン
二次電池1B3 はリチウムイオン二次電池本体3B3
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4B3 が直列接続されて構成され、これらが並列接
続されて集合体2Bが構成されている。リチウムイオン
二次電池1C1 はリチウムイオン二次電池本体3C1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C1 が直列接続されて構成され、リチウムイオン
二次電池1C2 はリチウムイオン二次電池本体3C2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C2 が直列接続されて構成され、リチウムイオン
二次電池1C3 はリチウムイオン二次電池本体3C3
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4C3が直列接続されて構成され、これらが並列接
続されて集合体2Cが構成されている。リチウムイオン
二次電池1D1 はリチウムイオン二次電池本体3D1
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4D1 が直列接続されて構成され、リチウムイオン
二次電池1D2 はリチウムイオン二次電池本体3D2
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4D2 が直列接続されて構成され、リチウムイオン
二次電池1D3 はリチウムイオン二次電池本体3D3
に、1CmA充電時に温度が100 ℃になる正の温度係数
素子4D3 が直列接続されて構成され、これらが並列接
続されて集合体2Dが構成されている。これら集合体2
A,2B,2C,2Dは直列接続されている。
In the assembled battery of Comparative Example 2-4, the lithium ion secondary battery 1A1 was connected in series with a lithium ion secondary battery main body 3A1 and a positive temperature coefficient element 4A1 whose temperature became 100 ° C. at 1 CmA charge. The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3
A2 is connected to a positive temperature coefficient element 4A2 which becomes 100 ° C. at the time of 1 CmA charge. The lithium ion secondary battery 1A3 is composed of a lithium ion secondary battery main body 3A.
3, a positive temperature coefficient element 4A3 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is a lithium ion secondary battery body 3B1.
And a positive temperature coefficient element 4B1 having a temperature of 100 ° C. at the time of 1 CmA charge is connected in series, and the lithium ion secondary battery 1B2 comprises a lithium ion secondary battery main body 3B2
And a positive temperature coefficient element 4B2, whose temperature rises to 100 ° C. at the time of 1 CmA charge, is connected in series. The lithium ion secondary battery 1B3 comprises a lithium ion secondary battery
In addition, a positive temperature coefficient element 4B3 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is a lithium ion secondary battery body 3C1.
And a positive temperature coefficient element 4C1 having a temperature of 100 ° C. when charged at 1 CmA is connected in series. The lithium ion secondary battery 1C2 comprises a lithium ion secondary battery main body 3C2.
And a positive temperature coefficient element 4C2, whose temperature becomes 100 ° C. at the time of 1 CmA charging, is connected in series. The lithium ion secondary battery 1C3 is a lithium ion secondary battery body 3C3.
In addition, a positive temperature coefficient element 4C3 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2C. The lithium ion secondary battery 1D1 is a lithium ion secondary battery body 3D1.
And a positive temperature coefficient element 4D1 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and the lithium ion secondary battery 1D2 is a lithium ion secondary battery main body 3D2.
And a positive temperature coefficient element 4D2 whose temperature becomes 100 ° C. at 1 CmA charge is connected in series, and the lithium ion secondary battery 1D3 is a lithium ion secondary battery body 3D3.
In addition, a positive temperature coefficient element 4D3 whose temperature becomes 100 ° C. at the time of 1 CmA charge is connected in series, and these are connected in parallel to form an assembly 2D. These aggregates 2
A, 2B, 2C, and 2D are connected in series.

【0092】この例でも、抵抗値が異なっている正の温
度係数素子をもつリチウムイオン二次電池の集合体はな
い。このため前述した不等式の関係もない。
Also in this example, there is no assembly of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. Therefore, there is no relation of the inequality described above.

【0093】上述した各実施例と各比較例の組電池を用
いて過充電試験を行った結果を表1と表2に示す。即
ち、表1は、実施例1−1〜実施例1−7と、比較例1
−1〜比較例1−4による過充電試験を示す。表2は、
実施例2−1〜実施例2−7と、比較例2−1〜比較例
2−4による過充電試験を示す。なお、今回用いたリチ
ウムイオン二次電池は、正極活物質がコバルト酸リチウ
ム、負極活物質が非晶質炭素材からなる公称容量1300m
Ahの電池で、過充電試験方法は電流値2CmA、環境
温度30℃で行った。
Tables 1 and 2 show the results of an overcharge test performed using the assembled batteries of the above Examples and Comparative Examples. That is, Table 1 shows that Examples 1-1 to 1-7 and Comparative Example 1
1 shows overcharge tests according to Comparative Examples 1-4. Table 2
The overcharge test by Example 2-1 to Example 2-7 and Comparative Example 2-1 to Comparative Example 2-4 is shown. The lithium ion secondary battery used this time has a nominal capacity of 1300 m, where the positive electrode active material is lithium cobalt oxide and the negative electrode active material is amorphous carbon.
For the Ah battery, the overcharge test method was performed at a current value of 2 CmA and an ambient temperature of 30 ° C.

【0094】[0094]

【表1】 [Table 1]

【表2】 これら表1及び表2より、本実施例の組電池は、破裂、
発火を起こさず、比較例の組電池に比べて優れているこ
とが分かった。また、比較例については、組電池を構成
する電池の数が増えるに従い、破裂、発火の数が増える
ことから、組電池を構成する電池の数が多いほど破裂、
発火の数が大きくなることが分かった。
[Table 2] From these Tables 1 and 2, the battery pack of the present embodiment was found to be burst,
No ignition occurred, indicating that the battery was superior to the battery pack of the comparative example. Further, as for the comparative example, as the number of batteries constituting the assembled battery increases, the number of bursts and ignition increases, so that the more the number of batteries constituting the assembled battery,
It was found that the number of firings was large.

【0095】今回は、正の温度係数素子の抵抗及び組電
池充電時の正の温度係数素子の温度について、それぞれ
2種類で記載したが、5種類までは実験し、同様の効果
が得られた。また、それ以上についても、同様な効果が
得られることは言うまでもない。
In this case, the resistance of the positive temperature coefficient element and the temperature of the positive temperature coefficient element when the battery pack is charged are described in two types. However, up to five types of experiments were performed, and similar effects were obtained. . It goes without saying that similar effects can be obtained for more than that.

【0096】同様に、正極、負極が他の材料からなるリ
チウムイオン二次電池を用いた組電池においても、電池
内に物理的に通電電流を遮断する機能を有するリチウム
イオン二次電池からなる組電池を用いた場合も、同様な
効果が得られることは言うまでもない。
Similarly, in a battery pack using a lithium ion secondary battery in which the positive electrode and the negative electrode are made of another material, the battery pack is composed of a lithium ion secondary battery having a function of physically interrupting an electric current in the battery. Needless to say, the same effect can be obtained when a battery is used.

【0097】[0097]

【発明の効果】本発明に係る組電池においては、X個
(X≧2)のリチウムイオン二次電池が並列接続された
集合体を構成する各リチウムイオン二次電池の抵抗に差
をもたせたため、充電時に並列に接続されている電池は
抵抗の少ない電池に電流が集中して充電が行われる。ま
た、抵抗の少ない電池が先に過充電状態になり、電池の
温度が上昇し始めると、この抵抗の少ない電池に接続さ
れている抵抗の少ない正の温度係数素子のトリップ温度
が急上昇して、該抵抗の少ない正の温度係数素子の抵抗
値が急上昇し、並列接続された電池において電池温度上
昇時に抵抗の差が大きくなる。このため、今度は最初に
抵抗が多かった電池に電流が集中して充電が行われ、こ
の電池が過充電状態になってこの電池に接続されている
最初に抵抗が多かった正の温度係数素子のトリップ温度
が急上昇する。このようにして並列接続された電池間
で、電池の急激な温度上昇のタイミングをずらすことに
なり、本発明に係る組電池によれば熱逸走を起こさず
に、破裂、発火を防止できる。
In the battery pack according to the present invention, the resistance of each of the lithium ion secondary batteries constituting an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel is made different. In the battery connected in parallel at the time of charging, current is concentrated on a battery having low resistance, and charging is performed. Also, when the battery with a low resistance becomes overcharged first and the temperature of the battery starts to rise, the trip temperature of the low-resistance positive temperature coefficient element connected to the battery with a low resistance sharply rises, The resistance value of the positive temperature coefficient element having a small resistance sharply increases, and the difference in resistance increases when the battery temperature rises in the batteries connected in parallel. For this reason, the current is concentrated on the battery with the first high resistance and charging is performed, and this battery is overcharged and the positive temperature coefficient element connected to this battery with the first high resistance is connected. Trip temperature rises rapidly. The timing of the rapid temperature rise of the batteries is shifted between the batteries connected in parallel in this manner, and the battery pack according to the present invention can prevent bursting and ignition without causing thermal runaway.

【0098】一方、組電池の充電時に正の温度係数素子
の温度を変化させたものは、抵抗は温度の関数で現わせ
るため抵抗値が異なり、上記した抵抗が異なる場合と同
様な作用により、組電池の破裂、発火を防ぐことができ
る。
On the other hand, when the temperature of the positive temperature coefficient element is changed at the time of charging the battery pack, the resistance is expressed as a function of the temperature, so that the resistance value differs. The battery can be prevented from rupture and fire.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る組電池の実施例1−1と実施例2
−1の構成を示す回路図である。
FIG. 1 shows an embodiment 1-1 and an embodiment 2 of a battery pack according to the present invention.
FIG. 2 is a circuit diagram illustrating a configuration of -1.

【図2】本発明に係る組電池の実施例1−2と実施例2
−2の構成を示す回路図である。
FIG. 2 shows Embodiments 1-2 and 2 of the battery pack according to the present invention.
FIG. 2 is a circuit diagram showing a configuration of -2.

【図3】本発明に係る組電池の実施例1−3と実施例2
−3の構成を示す回路図である。
FIG. 3 is an assembled battery according to Embodiments 1-3 and 2 of the present invention;
FIG. 4 is a circuit diagram illustrating a configuration of a -3.

【図4】本発明に係る組電池の実施例1−4と実施例2
−4の構成を示す回路図である。
FIG. 4 is an assembled battery according to Embodiments 1-4 and 2 of the present invention;
FIG. 4 is a circuit diagram illustrating a configuration of a -4.

【図5】本発明に係る組電池の実施例1−5と実施例2
−5の構成を示す回路図である。
FIG. 5 is an assembled battery according to embodiments 1-5 and 2 of the present invention;
It is a circuit diagram which shows the structure of -5.

【図6】本発明に係る組電池の実施例1−6と実施例2
−6の構成を示す回路図である。
FIG. 6 is an assembled battery according to Embodiments 1-6 and 2 of the present invention;
It is a circuit diagram which shows the structure of -6.

【図7】本発明に係る組電池の実施例1−7と実施例2
−7の構成を示す回路図である。
FIG. 7 is an assembled battery according to Embodiments 1-7 and 2 of the present invention.
It is a circuit diagram which shows the structure of -7.

【図8】比較例の組電池の比較例1−1と比較例2−1
の構成を示す回路図である。
FIG. 8 shows a comparative example 1-1 and a comparative example 2-1 of the assembled battery of the comparative example.
FIG. 3 is a circuit diagram showing the configuration of FIG.

【図9】比較例の組電池の比較例1−2と比較例2−2
の構成を示す回路図である。
FIG. 9 shows comparative examples 1-2 and 2-2 of the battery pack of the comparative example.
FIG. 3 is a circuit diagram showing the configuration of FIG.

【図10】比較例の組電池の比較例1−3と比較例2−
3の構成を示す回路図である。
FIG. 10 shows Comparative Examples 1-3 and Comparative Example 2- of the assembled batteries of Comparative Examples.
3 is a circuit diagram illustrating a configuration of FIG.

【図11】比較例の組電池の比較例1−4と比較例2−
4の構成を示す回路図である。
FIG. 11 shows Comparative Examples 1-4 and Comparative Example 2- of the battery packs of Comparative Examples.
4 is a circuit diagram showing a configuration of FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H020 AA01 AS06 CC41 DD13 KK08 5H022 AA09 AA19 CC08 KK01 5H029 AJ12 AK03 AL06 BJ06 BJ27 DJ01 DJ18 HJ20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H020 AA01 AS06 CC41 DD13 KK08 5H022 AA09 AA19 CC08 KK01 5H029 AJ12 AK03 AL06 BJ06 BJ27 DJ01 DJ18 HJ20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X個(X≧2)のリチウムイオン二次電
池が並列接続された集合体がY個(Y≧1)直列接続さ
れた組電池において、 前記集合体のうち少なくとも1つがAmΩの抵抗値をも
つ正の温度係数素子を内蔵するリチウムイオン二次電池
とBmΩの抵抗値をもつ正の温度係数素子を内蔵するリ
チウムイオン二次電池を含む組み合わせよりなり、この
正の温度係数素子の抵抗値が異なる1つの前記集合体に
おける前記AmΩの正の温度係数素子を内蔵するリチウ
ムイオン二次電池の個数をL、前記BmΩの正の温度係
数素子を内蔵するリチウムイオン二次電池の個数をMと
して、A≠B、1≦L≦X−1、1≦M≦X−1、且つ
L+M≦Xの関係を有することを特徴とする組電池。
1. An assembled battery in which X (X ≧ 2) lithium-ion secondary batteries are connected in series and Y (Y ≧ 1) are connected in series, wherein at least one of the assemblies is AmΩ And a lithium ion secondary battery having a positive temperature coefficient element having a resistance value of BmΩ and a lithium ion secondary battery having a positive temperature coefficient element having a resistance value of BmΩ. The number of lithium ion secondary batteries incorporating the AmΩ positive temperature coefficient element in one of the assemblies having different resistance values is L, and the number of lithium ion secondary batteries incorporating the BmΩ positive temperature coefficient element. Where M is AMB, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X.
【請求項2】 X個(X≧2)のリチウムイオン二次電
池が並列接続された集合体がY個(Y≧1)直列接続さ
れた組電池において、 該組電池の充電時に前記集合体のうち少なくとも1つが
a℃になる正の温度係数素子を内蔵するリチウムイオン
二次電池とb℃になる正の温度係数素子を内蔵するリチ
ウムイオン二次電池を含む組み合わせよりなり、この正
の温度係数素子の抵抗値が異なる1つの前記集合体にお
ける前記a℃になるリチウムイオン二次電池の個数を
L、前記b℃になるリチウムイオン二次電池の個数をM
として、a≠b、1≦L≦X−1、1≦M≦X−1、且
つL+M≦Xの関係を有することを特徴とする組電池。
2. An assembled battery in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel, and Y (Y ≧ 1) in an assembled battery, wherein the assembled battery is charged when the assembled battery is charged. A combination comprising a lithium ion secondary battery having a positive temperature coefficient element having at least one of which is a ° C. and a lithium ion secondary battery having a positive temperature coefficient element having a temperature of b ° C. Let L be the number of the lithium ion secondary batteries at which the a value is equal to a ° C. and M be the number of the lithium ion secondary batteries that are at b ° C.
A ≠ b, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X.
JP23946999A 1999-08-26 1999-08-26 Assembled battery Expired - Fee Related JP3635995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23946999A JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23946999A JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Publications (2)

Publication Number Publication Date
JP2001068076A true JP2001068076A (en) 2001-03-16
JP3635995B2 JP3635995B2 (en) 2005-04-06

Family

ID=17045242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23946999A Expired - Fee Related JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Country Status (1)

Country Link
JP (1) JP3635995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891051A (en) * 2011-07-22 2013-01-23 庄嘉明 Side-by-side fuse component and battery array with same
JP5210434B2 (en) * 2010-01-28 2013-06-12 パナソニック株式会社 Battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210434B2 (en) * 2010-01-28 2013-06-12 パナソニック株式会社 Battery module
CN102891051A (en) * 2011-07-22 2013-01-23 庄嘉明 Side-by-side fuse component and battery array with same

Also Published As

Publication number Publication date
JP3635995B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
EP2672549B1 (en) Secondary battery and multi-battery system having a connecting component
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
CA2216898C (en) Improved additives for overcharge protection in non-aqueous rechargeable lithium batteries
US8276695B2 (en) Battery electrode sheet
CN101861666B (en) Battery module of improved safety and middle or large-sized battery pack containing the same
CN100395559C (en) Secondary battery replacement method
JP5222496B2 (en) Lithium ion secondary battery
EP3869600B1 (en) Electrical power system and fuse with negative thermal expansion plate
US7402360B2 (en) Non-aqueous electrolyte battery
JP2011521399A (en) Lead-free storage battery suitable for internal combustion engines and automobiles, its manufacturing method and its use
EP3540822B1 (en) Battery module, and battery pack and automobile including same
KR101935229B1 (en) Lithium secondary battery
JP2011076888A (en) Battery pack constituted of nonaqueous electrolyte secondary batteries
JP3635995B2 (en) Assembled battery
KR20180025702A (en) Protection apparatus for rechargeable battery
CN209626342U (en) A kind of fusing type lithium battery
Sakaebe Zebra batteries
JPH05234614A (en) Cylindrical battery
CN216436795U (en) Multiple protection architecture of photovoltaic wind energy storage system
JP2009016107A (en) Nonaqueous electrolyte battery
JPH10154504A (en) Battery pack
JP2022545070A (en) Lithium-ion batteries for power tools
JP2004303474A (en) Nonaqueous electrolyte battery
JPH05135757A (en) Lead-acid battery
JPH1173994A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees