JP3635995B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP3635995B2
JP3635995B2 JP23946999A JP23946999A JP3635995B2 JP 3635995 B2 JP3635995 B2 JP 3635995B2 JP 23946999 A JP23946999 A JP 23946999A JP 23946999 A JP23946999 A JP 23946999A JP 3635995 B2 JP3635995 B2 JP 3635995B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
temperature coefficient
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23946999A
Other languages
Japanese (ja)
Other versions
JP2001068076A (en
Inventor
敏和 前島
伸和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP23946999A priority Critical patent/JP3635995B2/en
Publication of JP2001068076A publication Critical patent/JP2001068076A/en
Application granted granted Critical
Publication of JP3635995B2 publication Critical patent/JP3635995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池を用いた組電池に関するものである。
【0002】
【従来の技術】
リチウムイオン二次電池は、過充電時には負極に金属リチウムが樹枝状に析出するため短絡が発生し、その後の放電には十分な容量が得られない。あるいは、更なる過充電によって最悪の場合、正極の分解反応により電池の内圧が上昇して破裂、発火を引き起こすという問題点がある。また、過放電時には負極の集電体の銅が電解液中に溶出し、その後の充電によって負極上に析出するため、容量が得られなくなるという問題点もある。そのためリチウムイオン二次電池を用いた組電池では、保護回路を設けて過放電と過充電を防いでいた。しかしながら、保護回路及び充電回路等の故障時には、上記問題が発生する問題点があった。
【0003】
これを解決するために、電池の上蓋内に、該電池の内圧が上昇した場合に物理的に電池への通電を遮断する圧力スイッチを設け、過充電時に充電電流を遮断し、破裂、発火を防ぎ、安全性を確保することが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、圧力スイッチにより安全性が確保できるのは単セルによる場合であって、組電池にした場合は他の電池の持つ過充電による熱が原因となり、電池が熱逸走を起こし、破裂、発火を起こす問題点があった。
【0005】
本発明の目的は、過充電時に熱逸走を起こさず、破裂、発火を防止できる組電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、X個(X≧2)のリチウムイオン二次電池が並列接続された集合体がY個(Y≧1)直列接続された組電池を改良するものである。
【0007】
本発明に係る1つの組電池においては、前記集合体のうち少なくとも1つがAmΩの抵抗値をもつ正の温度係数素子を内蔵するリチウムイオン二次電池とBmΩの抵抗値をもつ正の温度係数素子を内蔵するリチウムイオン二次電池を含む組み合わせよりなり、この正の温度係数素子の抵抗値が異なる1つの前記集合体におけるAmΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数をL、BmΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数をMとして、A≠B、1≦L≦X−1、1≦M≦X−1、且つL+M≦Xの関係を有することを特徴とする。
【0008】
また本発明に係る他の組電池においては、該組電池の充電時に前記集合体のうち少なくとも1つがa℃になる正の温度係数素子を内蔵するリチウムイオン二次電池とb℃になる正の温度係数素子を内蔵するリチウムイオン二次電池を含む組み合わせよりなり、この正の温度係数素子の抵抗値が異なる1つの前記集合体におけるa℃になるリチウムイオン二次電池の個数をL、b℃になるリチウムイオン二次電池の個数をMとして、a≠b、1≦L≦X−1、1≦M≦X−1、且つL+M≦Xの関係を有することを特徴とする。
【0009】
本発明においては、X個(X≧2)のリチウムイオン二次電池が並列接続された集合体を構成する各リチウムイオン二次電池の抵抗に差をもたせたため、充電時に並列に接続されている電池は抵抗の少ない電池に電流が集中して充電が行われる。また、抵抗の少ない電池が先に過充電状態になり、電池の温度が上昇し始めると、この抵抗の少ない電池に接続されている抵抗の少ない正の温度係数素子のトリップ温度(急激に抵抗値が増大する温度)が急上昇して、該抵抗の少ない正の温度係数素子の抵抗値が急上昇し、並列接続された電池において電池温度上昇時に抵抗の差が大きくなる。このため、今度は最初に抵抗が多かった電池に電流が集中して充電が行われ、この電池が過充電状態になってこの電池に接続されている最初に抵抗が多かった正の温度係数素子のトリップ温度が急上昇する。このようにして並列接続された電池間で、電池の急激な温度上昇のタイミングをずらすことになり、熱逸走を起こさずに、破裂、発火を防止できる。
【0010】
一方、組電池の充電時に正の温度係数素子の温度を変化させたものは、抵抗は温度の関数で現わせるため抵抗値が異なり、上記した抵抗が異なる場合と同様な作用により、組電池の破裂、発火を防ぐことができる。
【0011】
なお、普通の充電では、定電圧充電となるため、充電終了時には電池間で充電量が同じとなり、上記した特徴が充電特性に影響することはない。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を実施例により説明する。
【0013】
図1は本発明に係る組電池の実施例1−1と実施例2−1の構成を示す回路図である。
【0014】
この実施例1−1と実施例2−1の組電池は、X=2即ち2個づつのリチウムイオン二次電池(1A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,1C2 )とがそれぞれ並列接続された集合体2A,2B,2Cが、Y=3即ち3個直列接続されて、2並列3直列に構成されている。
【0015】
実施例1−1の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に50mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0016】
この例では、集合体2A,2Bの2つが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1 ,4B1 を内蔵するリチウムイオン二次電池1A1 ,1B1 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A2 ,4B2 を内蔵するリチウムイオン二次電池1A2 ,1B2 を含む組み合わせよりなっている。
【0017】
この正の温度係数素子の抵抗値が異なる1つの集合体2AにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=1、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0018】
実施例2−1の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0019】
この例では、集合体2A,2Bの2つが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4A1 ,4B1 を内蔵するリチウムイオン二次電池1A1 ,1B1 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A2 ,4B2 を内蔵するリチウムイオン二次電池1A2 ,1B2 を含む組み合わせよりなっている。
【0020】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=1、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0021】
図2は本発明に係る組電池の実施例1−2と実施例2−2の構成を示す回路図である。
【0022】
この実施例1−2と実施例2−2の組電池は、X=2即ち2個のリチウムイオン二次電池1A1 ,1A2 が並列接続された集合体2AがY=1即ち1個設けられて、2並列に構成されている。
【0023】
実施例1−2の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され構成され、これらが並列接続されて集合体2Aが構成されている。
【0024】
この例では、集合体2Aが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 を含む組み合わせよりなっている。
【0025】
この正の温度係数素子の抵抗値が異なる1つの集合体2AにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=1、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0026】
実施例2−2の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成されている。
【0027】
この例では、集合体2Aが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 を含む組み合わせよりなっている。
【0028】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=1、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0029】
図3は本発明に係る組電池の実施例1−3と実施例2−3の構成を示す回路図である。
【0030】
この実施例1−3と実施例2−3の組電池は、X=2即ち2個づつのリチウムイオン二次電池(1A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,1C2 )とがそれぞれ並列接続された集合体2A,2B,2CがY=3即ち3個直列接続されて、2並列3直列に構成されている。
【0031】
実施例1−3の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に25mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に25mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に25mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0032】
この例では、集合体2Aが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 を含む組み合わせよりなっている。
【0033】
この正の温度係数素子の抵抗値が異なる1つの集合体2AにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=1、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0034】
実施例2−3の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。
【0035】
この例では、集合体2Aが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 を含む組み合わせよりなっている。
【0036】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=1、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0037】
図4は本発明に係る組電池の実施例1−4と実施例2−4の構成を示す回路図である。
【0038】
この実施例1−4と実施例2−4の組電池は、X=2即ち2個づつのリチウムイオン二次電池(1A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,1C2 )とが並列接続された集合体2A,2B,2CがY=3即ち3個直列接続されて、2並列3直列に構成されている。
【0039】
実施例1−4の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に50mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0040】
この例では、集合体2Aが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 と、CmΩ=50mΩの抵抗値をもつ正の温度係数素子4A3 を内蔵するリチウムイオン二次電池1A3 とを含む組み合わせよりなっている。
【0041】
この正の温度係数素子の抵抗値が異なる1つの集合体2AにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=1、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0042】
実施例2−4の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0043】
この例では、集合体2Aが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 を含む組み合わせよりなっている。
【0044】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=1、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1=1=2−1即ち1=1=1、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは1+1=2即ち2=2の関係を有している。
【0045】
図5は本発明に係る組電池の実施例1−5と実施例2−5の構成を示す回路図である。
【0046】
この実施例1−5と実施例2−5の組電池は、X=3即ち3個づつのリチウムイオン二次電池(1A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3 )と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1D2 ,1D3 )とが並列接続された集合体2A,2B,2C,2DがY=4即ち4個直列接続されて、3並列4直列に構成されている。
【0047】
実施例1−5の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に50mΩの抵抗値をもつ正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に50mΩの抵抗値をもつ正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に50mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に50mΩの抵抗値をもつ正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に50mΩの抵抗値をもつ正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に50mΩの抵抗値をもつ正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0048】
この例では、集合体2Aが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4A3 を内蔵するリチウムイオン二次電池1A3 とを含む組み合わせよりなっている。
【0049】
この正の温度係数素子の抵抗値が異なる1つの集合体2AにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=1、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=2である。このため、A≠Bは25≠50、1≦L≦X−1は1=1<3−1即ち1=1<2、1≦M≦X−1は1<2=3−1即ち1<2=2、且つL+M≦Xは1+2=3即ち3=3の関係を有している。
【0050】
実施例2−5の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0051】
この例では、集合体2Aが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4A1 を内蔵するリチウムイオン二次電池1A1 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A2 を内蔵するリチウムイオン二次電池1A2 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4A3 を内蔵するリチウムイオン二次電池1A3 とを含む組み合わせよりなっている。
【0052】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=1、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=2である。このため、A≠Bは25≠50、1≦L≦X−1は1=1<3−1即ち1=1<2、1≦M≦X−1は1<2=3−1即ち1<2=2、且つL+M≦Xは1+2=3即ち3=3の関係を有している。
【0053】
図6は本発明に係る組電池の実施例1−6と実施例2−6の構成を示す回路図である。
【0054】
この実施例1−6と実施例2−6の組電池は、リチウムイオン二次電池(1A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3 )と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1D2 ,1D3 )とが並列接続された集合体2A,2B,2C,2DがY=4即ち4個直列接続されて、3並列4直列に構成されている。
【0055】
実施例1−6の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に25mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に25mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に50mΩの抵抗値をもつ正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に25mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に50mΩの抵抗値をもつ正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に50mΩの抵抗値をもつ正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に50mΩの抵抗値をもつ正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0056】
この例では、集合体2B,2Cが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4B1 ,4C1 ,4B2 を内蔵するリチウムイオン二次電池1B1 ,1C1 ,1B2 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4C2 ,4B3 ,4C3 を内蔵するリチウムイオン二次電池1C2 ,1B3 ,1C3 とを含む組み合わせよりなっている。
【0057】
この正の温度係数素子の抵抗値が異なる1つの集合体2BにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=2、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち1<2=2、1≦M≦X−1は1=1<3−1即ち1=1<2、且つL+M≦Xは2+1=3即ち3=3の関係を有している。
【0058】
実施例2−6の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A2 が直列接続されて構成され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0059】
この例では、集合体2B,2Cが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4B1 ,4C1 ,4B2 を内蔵するリチウムイオン二次電池1B1 ,1C1 ,1B2 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4C2 ,4B3 ,4C3 を内蔵するリチウムイオン二次電池1C2 ,1B3 ,1C3 とを含む組み合わせよりなっている。
【0060】
この正の温度係数素子の抵抗値が異なる1つの集合体2Aにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=2、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち1<2=2、1≦M≦X−1は1=1=2−1即ち1=1=1、且つL+M≦Xは2+1=3即ち3=3の関係を有している。
【0061】
図7は本発明に係る組電池の実施例1−7と実施例2−7の構成を示す回路図である。
【0062】
この実施例1−7と実施例2−7の組電池は、X=3即ち3個づつのリチウムイオン二次電池(1A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3 )と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1D2 ,1D3 )とが並列接続された集合体2A,2B,2C,2DがY=4即ち4個直列接続されて、3並列4直列に構成されている。
【0063】
実施例1−7の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に25mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に25mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に25mΩの抵抗値をもつ正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に25mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に25mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に25mΩの抵抗値をもつ正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に25mΩの抵抗値をもつ正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に25mΩの抵抗値をもつ正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に50mΩの抵抗値をもつ正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0064】
この例では、集合体2Dが、AmΩ=25mΩの抵抗値をもつ正の温度係数素子4D1 ,4D2 を内蔵するリチウムイオン二次電池1D1 ,1D2 と、BmΩ=50mΩの抵抗値をもつ正の温度係数素子4D3 を内蔵するリチウムイオン二次電池1D3 とを含む組み合わせよりなっている。
【0065】
この正の温度係数素子の抵抗値が異なる1つの集合体2DにおけるAmΩ=25mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数LはL=2、BmΩ=50mΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち1<2=2、1≦M≦X−1は1=1<3−1即ち1=1<2、且つL+M≦Xは2+1=3即ち3=3の関係を有している。
【0066】
実施例2−7の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A2 が直列接続されて構成され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。
【0067】
この例では、集合体2Dが、1CmA充電時に温度がa℃=100 ℃になる正の温度係数素子4D1 ,4D2 を内蔵するリチウムイオン二次電池1D1 ,1D2 と、1CmA充電時に温度がb℃=120 ℃になる正の温度係数素子4D3 を内蔵するリチウムイオン二次電池1D3 を含む組み合わせよりなっている。
【0068】
この正の温度係数素子の抵抗値が異なる1つの集合体2Dにおける1CmA充電時に温度がa℃=100 ℃になるリチウムイオン二次電池の個数LはL=2、1CmA充電時に温度がb℃=120 ℃になるリチウムイオン二次電池の個数MはM=1である。このため、A≠Bは25≠50、1≦L≦X−1は1<2=3−1即ち1<2=2、1≦M≦X−1は1=1<3−1即ち1=1<2、且つL+M≦Xは2+1=3即ち3=3の関係を有している。
【0069】
図8は比較例の組電池の比較例1−1と比較例2−1の構成を示す回路図である。
【0070】
この比較例1−1と比較例2−1の組電池は、X=2即ち2個づつのリチウムイオン二次電池(1A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,1C2 )とがそれぞれ並列接続された集合体2A,2B,2Cが、Y=3即ち3個直列接続されて、2並列3直列に構成されている。
【0071】
比較例1−1の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に25mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に50mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0072】
この例では、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0073】
比較例2−1の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0074】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0075】
図9は比較例の組電池の比較例1−2と比較例2−2の構成を示す回路図である。
【0076】
この比較例1−2と比較例2−2の組電池は、X=2即ち2個のリチウムイオン二次電池1A1 ,1A2 が並列接続された集合体2AがY=1即ち1個設けられて、2並列に構成されている。
【0077】
比較例1−2の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に25mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され構成され、これらが並列接続されて集合体2Aが構成されている。
【0078】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0079】
比較例2−2の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A2 が直列接続されて構成されている。
【0080】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0081】
図10は比較例の組電池の比較例1−3と比較例2−3の構成を示す回路図である。
【0082】
この比較例1−3と比較例2−3の組電池は、X=2即ち2個づつのリチウムイオン二次電池(1A1 ,1A2 )と、(1B1 ,1B2 )と、(1C1 ,1C2 )とがそれぞれ並列接続された集合体2A,2B,2CがY=3即ち3個直列接続されて、2並列3直列に構成されている。
【0083】
比較例1−3の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に50mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に50mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に50mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に50mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に50mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に50mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。これら集合体2A,2B,2Cは直列接続されている。
【0084】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0085】
比較例2−3の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4A2 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4B2 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が120 ℃になる正の温度係数素子4C2 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。
【0086】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0087】
図11は比較例の組電池の比較例1−4と比較例2−4の構成を示す回路図である。
【0088】
この比較例1−4と比較例2−4の組電池は、X=3即ち3個づつのリチウムイオン二次電池(1A1 ,1A2 ,1A3 )と、(1B1 ,1B2 ,1B3 )と、(1C1 ,1C2 ,1C3 )と、(1D1 ,1D2 ,1D3 )とが並列接続された集合体2A,2B,2C,2DがY=4即ち4個直列接続されて、3並列4直列に構成されている。
【0089】
比較例1−4の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に25mΩの抵抗値をもつ正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に25mΩの抵抗値をもつ正の温度係数素子4A2 が直列接続され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に25mΩの抵抗値をもつ正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に25mΩの抵抗値をもつ正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に25mΩの抵抗値をもつ正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に25mΩの抵抗値をもつ正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に25mΩの抵抗値をもつ正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に25mΩの抵抗値をもつ正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に25mΩの抵抗値をもつ正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に25mΩの抵抗値をもつ正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に25mΩの抵抗値をもつ正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に25mΩの抵抗値をもつ正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0090】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0091】
比較例2−4の組電池においては、リチウムイオン二次電池1A1 はリチウムイオン二次電池本体3A1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A1 が直列接続されて構成され、リチウムイオン二次電池1A2 はリチウムイオン二次電池本体3A2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A2 が直列接続されて構成され、リチウムイオン二次電池1A3 はリチウムイオン二次電池本体3A3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4A3 が直列接続されて構成され、これらが並列接続されて集合体2Aが構成されている。リチウムイオン二次電池1B1 はリチウムイオン二次電池本体3B1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B1 が直列接続されて構成され、リチウムイオン二次電池1B2 はリチウムイオン二次電池本体3B2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B2 が直列接続されて構成され、リチウムイオン二次電池1B3 はリチウムイオン二次電池本体3B3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4B3 が直列接続されて構成され、これらが並列接続されて集合体2Bが構成されている。リチウムイオン二次電池1C1 はリチウムイオン二次電池本体3C1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C1 が直列接続されて構成され、リチウムイオン二次電池1C2 はリチウムイオン二次電池本体3C2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C2 が直列接続されて構成され、リチウムイオン二次電池1C3 はリチウムイオン二次電池本体3C3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4C3 が直列接続されて構成され、これらが並列接続されて集合体2Cが構成されている。リチウムイオン二次電池1D1 はリチウムイオン二次電池本体3D1 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4D1 が直列接続されて構成され、リチウムイオン二次電池1D2 はリチウムイオン二次電池本体3D2 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4D2 が直列接続されて構成され、リチウムイオン二次電池1D3 はリチウムイオン二次電池本体3D3 に、1CmA充電時に温度が100 ℃になる正の温度係数素子4D3 が直列接続されて構成され、これらが並列接続されて集合体2Dが構成されている。これら集合体2A,2B,2C,2Dは直列接続されている。
【0092】
この例でも、抵抗値が異なっている正の温度係数素子をもつリチウムイオン二次電池の集合体はない。このため前述した不等式の関係もない。
【0093】
上述した各実施例と各比較例の組電池を用いて過充電試験を行った結果を表1と表2に示す。即ち、表1は、実施例1−1〜実施例1−7と、比較例1−1〜比較例1−4による過充電試験を示す。表2は、実施例2−1〜実施例2−7と、比較例2−1〜比較例2−4による過充電試験を示す。なお、今回用いたリチウムイオン二次電池は、正極活物質がコバルト酸リチウム、負極活物質が非晶質炭素材からなる公称容量1300mAhの電池で、過充電試験方法は電流値2CmA、環境温度30℃で行った。
【0094】
【表1】

Figure 0003635995
【表2】
Figure 0003635995
これら表1及び表2より、本実施例の組電池は、破裂、発火を起こさず、比較例の組電池に比べて優れていることが分かった。また、比較例については、組電池を構成する電池の数が増えるに従い、破裂、発火の数が増えることから、組電池を構成する電池の数が多いほど破裂、発火の数が大きくなることが分かった。
【0095】
今回は、正の温度係数素子の抵抗及び組電池充電時の正の温度係数素子の温度について、それぞれ2種類で記載したが、5種類までは実験し、同様の効果が得られた。また、それ以上についても、同様な効果が得られることは言うまでもない。
【0096】
同様に、正極、負極が他の材料からなるリチウムイオン二次電池を用いた組電池においても、電池内に物理的に通電電流を遮断する機能を有するリチウムイオン二次電池からなる組電池を用いた場合も、同様な効果が得られることは言うまでもない。
【0097】
【発明の効果】
本発明に係る組電池においては、X個(X≧2)のリチウムイオン二次電池が並列接続された集合体を構成する各リチウムイオン二次電池の抵抗に差をもたせたため、充電時に並列に接続されている電池は抵抗の少ない電池に電流が集中して充電が行われる。また、抵抗の少ない電池が先に過充電状態になり、電池の温度が上昇し始めると、この抵抗の少ない電池に接続されている抵抗の少ない正の温度係数素子のトリップ温度が急上昇して、該抵抗の少ない正の温度係数素子の抵抗値が急上昇し、並列接続された電池において電池温度上昇時に抵抗の差が大きくなる。このため、今度は最初に抵抗が多かった電池に電流が集中して充電が行われ、この電池が過充電状態になってこの電池に接続されている最初に抵抗が多かった正の温度係数素子のトリップ温度が急上昇する。このようにして並列接続された電池間で、電池の急激な温度上昇のタイミングをずらすことになり、本発明に係る組電池によれば熱逸走を起こさずに、破裂、発火を防止できる。
【0098】
一方、組電池の充電時に正の温度係数素子の温度を変化させたものは、抵抗は温度の関数で現わせるため抵抗値が異なり、上記した抵抗が異なる場合と同様な作用により、組電池の破裂、発火を防ぐことができる。
【図面の簡単な説明】
【図1】本発明に係る組電池の実施例1−1と実施例2−1の構成を示す回路図である。
【図2】本発明に係る組電池の実施例1−2と実施例2−2の構成を示す回路図である。
【図3】本発明に係る組電池の実施例1−3と実施例2−3の構成を示す回路図である。
【図4】本発明に係る組電池の実施例1−4と実施例2−4の構成を示す回路図である。
【図5】本発明に係る組電池の実施例1−5と実施例2−5の構成を示す回路図である。
【図6】本発明に係る組電池の実施例1−6と実施例2−6の構成を示す回路図である。
【図7】本発明に係る組電池の実施例1−7と実施例2−7の構成を示す回路図である。
【図8】比較例の組電池の比較例1−1と比較例2−1の構成を示す回路図である。
【図9】比較例の組電池の比較例1−2と比較例2−2の構成を示す回路図である。
【図10】比較例の組電池の比較例1−3と比較例2−3の構成を示す回路図である。
【図11】比較例の組電池の比較例1−4と比較例2−4の構成を示す回路図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery using a lithium ion secondary battery.
[0002]
[Prior art]
In the lithium ion secondary battery, when lithium metal is overcharged, metal lithium is deposited in a dendritic shape on the negative electrode, so that a short circuit occurs, and a sufficient capacity for subsequent discharge cannot be obtained. Alternatively, in the worst case due to further overcharge, there is a problem that the internal pressure of the battery rises due to the decomposition reaction of the positive electrode, causing explosion and ignition. In addition, there is also a problem in that the capacity cannot be obtained because copper of the negative electrode current collector elutes in the electrolyte during overdischarge and precipitates on the negative electrode by subsequent charging. Therefore, in a battery pack using a lithium ion secondary battery, a protective circuit is provided to prevent overdischarge and overcharge. However, there is a problem in that the above problem occurs when a protection circuit, a charging circuit, or the like fails.
[0003]
In order to solve this problem, a pressure switch is provided in the top cover of the battery to physically cut off the energization of the battery when the internal pressure of the battery rises. It has been proposed to prevent and ensure safety.
[0004]
[Problems to be solved by the invention]
However, the safety can be secured by the pressure switch with a single cell, and when an assembled battery is used, the heat from overcharging of other batteries causes the battery to escape, explode and ignite. There was a problem to cause.
[0005]
An object of the present invention is to provide an assembled battery that does not cause thermal escape during overcharge and can prevent explosion and ignition.
[0006]
[Means for Solving the Problems]
The present invention improves an assembled battery in which Y (Y ≧ 1) aggregates in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel are connected in series.
[0007]
In one assembled battery according to the present invention, at least one of the aggregates includes a lithium ion secondary battery having a positive temperature coefficient element having a resistance value of AmΩ and a positive temperature coefficient element having a resistance value of BmΩ. The number of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ in one assembly having a different resistance value of the positive temperature coefficient element is L. , Where M is the number of lithium ion secondary batteries having a positive temperature coefficient element of BmΩ, and A ≠ B, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X. It is characterized by that.
[0008]
Further, in another assembled battery according to the present invention, at the time of charging the assembled battery, at least one of the aggregates is a lithium ion secondary battery containing a positive temperature coefficient element that becomes a ° C. and a positive that becomes b ° C. The number of lithium ion secondary batteries that are a combination of a lithium ion secondary battery having a built-in temperature coefficient element and that has a positive temperature coefficient element with different resistance values at a ° C. is L, b ° C. The number of lithium ion secondary batteries to be expressed as M is a relationship where a ≠ b, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X.
[0009]
In the present invention, a difference is made in the resistance of each lithium ion secondary battery constituting an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel, so that the lithium ion secondary batteries are connected in parallel during charging. The battery is charged by concentrating current on a battery with low resistance. Also, when the battery with low resistance is overcharged first and the battery temperature starts to rise, the trip temperature of the positive temperature coefficient element with low resistance connected to the battery with low resistance (the resistance value suddenly increases). The temperature of the positive temperature coefficient element having a small resistance rapidly increases, and the difference in resistance increases when the battery temperature rises in the batteries connected in parallel. For this reason, a positive temperature coefficient element having a high resistance at first was connected to this battery because the current was concentrated and charged to the battery having a high resistance this time. Trip temperature suddenly rises. In this way, the rapid temperature rise timing of the batteries is shifted between the batteries connected in parallel, and explosion and ignition can be prevented without causing thermal escape.
[0010]
On the other hand, when the temperature of the positive temperature coefficient element is changed at the time of charging the assembled battery, the resistance is different because the resistance appears as a function of temperature, and the assembled battery is operated in the same manner as in the case where the resistance is different. Can prevent rupture and ignition.
[0011]
Since normal charging is constant voltage charging, the amount of charge is the same between batteries at the end of charging, and the above characteristics do not affect the charging characteristics.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described by way of examples.
[0013]
FIG. 1 is a circuit diagram showing a configuration of Example 1-1 and Example 2-1 of an assembled battery according to the present invention.
[0014]
The assembled batteries of Example 1-1 and Example 2-1 have X = 2, that is, two lithium ion secondary batteries (1A1, 1A2), (1B1, 1B2), (1C1, 1C2) Are connected in parallel, and Y = 3, that is, three are connected in series to form two parallel three series.
[0015]
In the assembled battery of Example 1-1, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 to a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ in series. The lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2C. These aggregates 2A, 2B, 2C are connected in series.
[0016]
In this example, the two assemblies 2A and 2B have lithium ion secondary batteries 1A1 and 1B1 containing positive temperature coefficient elements 4A1 and 4B1 having a resistance value of AmΩ = 25 mΩ, and a resistance value of BmΩ = 50 mΩ. It consists of a combination including lithium ion secondary batteries 1A2 and 1B2 incorporating positive temperature coefficient elements 4A2 and 4B2.
[0017]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 1, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0018]
In the assembled battery of Example 2-1, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is constructed by connecting a lithium ion secondary battery main body 3A2 with a positive temperature coefficient element 4A2 having a temperature of 120 ° C. when charged at 1 CmA in series, and these are connected in parallel to form an assembly 2A. Has been. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 which is 100 ° C. when charged at 1 CmA in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3B2, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery main body 3C1 and a positive temperature coefficient element 4C1 that is 120 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and these are connected in parallel to form an assembly 2C. These aggregates 2A, 2B, 2C are connected in series.
[0019]
In this example, the two assemblies 2A and 2B have lithium ion secondary batteries 1A1 and 1B1 containing positive temperature coefficient elements 4A1 and 4B1 that have a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and temperatures when charged at 1 CmA. Is a combination including lithium ion secondary batteries 1A2 and 1B2 having positive temperature coefficient elements 4A2 and 4B2 in which b ° C = 120 ° C.
[0020]
The number L of lithium ion secondary batteries whose temperature is 1 ° C. = 100 ° C. when charging 1 CmA in one assembly 2A having different resistance values of the positive temperature coefficient element is L = 1, and the temperature is 1 ° C. = b ° C. when charging 1 CmA. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0021]
FIG. 2 is a circuit diagram showing a configuration of Example 1-2 and Example 2-2 of the assembled battery according to the present invention.
[0022]
In the assembled battery of Example 1-2 and Example 2-2, X = 2, that is, an assembly 2A in which two lithium ion secondary batteries 1A1, 1A2 are connected in parallel is provided as Y = 1, that is, one. 2 are configured in parallel.
[0023]
In the assembled battery of Example 1-2, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 is configured by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ in series, and these are connected in parallel to form an assembly 2A.
[0024]
In this example, the assembly 2A includes a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 having a resistance value of AmΩ = 25 mΩ and a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. And a combination including a lithium ion secondary battery 1A2.
[0025]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 1, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0026]
In the assembled battery of Example 2-2, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is configured by connecting a lithium ion secondary battery body 3A2 in series with a positive temperature coefficient element 4A2 having a temperature of 120 ° C. when charged with 1 CmA.
[0027]
In this example, the assembly 2A has a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 that has a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and a temperature of b ° C. = 120 ° C. when charged at 1 CmA. It is composed of a combination including a lithium ion secondary battery 1A2 incorporating a positive temperature coefficient element 4A2.
[0028]
The number L of lithium ion secondary batteries whose temperature is 1 ° C. = 100 ° C. when charging 1 CmA in one assembly 2A having different resistance values of the positive temperature coefficient element is L = 1, and the temperature is 1 ° C. = b ° C. when charging 1 CmA. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0029]
FIG. 3 is a circuit diagram showing configurations of Examples 1-3 and 2-3 of the assembled battery according to the present invention.
[0030]
The assembled batteries of Example 1-3 and Example 2-3 have X = 2, that is, two lithium ion secondary batteries (1A1, 1A2), (1B1, 1B2), (1C1, 1C2) Are connected in parallel, Y = 3, that is, three are connected in series to form two parallel three series.
[0031]
In the assembled battery of Example 1-3, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 25 mΩ is connected in series, and these are connected in parallel to form an aggregate 2C. These aggregates 2A, 2B, 2C are connected in series.
[0032]
In this example, the assembly 2A includes a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 having a resistance value of AmΩ = 25 mΩ and a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. And a combination including a lithium ion secondary battery 1A2.
[0033]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 1, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0034]
In the assembled battery of Example 2-3, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged with 1 CmA, The lithium ion secondary battery 1A2 is constructed by connecting a lithium ion secondary battery main body 3A2 with a positive temperature coefficient element 4A2 having a temperature of 120 ° C. when charged at 1 CmA in series, and these are connected in parallel to form an assembly 2A. Has been. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 which is 100 ° C. when charged at 1 CmA in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3B2, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery body 3C1 and a positive temperature coefficient element 4C1 that is 100 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and these are connected in parallel to form an assembly 2C.
[0035]
In this example, the assembly 2A has a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 that has a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and a temperature of b ° C. = 120 ° C. when charged at 1 CmA. It is composed of a combination including a lithium ion secondary battery 1A2 incorporating a positive temperature coefficient element 4A2.
[0036]
The number L of lithium ion secondary batteries whose temperature is 1 ° C. = 100 ° C. when charging 1 CmA in one assembly 2A having different resistance values of the positive temperature coefficient element is L = 1, and the temperature is 1 ° C. = b ° C. when charging 1 CmA. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0037]
FIG. 4 is a circuit diagram showing the configuration of Examples 1-4 and Example 2-4 of the assembled battery according to the present invention.
[0038]
The assembled batteries of Example 1-4 and Example 2-4 have X = 2, that is, two lithium ion secondary batteries (1A1, 1A2), (1B1, 1B2), (1C1, 1C2) Are connected in parallel, Y = 3, that is, three are connected in series to form two parallel three series.
[0039]
In the assembled battery of Example 1-4, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ in series. The lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2C. These aggregates 2A, 2B, 2C are connected in series.
[0040]
In this example, the assembly 2A includes a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 having a resistance value of AmΩ = 25 mΩ and a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. And a lithium ion secondary battery 1A3 incorporating a positive temperature coefficient element 4A3 having a resistance value of CmΩ = 50 mΩ.
[0041]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 1, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0042]
In the assembled battery of Example 2-4, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is constructed by connecting a lithium ion secondary battery main body 3A2 with a positive temperature coefficient element 4A2 having a temperature of 120 ° C. when charged at 1 CmA in series, and these are connected in parallel to form an assembly 2A. Has been. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 that is 120 ° C. in temperature when charged at 1 CmA in series. The lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3B2, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery main body 3C1 and a positive temperature coefficient element 4C1 that is 120 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and these are connected in parallel to form an assembly 2C. These aggregates 2A, 2B, 2C are connected in series.
[0043]
In this example, the assembly 2A has a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 that has a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and a temperature of b ° C. = 120 ° C. when charged at 1 CmA. It is composed of a combination including a lithium ion secondary battery 1A2 incorporating a positive temperature coefficient element 4A2.
[0044]
The number L of lithium ion secondary batteries whose temperature is 1 ° C. = 100 ° C. when charging 1 CmA in one assembly 2A having different resistance values of the positive temperature coefficient element is L = 1, and the temperature is 1 ° C. = b ° C. when charging 1 CmA. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1, 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 1 + 1 = 2, that is, 2 = 2.
[0045]
FIG. 5 is a circuit diagram showing a configuration of Examples 1-5 and 2-5 of the assembled battery according to the present invention.
[0046]
In this assembled battery of Example 1-5 and Example 2-5, X = 3, that is, three lithium ion secondary batteries (1A1, 1A2, 1A3), (1B1, 1B2, 1B3), (1C1 , 1C2, 1C3) and (1D1, 1D2, 1D3) are connected in parallel, and Y = 4, that is, four assemblies 2A, 2B, 2C, 2D are connected in series to form three parallel 4 series. .
[0047]
In the assembled battery of Example 1-5, the lithium ion secondary battery 1A1 is constituted by connecting a lithium ion secondary battery main body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 has a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ connected in series to the lithium ion secondary battery body 3A2, and the lithium ion secondary battery 1A3 has a positive resistance value of 50 mΩ to the lithium ion secondary battery body 3A3. Temperature coefficient elements 4A3 are connected in series, and these are connected in parallel to form an aggregate 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 50 mΩ is connected in series, and the lithium ion secondary battery 1B3 is connected in series with a positive temperature coefficient element 4B3 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3B3. These are connected in parallel to form the aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ in series. The lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50mΩ is connected in series, and a lithium ion secondary battery 1C3 is connected in series to a lithium ion secondary battery body 3C3 having a positive temperature coefficient element 4C3 having a resistance value of 50mΩ. The assembly 2C is configured by connecting them in parallel. The lithium ion secondary battery 1D1 is constituted by connecting a lithium ion secondary battery body 3D1 with a positive temperature coefficient element 4D1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1D2 is connected to the lithium ion secondary battery body 3D2. A positive temperature coefficient element 4D2 having a resistance value of 50 mΩ is connected in series, and the lithium ion secondary battery 1D3 is connected in series to a lithium ion secondary battery body 3D3 having a positive temperature coefficient element 4D3 having a resistance value of 50 mΩ. The assembly 2D is configured by connecting them in parallel. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0048]
In this example, the assembly 2A includes a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 having a resistance value of AmΩ = 25 mΩ and a positive temperature coefficient element 4A2 having a resistance value of BmΩ = 50 mΩ. And a lithium ion secondary battery 1A3 incorporating a positive temperature coefficient element 4A3 having a resistance value of BmΩ = 50 mΩ.
[0049]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 1, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 2. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 <3-1, that is, 1 = 1 <2, 1 ≦ M ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2 and L + M ≦ X have a relationship of 1 + 2 = 3, that is, 3 = 3.
[0050]
In the assembled battery of Example 2-5, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery body 3A2 and a positive temperature coefficient element 4A2 that is connected in series at a temperature of 120 ° C. when charged with 1 CmA, and the lithium ion secondary battery 1A3 is a lithium ion secondary battery. A positive temperature coefficient element 4A3 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3A3, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 that is 120 ° C. in temperature when charged at 1 CmA in series. The lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 120 ° C. when charged at 1 CmA is connected in series to the battery body 3B2, and the lithium ion secondary battery 1B3 is connected to the lithium ion secondary battery body 3B3 at a temperature of 120 when charged at 1 CmA. A positive temperature coefficient element 4B3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery main body 3C1 and a positive temperature coefficient element 4C1 that is 120 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and the lithium ion secondary battery 1C3 has a temperature of 120 when charged with 1 CmA. A positive temperature coefficient element 4C3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2C. The lithium ion secondary battery 1D1 is composed of a lithium ion secondary battery body 3D1 and a positive temperature coefficient element 4D1 which is connected to a lithium ion secondary battery 1D2 in series at a temperature of 120 ° C. when charged with 1 CmA. A positive temperature coefficient element 4D2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3D2, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3 with a temperature of 120 when charged with 1 CmA. A positive temperature coefficient element 4D3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2D. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0051]
In this example, the assembly 2A has a lithium ion secondary battery 1A1 including a positive temperature coefficient element 4A1 that has a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and a temperature of b ° C. = 120 ° C. when charged at 1 CmA. A combination of a lithium ion secondary battery 1A2 having a positive temperature coefficient element 4A2 and a lithium ion secondary battery 1A3 having a positive temperature coefficient element 4A3 having a temperature of b ° C. = 120 ° C. when charged at 1 CmA. ing.
[0052]
The number L of lithium ion secondary batteries whose temperature is 1 ° C. = 100 ° C. when charging 1 CmA in one assembly 2A having different resistance values of the positive temperature coefficient element is L = 1, and the temperature is 1 ° C. = b ° C. when charging 1 CmA. The number M of lithium ion secondary batteries at 120 ° C. is M = 2. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 = 1 <3-1, that is, 1 = 1 <2, 1 ≦ M ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2 and L + M ≦ X have a relationship of 1 + 2 = 3, that is, 3 = 3.
[0053]
FIG. 6 is a circuit diagram showing a configuration of Examples 1-6 and 2-6 of the assembled battery according to the present invention.
[0054]
The assembled batteries of Examples 1-6 and 2-6 include lithium ion secondary batteries (1A1, 1A2, 1A3), (1B1, 1B2, 1B3), (1C1, 1C2, 1C3), ( 1D1, 1D2, 1D3) are connected in parallel, and Y = 4, that is, four of the aggregates 2A, 2B, 2C, 2D are connected in series to form three parallel 4 series.
[0055]
In the assembled battery of Example 1-6, the lithium ion secondary battery 1A1 is constituted by connecting a lithium ion secondary battery main body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. In the battery 1A2, a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3A2, and the lithium ion secondary battery 1A3 is positive having a resistance value of 25 mΩ to the lithium ion secondary battery body 3A3. Temperature coefficient elements 4A3 are connected in series, and these are connected in parallel to form an aggregate 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1B3 is connected in series with a positive temperature coefficient element 4B3 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3B3. These are connected in parallel to form the aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50mΩ is connected in series, and a lithium ion secondary battery 1C3 is connected in series to a lithium ion secondary battery body 3C3 having a positive temperature coefficient element 4C3 having a resistance value of 50mΩ. The assembly 2C is configured by connecting them in parallel. The lithium ion secondary battery 1D1 is constituted by connecting a lithium ion secondary battery body 3D1 with a positive temperature coefficient element 4D1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1D2 is connected to the lithium ion secondary battery body 3D2. A positive temperature coefficient element 4D2 having a resistance value of 50 mΩ is connected in series, and the lithium ion secondary battery 1D3 is connected in series to a lithium ion secondary battery body 3D3 having a positive temperature coefficient element 4D3 having a resistance value of 50 mΩ. The assembly 2D is configured by connecting them in parallel. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0056]
In this example, the aggregates 2B, 2C are lithium ion secondary batteries 1B1, 1C1, 1B2 containing positive temperature coefficient elements 4B1, 4C1, 4B2 having a resistance value of AmΩ = 25 mΩ, and a resistance value of BmΩ = 50 mΩ. And a combination including lithium ion secondary batteries 1C2, 1B3, and 1C3 incorporating positive temperature coefficient elements 4C2, 4B3, and 4C3.
[0057]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2B in which the resistance value of this positive temperature coefficient element is different is L = 2, and the positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, and 1 ≦ M ≦ X-1 is 1 = 1 <3-1, that is, 1 = 1 <2 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.
[0058]
In the assembled battery of Example 2-6, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 that is connected in series at a temperature of 100 ° C. when charged with 1 CmA, and the lithium ion secondary battery 1A3 is a lithium ion secondary battery. A positive temperature coefficient element 4A3 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3A3, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 which is 100 ° C. when charged at 1 CmA in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3B2, and the lithium ion secondary battery 1B3 is connected to the lithium ion secondary battery body 3B3 at a temperature of 120 when charged at 1 CmA. A positive temperature coefficient element 4B3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery body 3C1 and a positive temperature coefficient element 4C1 that is 100 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and the lithium ion secondary battery 1C3 has a temperature of 120 when charged with 1 CmA. A positive temperature coefficient element 4C3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1D1 is composed of a lithium ion secondary battery body 3D1 and a positive temperature coefficient element 4D1 which is connected to a lithium ion secondary battery 1D2 in series at a temperature of 120 ° C. when charged with 1 CmA. A positive temperature coefficient element 4D2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3D2, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3 with a temperature of 120 when charged with 1 CmA. A positive temperature coefficient element 4D3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2D. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0059]
In this example, the assemblies 2B and 2C are charged with 1 CmA and lithium ion secondary batteries 1B1, 1C1 and 1B2 containing positive temperature coefficient elements 4B1, 4C1 and 4B2 that have a temperature of a ° C. = 100 ° C. when charged with 1 C mA. It is composed of a combination including lithium ion secondary batteries 1C2, 1B3, and 1C3 containing positive temperature coefficient elements 4C2, 4B3, and 4C3 that sometimes have a temperature of b ° C. = 120 ° C.
[0060]
The number L of lithium ion secondary batteries in which the temperature is a ° C. = 100 ° C. during 1 CmA charging in one assembly 2A having a different resistance value of this positive temperature coefficient element is L = 2, and the temperature is b ° C. = 1 ° C. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, and 1 ≦ M ≦ X-1 is 1 = 1 = 2-1, that is, 1 = 1 = 1 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.
[0061]
FIG. 7 is a circuit diagram showing a configuration of Example 1-7 and Example 2-7 of the assembled battery according to the present invention.
[0062]
In this assembled battery of Examples 1-7 and 2-7, X = 3, that is, three lithium ion secondary batteries (1A1, 1A2, 1A3), (1B1, 1B2, 1B3), (1C1 , 1C2, 1C3) and (1D1, 1D2, 1D3) are connected in parallel, and Y = 4, that is, four assemblies 2A, 2B, 2C, 2D are connected in series to form three parallel 4 series. .
[0063]
In the assembled battery of Example 1-7, the lithium ion secondary battery 1A1 is constituted by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. In the battery 1A2, a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3A2, and the lithium ion secondary battery 1A3 is positive having a resistance value of 25 mΩ to the lithium ion secondary battery body 3A3. Temperature coefficient elements 4A3 are connected in series, and these are connected in parallel to form an aggregate 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1B3 is connected in series with a positive temperature coefficient element 4B3 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3B3. These are connected in parallel to form the aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1C3 is connected in series with a positive temperature coefficient element 4C3 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3C3. The assembly 2C is configured by connecting them in parallel. The lithium ion secondary battery 1D1 is configured by connecting a positive temperature coefficient element 4D1 having a resistance value of 25 mΩ in series to a lithium ion secondary battery body 3D1, and the lithium ion secondary battery 1D2 is connected to the lithium ion secondary battery body 3D2. A positive temperature coefficient element 4D2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1D3 is connected in series with a positive temperature coefficient element 4D3 having a resistance value of 50 mΩ to the lithium ion secondary battery body 3D3. The assembly 2D is configured by connecting them in parallel. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0064]
In this example, the assembly 2D includes lithium ion secondary batteries 1D1 and 1D2 incorporating positive temperature coefficient elements 4D1 and 4D2 having a resistance value of AmΩ = 25 mΩ, and a positive temperature coefficient having a resistance value of BmΩ = 50 mΩ. It is composed of a combination including a lithium ion secondary battery 1D3 having a built-in element 4D3.
[0065]
The number L of lithium ion secondary batteries having a positive temperature coefficient element of AmΩ = 25 mΩ in one assembly 2D having a different resistance value of this positive temperature coefficient element is L = 2, and a positive temperature coefficient of BmΩ = 50 mΩ. The number M of lithium ion secondary batteries incorporating the element is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, and 1 ≦ M ≦ X-1 is 1 = 1 <3-1, that is, 1 = 1 <2 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.
[0066]
In the assembled battery of Example 2-7, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged with 1 CmA, The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 that is connected in series at a temperature of 100 ° C. when charged with 1 CmA, and the lithium ion secondary battery 1A3 is a lithium ion secondary battery. A positive temperature coefficient element 4A3 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3A3, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 which is 100 ° C. when charged at 1 CmA in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3B2, and the lithium ion secondary battery 1B3 has a temperature of 100 when charged at 1 CmA. A positive temperature coefficient element 4B3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery body 3C1 and a positive temperature coefficient element 4C1 that is 100 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3C2, and the lithium ion secondary battery 1C3 is connected to the lithium ion secondary battery body 3C3 at a temperature of 100 when charged at 1 CmA. A positive temperature coefficient element 4C3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1D1 is composed of a lithium ion secondary battery body 3D1 and a positive temperature coefficient element 4D1 which is connected to a lithium ion secondary battery 1D2 in series at a temperature of 100 ° C. when charged with 1 CmA. A positive temperature coefficient element 4D2 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3D2, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3 with a temperature of 120 when charged with 1 CmA. A positive temperature coefficient element 4D3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2B.
[0067]
In this example, the assembly 2D has lithium ion secondary batteries 1D1, 1D2 containing positive temperature coefficient elements 4D1, 4D2 that have a temperature of a ° C. = 100 ° C. when charged at 1 CmA, and a temperature of b ° C. = when charged at 1 CmA. It is composed of a combination including a lithium ion secondary battery 1D3 incorporating a positive temperature coefficient element 4D3 at 120 ° C.
[0068]
The number L of lithium ion secondary batteries in which the temperature is a ° C. = 100 ° C. during 1 CmA charging in one assembly 2D having a different resistance value of the positive temperature coefficient element is L = 2, and the temperature is b ° C. = 1 ° C. The number M of lithium ion secondary batteries that reach 120 ° C. is M = 1. Therefore, A ≠ B is 25 ≠ 50, 1 ≦ L ≦ X-1 is 1 <2 = 3-1, that is, 1 <2 = 2, and 1 ≦ M ≦ X-1 is 1 = 1 <3-1, that is, 1 = 1 <2 and L + M ≦ X has a relationship of 2 + 1 = 3, that is, 3 = 3.
[0069]
FIG. 8 is a circuit diagram showing the configuration of Comparative Example 1-1 and Comparative Example 2-1.
[0070]
The assembled batteries of Comparative Example 1-1 and Comparative Example 2-1 have X = 2, that is, two lithium ion secondary batteries (1A1, 1A2), (1B1, 1B2), (1C1, 1C2) Are connected in parallel, and Y = 3, that is, three are connected in series to form two parallel three series.
[0071]
In the assembled battery of Comparative Example 1-1, the lithium ion secondary battery 1A1 is formed by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1 The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ in series. The lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2C. These aggregates 2A, 2B, 2C are connected in series.
[0072]
In this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0073]
In the assembled battery of Comparative Example 2-1, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 having a temperature of 100 ° C. when charged at 1 CmA, in series. The lithium ion secondary battery 1A2 is constituted by connecting a lithium ion secondary battery main body 3A2 with a positive temperature coefficient element 4A2 having a temperature of 100 ° C. when charged at 1 CmA in series, and these are connected in parallel to form an assembly 2A. Has been. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 that is 120 ° C. in temperature when charged at 1 CmA in series. The lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3B2, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery main body 3C1 and a positive temperature coefficient element 4C1 that is 120 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and these are connected in parallel to form an assembly 2C. These aggregates 2A, 2B, 2C are connected in series.
[0074]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0075]
FIG. 9 is a circuit diagram showing the configuration of Comparative Example 1-2 and Comparative Example 2-2 of the assembled battery of the comparative example.
[0076]
In the assembled battery of Comparative Example 1-2 and Comparative Example 2-2, X = 2, that is, an assembly 2A in which two lithium ion secondary batteries 1A1, 1A2 are connected in parallel is provided as Y = 1, that is, one. 2 are configured in parallel.
[0077]
In the assembled battery of Comparative Example 1-2, the lithium ion secondary battery 1A1 is constituted by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and a lithium ion secondary battery 1A1. The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ in series, and these are connected in parallel to form an assembly 2A.
[0078]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0079]
In the assembled battery of Comparative Example 2-2, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is configured by connecting a lithium ion secondary battery body 3A2 in series with a positive temperature coefficient element 4A2 having a temperature of 100 ° C. when charged with 1 CmA.
[0080]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0081]
FIG. 10 is a circuit diagram illustrating configurations of Comparative Examples 1-3 and Comparative Example 2-3 of the assembled battery of the comparative example.
[0082]
The assembled batteries of Comparative Example 1-3 and Comparative Example 2-3 include X = 2, that is, two lithium ion secondary batteries (1A1, 1A2), (1B1, 1B2), (1C1, 1C2) Are connected in parallel, Y = 3, that is, three are connected in series to form two parallel three series.
[0083]
In the assembled battery of Comparative Example 1-3, the lithium ion secondary battery 1A1 is constituted by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1A1. The battery 1A2 is constituted by connecting a lithium ion secondary battery body 3A2 with a positive temperature coefficient element 4A2 having a resistance value of 50 mΩ in series, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 50 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 50 mΩ in series. The lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 50 mΩ is connected in series, and these are connected in parallel to form an aggregate 2C. These aggregates 2A, 2B, 2C are connected in series.
[0084]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0085]
In the assembled battery of Comparative Example 2-3, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 120 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is constructed by connecting a lithium ion secondary battery main body 3A2 with a positive temperature coefficient element 4A2 having a temperature of 120 ° C. when charged at 1 CmA in series, and these are connected in parallel to form an assembly 2A. Has been. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 that is 120 ° C. in temperature when charged at 1 CmA in series. The lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3B2, and these are connected in parallel to form an assembly 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery main body 3C1 and a positive temperature coefficient element 4C1 that is 120 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 120 ° C. when charged with 1 CmA is connected in series to the battery body 3C2, and these are connected in parallel to form an assembly 2C.
[0086]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0087]
FIG. 11 is a circuit diagram showing configurations of Comparative Examples 1-4 and Comparative Example 2-4 of a battery pack of a comparative example.
[0088]
The assembled batteries of Comparative Examples 1-4 and Comparative Example 2-4 have X = 3, that is, three lithium ion secondary batteries (1A1, 1A2, 1A3), (1B1, 1B2, 1B3), (1C1 , 1C2, 1C3) and (1D1, 1D2, 1D3) are connected in parallel, and Y = 4, that is, four assemblies 2A, 2B, 2C, 2D are connected in series to form three parallel 4 series. .
[0089]
In the assembled battery of Comparative Example 1-4, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 with a positive temperature coefficient element 4A1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1A1. In the battery 1A2, a positive temperature coefficient element 4A2 having a resistance value of 25 mΩ is connected in series to the lithium ion secondary battery body 3A2, and the lithium ion secondary battery 1A3 is positive having a resistance value of 25 mΩ to the lithium ion secondary battery body 3A3. Temperature coefficient elements 4A3 are connected in series, and these are connected in parallel to form an aggregate 2A. The lithium ion secondary battery 1B1 is constituted by connecting a lithium ion secondary battery body 3B1 with a positive temperature coefficient element 4B1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1B2 is connected to the lithium ion secondary battery body 3B2. A positive temperature coefficient element 4B2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1B3 is connected in series with a positive temperature coefficient element 4B3 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3B3. These are connected in parallel to form the aggregate 2B. The lithium ion secondary battery 1C1 is constituted by connecting a lithium ion secondary battery body 3C1 with a positive temperature coefficient element 4C1 having a resistance value of 25 mΩ in series, and the lithium ion secondary battery 1C2 is connected to the lithium ion secondary battery body 3C2. A positive temperature coefficient element 4C2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1C3 is connected in series with a positive temperature coefficient element 4C3 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3C3. The assembly 2C is configured by connecting them in parallel. The lithium ion secondary battery 1D1 is configured by connecting a positive temperature coefficient element 4D1 having a resistance value of 25 mΩ in series to a lithium ion secondary battery body 3D1, and the lithium ion secondary battery 1D2 is connected to the lithium ion secondary battery body 3D2. A positive temperature coefficient element 4D2 having a resistance value of 25 mΩ is connected in series, and the lithium ion secondary battery 1D3 is connected in series with a positive temperature coefficient element 4D3 having a resistance value of 25 mΩ to the lithium ion secondary battery body 3D3. The assembly 2D is configured by connecting them in parallel. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0090]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0091]
In the assembled battery of Comparative Example 2-4, the lithium ion secondary battery 1A1 is configured by connecting a lithium ion secondary battery body 3A1 in series with a positive temperature coefficient element 4A1 that has a temperature of 100 ° C. when charged at 1 CmA, The lithium ion secondary battery 1A2 is composed of a lithium ion secondary battery main body 3A2 and a positive temperature coefficient element 4A2 that is connected in series at a temperature of 100 ° C. when charged with 1 CmA, and the lithium ion secondary battery 1A3 is a lithium ion secondary battery. A positive temperature coefficient element 4A3 having a temperature of 100 ° C. when charged with 1 CmA is connected in series to the battery body 3A3, and these are connected in parallel to form an assembly 2A. The lithium ion secondary battery 1B1 is composed of a lithium ion secondary battery body 3B1 and a positive temperature coefficient element 4B1 which is 100 ° C. when charged at 1 CmA in series, and the lithium ion secondary battery 1B2 is a lithium ion secondary battery. A positive temperature coefficient element 4B2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3B2, and the lithium ion secondary battery 1B3 has a temperature of 100 when charged at 1 CmA. A positive temperature coefficient element 4B3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2B. The lithium ion secondary battery 1C1 is composed of a lithium ion secondary battery body 3C1 and a positive temperature coefficient element 4C1 that is 100 ° C. in temperature when charged with 1 CmA in series. The lithium ion secondary battery 1C2 is a lithium ion secondary battery. A positive temperature coefficient element 4C2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3C2, and the lithium ion secondary battery 1C3 is connected to the lithium ion secondary battery body 3C3 at a temperature of 100 when charged at 1 CmA. A positive temperature coefficient element 4C3 having a temperature of 0 DEG C. is connected in series, and these are connected in parallel to form an aggregate 2C. The lithium ion secondary battery 1D1 is composed of a lithium ion secondary battery body 3D1 and a positive temperature coefficient element 4D1 which is connected to a lithium ion secondary battery 1D2 in series at a temperature of 100 ° C. when charged with 1 CmA. A positive temperature coefficient element 4D2 having a temperature of 100 ° C. when charged at 1 CmA is connected in series to the battery body 3D2, and the lithium ion secondary battery 1D3 is connected to the lithium ion secondary battery body 3D3 at a temperature of 100 when charged at 1 CmA. A positive temperature coefficient element 4D3 having a temperature of 0 ° C. is connected in series, and these are connected in parallel to form an aggregate 2D. These assemblies 2A, 2B, 2C, 2D are connected in series.
[0092]
Even in this example, there is no aggregate of lithium ion secondary batteries having positive temperature coefficient elements having different resistance values. For this reason, there is no relation of the inequality mentioned above.
[0093]
Tables 1 and 2 show the results of overcharge tests using the assembled batteries of the above-described examples and comparative examples. That is, Table 1 shows overcharge tests according to Example 1-1 to Example 1-7 and Comparative Example 1-1 to Comparative Example 1-4. Table 2 shows overcharge tests according to Example 2-1 to Example 2-7 and Comparative Example 2-1 to Comparative Example 2-4. The lithium ion secondary battery used this time is a battery having a nominal capacity of 1300 mAh, in which the positive electrode active material is lithium cobaltate and the negative electrode active material is an amorphous carbon material. The overcharge test method is a current value of 2 CmA and an environmental temperature of 30. Performed at ° C.
[0094]
[Table 1]
Figure 0003635995
[Table 2]
Figure 0003635995
From these Tables 1 and 2, it was found that the assembled battery of this example did not rupture and ignite, and was superior to the assembled battery of the comparative example. As for the comparative example, as the number of batteries constituting the assembled battery increases, the number of ruptures and ignition increases, so that the number of batteries constituting the assembled battery increases, the number of ruptures and ignition increases. I understood.
[0095]
In this example, the resistance of the positive temperature coefficient element and the temperature of the positive temperature coefficient element when charging the assembled battery are described in two types, respectively, but up to five types were tested and similar effects were obtained. Further, it goes without saying that the same effect can be obtained for more than that.
[0096]
Similarly, in an assembled battery using a lithium ion secondary battery in which the positive electrode and the negative electrode are made of other materials, an assembled battery made of a lithium ion secondary battery having a function of physically cutting off the energization current in the battery is used. Needless to say, the same effect can be obtained.
[0097]
【The invention's effect】
In the assembled battery according to the present invention, a difference is made in the resistance of each lithium ion secondary battery that constitutes an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel. The connected battery is charged with the current concentrated on the battery with low resistance. Also, when the battery with low resistance is overcharged first and the battery temperature starts to rise, the trip temperature of the positive temperature coefficient element with low resistance connected to the battery with low resistance rises rapidly, The resistance value of the positive temperature coefficient element having a small resistance rapidly increases, and the difference in resistance increases when the battery temperature rises in the batteries connected in parallel. For this reason, a positive temperature coefficient element having a high resistance at first was connected to this battery because the current was concentrated and charged to the battery having a high resistance this time. Trip temperature suddenly rises. Thus, the timing of the rapid temperature rise of the batteries is shifted between the batteries connected in parallel, and according to the assembled battery according to the present invention, explosion and ignition can be prevented without causing thermal escape.
[0098]
On the other hand, when the temperature of the positive temperature coefficient element is changed at the time of charging the assembled battery, the resistance is different because the resistance appears as a function of temperature, and the assembled battery is operated in the same manner as in the case where the resistance is different. Can prevent rupture and ignition.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of Example 1-1 and Example 2-1 of a battery pack according to the present invention.
FIG. 2 is a circuit diagram showing a configuration of Example 1-2 and Example 2-2 of the assembled battery according to the present invention.
FIG. 3 is a circuit diagram showing configurations of Examples 1-3 and 2-3 of the assembled battery according to the present invention.
FIG. 4 is a circuit diagram showing a configuration of Example 1-4 and Example 2-4 of a battery pack according to the present invention.
FIG. 5 is a circuit diagram showing a configuration of Example 1-5 and Example 2-5 of the assembled battery according to the present invention.
FIG. 6 is a circuit diagram showing a configuration of Example 1-6 and Example 2-6 of the assembled battery according to the present invention.
FIG. 7 is a circuit diagram showing a configuration of Example 1-7 and Example 2-7 of the assembled battery according to the present invention.
FIG. 8 is a circuit diagram showing a configuration of Comparative Example 1-1 and Comparative Example 2-1 of a battery pack of a comparative example.
FIG. 9 is a circuit diagram showing configurations of Comparative Example 1-2 and Comparative Example 2-2 of a battery pack of a comparative example.
FIG. 10 is a circuit diagram showing the configuration of Comparative Example 1-3 and Comparative Example 2-3 of a battery pack of a comparative example.
FIG. 11 is a circuit diagram illustrating the configuration of Comparative Example 1-4 and Comparative Example 2-4 of a battery pack of a comparative example.

Claims (2)

X個(X≧2)のリチウムイオン二次電池が並列接続された集合体がY個(Y≧1)直列接続された組電池において、
前記集合体のうち少なくとも1つがAmΩの抵抗値をもつ正の温度係数素子を内蔵するリチウムイオン二次電池とBmΩの抵抗値をもつ正の温度係数素子を内蔵するリチウムイオン二次電池を含む組み合わせよりなり、この正の温度係数素子の抵抗値が異なる1つの前記集合体における前記AmΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数をL、前記BmΩの正の温度係数素子を内蔵するリチウムイオン二次電池の個数をMとして、A≠B、1≦L≦X−1、1≦M≦X−1、且つL+M≦Xの関係を有することを特徴とする組電池。
In an assembled battery in which an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel is Y (Y ≧ 1) in series,
A combination including a lithium ion secondary battery having a positive temperature coefficient element having a resistance value of AmΩ and a lithium ion secondary battery having a positive temperature coefficient element having a resistance value of BmΩ, wherein at least one of the aggregates The number of lithium ion secondary batteries containing the AmΩ positive temperature coefficient element in one assembly having different resistance values of the positive temperature coefficient element is L, and the positive temperature coefficient element is BmΩ. A battery pack having a relationship of A ≠ B, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X, where M is the number of built-in lithium ion secondary batteries.
X個(X≧2)のリチウムイオン二次電池が並列接続された集合体がY個(Y≧1)直列接続された組電池において、
該組電池の充電時に前記集合体のうち少なくとも1つがa℃になる正の温度係数素子を内蔵するリチウムイオン二次電池とb℃になる正の温度係数素子を内蔵するリチウムイオン二次電池を含む組み合わせよりなり、この正の温度係数素子の抵抗値が異なる1つの前記集合体における前記a℃になるリチウムイオン二次電池の個数をL、前記b℃になるリチウムイオン二次電池の個数をMとして、a≠b、1≦L≦X−1、1≦M≦X−1、且つL+M≦Xの関係を有することを特徴とする組電池。
In an assembled battery in which an assembly in which X (X ≧ 2) lithium ion secondary batteries are connected in parallel is Y (Y ≧ 1) in series,
A lithium ion secondary battery including a positive temperature coefficient element at which at least one of the aggregates becomes a ° C. during charging of the assembled battery, and a lithium ion secondary battery including a positive temperature coefficient element at b ° C. The number of lithium ion secondary batteries that reach a ° C. in the one assembly that has a different resistance value of the positive temperature coefficient element is L, and the number of lithium ion secondary batteries that reaches b ° C. A battery pack having a relationship of M ≠ a ≦ b, 1 ≦ L ≦ X−1, 1 ≦ M ≦ X−1, and L + M ≦ X.
JP23946999A 1999-08-26 1999-08-26 Assembled battery Expired - Fee Related JP3635995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23946999A JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23946999A JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Publications (2)

Publication Number Publication Date
JP2001068076A JP2001068076A (en) 2001-03-16
JP3635995B2 true JP3635995B2 (en) 2005-04-06

Family

ID=17045242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23946999A Expired - Fee Related JP3635995B2 (en) 1999-08-26 1999-08-26 Assembled battery

Country Status (1)

Country Link
JP (1) JP3635995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196074B1 (en) * 2010-01-28 2012-11-01 파나소닉 주식회사 Battery module
CN102891051B (en) * 2011-07-22 2017-04-12 阿提瓦公司 Side-by-side fuse component and battery array with same

Also Published As

Publication number Publication date
JP2001068076A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US8276695B2 (en) Battery electrode sheet
EP2672549B1 (en) Secondary battery and multi-battery system having a connecting component
JP5723925B2 (en) Secondary battery protection circuit and secondary battery having the same
JP6292407B2 (en) Soldering connector, battery module including the same, and battery pack
EP3869600B1 (en) Electrical power system and fuse with negative thermal expansion plate
CA2709138A1 (en) Construction of electrochemical storage cell with expansion member
JP2011521399A (en) Lead-free storage battery suitable for internal combustion engines and automobiles, its manufacturing method and its use
TWI275193B (en) Secondary battery having constant-voltage device
CN110036506B (en) Battery module, and battery pack and vehicle including the same
CN113661604A (en) Terminal bus bar for improving safety, and battery module and battery pack comprising same
JP3635995B2 (en) Assembled battery
CN201199534Y (en) Lithium ion battery package and cascade, parallel connection application circuit thereof
KR20180025702A (en) Protection apparatus for rechargeable battery
JP5664460B2 (en) Solid secondary battery system
Sakaebe Zebra batteries
KR102019657B1 (en) All solid state battery
CN210576185U (en) Power battery pole ear position fusing protection piece
CN209626342U (en) A kind of fusing type lithium battery
KR100923449B1 (en) Battery pack having temperature detecting device
KR20210103594A (en) Storage and/or transportation of sodium-ion cells
CN216436795U (en) Multiple protection architecture of photovoltaic wind energy storage system
CN205752362U (en) A kind of set of cells and use the power-supply system of this set of cells
JPS5929383A (en) Sealed lead storage battery
Rezal et al. Orion battery management system (BMS) for lithium-ion battery pack
CN210806771U (en) Overcharge and overdischarge delay lithium battery protection circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees