JP2001067720A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2001067720A
JP2001067720A JP24567299A JP24567299A JP2001067720A JP 2001067720 A JP2001067720 A JP 2001067720A JP 24567299 A JP24567299 A JP 24567299A JP 24567299 A JP24567299 A JP 24567299A JP 2001067720 A JP2001067720 A JP 2001067720A
Authority
JP
Japan
Prior art keywords
layer
group
recording
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24567299A
Other languages
Japanese (ja)
Inventor
Toshinaka Nonaka
敏央 野中
Kunihisa Nagino
邦久 薙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24567299A priority Critical patent/JP2001067720A/en
Publication of JP2001067720A publication Critical patent/JP2001067720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a medium giving large signal amplitude and having excellent preservation durability and an erasing characteristic of a mark by forming a recording layer, which is used for recording, reproducing and erasing information by reversible phase transition between the amorphous phase and the crystal phase by irradiation with a laser beam having a specified wavelength or lower, and a first boundary layer from specified metal compounds respectively. SOLUTION: The recording layer of this optical recording medium, which is irradiated with the laser beam of 450 nm or lower and has a first inorganic protection layer, the first boundary layer, the recording layer and a second inorganic protection layer formed on a substrate in this order, is formed from the metal compound shown by the formula. In the formula, A is an element which is other than Ge, Sb and Te and selected from group 3A of the second period to group 6B of the sixth period of the periodic table of the elements; (x) satisfies 0.5<=(x)<=0.9; (y) satisfies 0.01<=(y)<=0.08 when (z) is 0 or 0.5<=(x)<=0.9; 0<=(y)<=0.08 when 0<(z)<=0.2. The first boundary layer is formed from carbon or a compound obtained by reacting the element selected from group 3A of the second period to group 6B of the sixth period with oxygen, carbon or nitrogen. This optical recording medium has large difference between the reflectance of the crystal phase and that of the amorphous phase when irradiated with the laser beam of 450 nm or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の照射により、
情報の記録、消去、再生が可能である光情報記録媒体に
関するものである。特に、本発明は、記録情報の消去、
書換機能を有し、情報信号を高速かつ、高密度に記録可
能な光ディスク、光カード、光テープなどの書換可能相
変化型光記録媒体に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to an optical information recording medium capable of recording, erasing, and reproducing information. In particular, the present invention provides a method for erasing recorded information,
The present invention relates to a rewritable phase-change optical recording medium, such as an optical disk, an optical card, or an optical tape, having a rewritable function and capable of recording an information signal at high speed and high density.

【0002】[0002]

【従来の技術】従来の書換可能相変化型光記録媒体の技
術は、以下のごときものである。これらの光記録媒体
は、テルルなどを主成分とする記録層を有し、記録時
は、結晶状態の記録層に集束したレーザー光パルスを短
時間照射し、記録層を部分的に溶融する。溶融した部分
は熱拡散により急冷され、固化し、アモルファス状態の
記録マークが形成される。この記録マークの光線反射率
は、結晶状態より低く、光学的に記録信号として再生可
能である。また、消去時には、記録マーク部分にレーザ
ー光を照射し、記録層の融点以下、結晶化温度以上の温
度に加熱することによって、アモルファス状態の記録マ
ークを結晶化し、もとの未記録状態にもどす。
2. Description of the Related Art The technology of a conventional rewritable phase-change optical recording medium is as follows. These optical recording media have a recording layer mainly containing tellurium or the like, and at the time of recording, a focused laser light pulse is applied to the crystalline recording layer for a short time to partially melt the recording layer. The melted portion is quenched by thermal diffusion and solidified to form an amorphous recording mark. The light reflectance of this recording mark is lower than that of the crystalline state and can be reproduced optically as a recording signal. At the time of erasing, the recording mark is irradiated with a laser beam and heated to a temperature below the melting point of the recording layer and above the crystallization temperature to crystallize the amorphous recording mark and return to the original unrecorded state. .

【0003】これら書換可能相変化型光記録媒体の記録
層の材料としては、Ge2Sb2Te 5などの合金(N.Yam
ada et al. Proc. Int. Symp. on Optical Memory 1987
p61-66)が知られている。これらTe合金を記録層と
した光記録媒体では、結晶化速度が速く、照射パワーを
変調するだけで、円形の1ビームによる高速のオーバー
ライトが可能である。
[0003] Recording on these rewritable phase-change optical recording media
The material of the layer is GeTwoSbTwoTe FiveSuch as alloys (N.Yam
ada et al. Proc. Int. Symp. on Optical Memory 1987
 p61-66) are known. These Te alloys are used as a recording layer.
In the optical recording medium, the crystallization speed is high and the irradiation power is low.
High speed over with one circular beam just by modulating
Lighting is possible.

【0004】第2903969号は、波長488nmの
レーザーを用いて、Ge2Sb2Te 5の記録層に、マー
ク間隔1.17μmでのマーク位置記録を行い、C/N
51dBと49dBを得たという技術が開示されてい
る。この記録層では、記録マークの保存耐久性が低く実
用にならないばかりでなく、マーク長が0.4μm以下
では、実用上十分なC/Nが得られないという問題点が
あった。
[0004] Japanese Patent No. 2903969 has a wavelength of 488 nm.
Using a laser, GeTwoSbTwoTe FiveOn the recording layer
The mark position is recorded at a mark interval of 1.17 μm, and the C / N
The technology that obtained 51dB and 49dB is disclosed.
You. This recording layer has low storage durability
Not only is not useful, but mark length is 0.4μm or less
Then, there is a problem that a practically sufficient C / N cannot be obtained.
there were.

【0005】[0005]

【発明が解決しようとする課題】450nm以下の波長
のレーザーを用いた光記録システムでは、再生光に対す
る検出器の感度が、PDやDVD−RAMなどで用いら
れている赤色光の場合に比べ1/2近くに低下するた
め、再生信号振幅が大幅に低下し、C/Nが4〜8dB
も低くなるという問題点があった。
In an optical recording system using a laser having a wavelength of 450 nm or less, the sensitivity of the detector to the reproduction light is lower than that of the red light used in PDs and DVD-RAMs by one. / 2, the amplitude of the reproduced signal is greatly reduced, and the C / N is 4 to 8 dB.
Has also been problematic.

【0006】本発明の目的は、450nmm以下で結晶
と非晶の反射率差が大きいために、、大きな信号振幅が
得られ、かつマークの保存耐久性に優れた記録層とそれ
に接する層として境界層を用いることで消去特性を向上
さ、書換可能とした相変化型光記録媒体を提供すること
にある。
An object of the present invention is to provide a recording layer having a large signal amplitude and excellent storage durability of a mark because of a large difference in reflectance between a crystal and an amorphous material at 450 nm or less. It is an object of the present invention to provide a rewritable phase-change optical recording medium in which erasing characteristics are improved by using a layer.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は波長
450nm以下のレーザー光を照射することによって、
情報の記録、消去、再生が可能であって、情報の記録お
よび消去が、非晶相と結晶相の間の可逆的な相変化によ
り行われ、少なくとも基板上に第1無機保護層、記録
層、第2無機保護層をこの順に備えた光記録媒体におい
て、前記記録層が下記式(I) {(Ge0.5Te0.5x(Sb0.4Te0.61-x1-y-zSbyz (I) (ここで、Aは、Ge、Sb、Teを除く元素周期律表
における第2周期から第6周期の3A族から6B族に属
する元素を示し、x、y、zは数を示し、かつ次の関係
式を満たす。 0.5≦x≦0.9、0.01≦y≦0.08、z=0
もしくは、0.5≦x≦0.9、0≦y≦0.08、0
<z≦0.2からなることを特徴とする光記録媒体であ
る。
That is, according to the present invention, a laser beam having a wavelength of 450 nm or less is irradiated.
Recording, erasing, and reproducing of information are possible, and recording and erasing of information are performed by a reversible phase change between an amorphous phase and a crystalline phase, and at least a first inorganic protective layer and a recording layer are formed on a substrate. in the optical recording medium having a second inorganic protective layer in this order, said recording layer is represented by the following formula (I) {(Ge 0.5 Te 0.5) x (Sb 0.4 Te 0.6) 1-x} 1-yz Sb y a z (I) (where A represents an element belonging to Groups 3A to 6B of the second to sixth periods in the periodic table of the element except for Ge, Sb, and Te, and x, y, and z represent numbers. And the following relational expressions are satisfied: 0.5 ≦ x ≦ 0.9, 0.01 ≦ y ≦ 0.08, z = 0
Or, 0.5 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.08, 0
<Z ≦ 0.2, which is an optical recording medium.

【0008】[0008]

【発明の実施の形態】本発明者らは、鋭意研究を行うこ
とにより、記録層を特定の材料とすることで、450n
m以下で結晶と非晶の反射率差を大きくすることがで
き、さらにはこれに接する層として硫化物を含まない特
定の材料からなる境界層を用いることで、実用上十分大
きなC/N、記録マークの保存安定性、1ビームダイレ
クトオーバーライトによる書換が可能な光記録媒体が得
られることを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies and found that a 450 n
m or less, the difference in reflectance between the crystal and the amorphous can be increased, and furthermore, by using a boundary layer made of a specific material not containing sulfide as a layer in contact with this, C / N, which is sufficiently large for practical use, It has been found that an optical recording medium that can be rewritten by storage stability of recording marks and rewritable by one-beam direct overwrite can be obtained.

【0009】すなわち、本発明における光記録媒体の構
成部材の代表的な層構成は、透明基板上に第1無機保護
層、炭素層、記録層、炭素層、第2無機保護層、反射層
の順に積層したものである。但しこれに限定するもので
はない。
That is, a typical layer structure of the constituent members of the optical recording medium in the present invention is such that a first inorganic protective layer, a carbon layer, a recording layer, a carbon layer, a second inorganic protective layer, and a reflective layer are formed on a transparent substrate. These are sequentially laminated. However, it is not limited to this.

【0010】以下に順をおって説明する。第1無機保護
層の材質として好適なものは、ZnSとSiO2の混合
物からなる膜である。この材料は、残留応力が小さいた
め、繰り返しオーバーライトによるバースト劣化などが
起きにくい。また、ZnSとSiO2 と炭素の混合物
は、膜の残留応力がさらに小さいこと、記録、消去の繰
り返しによっても、記録感度、キャリア対ノイズ比(C
/N)、消去率などの劣化が起きにくいことからも特に
好ましい。膜の厚さは光学的な条件により決められる
が、5〜500nmが好ましい。これより厚いと、クラ
ックなどが生じることがあり、これより薄いと、オーバ
ーライトの繰り返しにより基板が熱ダメージを受けやす
く、繰り返し特性が劣化する。膜の厚さの特に好ましい
範囲は10nm以上200nm以下である。
The description will be made in the following order. A suitable material for the first inorganic protective layer is a film made of a mixture of ZnS and SiO 2 . Since this material has a small residual stress, burst deterioration due to repeated overwriting is unlikely to occur. In addition, the mixture of ZnS, SiO 2, and carbon has a smaller residual stress in the film, and the recording sensitivity and the carrier-to-noise ratio (C
/ N) and the erasure rate is hardly deteriorated. The thickness of the film is determined by optical conditions, but is preferably from 5 to 500 nm. If the thickness is larger than this, cracks and the like may occur. If the thickness is smaller than this, the substrate is easily damaged by heat due to repetition of overwriting, and the repetition characteristics deteriorate. A particularly preferred range of the film thickness is from 10 nm to 200 nm.

【0011】本発明では、上記の第1無機保護層と下記
する記録層の間に第1境界層を設ける必要がある。これ
を設けることによって、高い消去率が得られ、1ビーム
ダイレクトオーバーライトが可能となる。その他にも、
オーバーライトの繰り返しによるジッタの悪化、再生信
号の振幅の低下を防ぐ効果がある。この原因は、長時間
放置しても、記録層における原子配列などの状態の変化
や、無機保護層と記録層の反応を防げるからではないか
と推定される。
In the present invention, it is necessary to provide a first boundary layer between the first inorganic protective layer and the recording layer described below. By providing this, a high erasing rate can be obtained, and one-beam direct overwriting can be performed. In addition,
This has the effect of preventing deterioration of jitter due to repetition of overwriting and reduction of the amplitude of the reproduced signal. It is presumed that the cause of this is that even if the recording layer is left for a long time, it is possible to prevent a change in the state of the recording layer such as the atomic arrangement and the reaction between the inorganic protective layer and the recording layer.

【0012】第1境界層としては、(1)元素周期律表
における第2周期から第6周期の3A族から6B族に属
する元素M1と酸素とが化合してなる物質、(2)元素
周期律表における第2周期から第6周期の3A族から6
B族に属する元素M2と炭素とが化合してなる物質、
(3)元素周期律表における第2周期から第6周期の3
A族から6B族に属する元素M3と窒素とが化合してな
る物質、および(4)炭素のいずれかを用いる必要があ
る。
As the first boundary layer, (1) a substance obtained by combining oxygen with the element M1 belonging to the group 3A to 6B in the second to sixth periods in the periodic table of the element and oxygen, (2) the element period 6 from the 3A group of the 2nd to 6th period in the Ritsumei table
A substance formed by combining element B belonging to group B with carbon,
(3) 3 of the 2nd to 6th periods in the periodic table of the elements
It is necessary to use any of a substance obtained by combining nitrogen with the element M3 belonging to Group A to Group 6B and (4) carbon.

【0013】これらの中でも、記録層との長期保存時、
繰り返し時に剥離が起きにくいことから、炭素、アルミ
ニウムと酸素の非化学量論組成化合物、クロムと窒素が
化合した物質、チタンと窒素が化合した物質、ゲルマニ
ウムと窒素の非化学量論組成化合物が好ましい。
Among them, when stored for a long time with the recording layer,
Non-stoichiometric compounds of carbon, aluminum and oxygen, substances of chromium and nitrogen, substances of titanium and nitrogen, and non-stoichiometric compounds of germanium and nitrogen are preferred because peeling is unlikely to occur during repetition. .

【0014】境界層に炭素を用いる場合、その厚さとし
ては、第1無機保護層から剥離し難いこと、また光学的
な条件から、0.5nm以上10nm以下が好ましい。
厚さが、10nmを越えると、第1無機保護層や記録層
と剥離しやすい。また、0.5nm未満では、均一の厚
さに蒸着することが困難であり、かつ炭素膜を設けた効
果が得られないことがある。炭素膜の蒸着速度などを鑑
みると、0.5nm以上5nm以下が特に好ましい。
0.5nm以上4nm以下であることが、繰り返し特性
の点からさらにより好ましい。
When carbon is used for the boundary layer, the thickness is preferably 0.5 nm or more and 10 nm or less from the viewpoint of difficulty in peeling off from the first inorganic protective layer and optical conditions.
When the thickness exceeds 10 nm, it is easy to peel off from the first inorganic protective layer and the recording layer. On the other hand, when the thickness is less than 0.5 nm, it is difficult to deposit the film to a uniform thickness, and the effect of providing the carbon film may not be obtained. In view of the deposition rate of the carbon film, the thickness is particularly preferably 0.5 nm or more and 5 nm or less.
It is even more preferable that the thickness be 0.5 nm or more and 4 nm or less from the viewpoint of the repetition characteristics.

【0015】炭素膜をスパッタで成膜する際には、導入
ガスは、Arガスなどの希ガスだけでなく、水素を混ぜ
ても良い。また、他の材料を混合しても良いが、良好な
特性を得るためには炭素を60mol%以上の割合で含
んでいることが好ましい。
When the carbon film is formed by sputtering, the introduced gas may be a mixture of hydrogen as well as a rare gas such as Ar gas. Further, other materials may be mixed, but in order to obtain good characteristics, it is preferable that carbon is contained in a proportion of 60 mol% or more.

【0016】本発明の記録層の組成は、下記式(I)の
範囲にあることが必要である。 {(Ge0.5Te0.5x(Sb0.4Te0.61-x1-y-zSbyz (I) ここで、Aは、Ge、Sb、Teを除く元素周期律表に
おける第2周期から第6周期の3A族から6B族に属す
る元素すなわち、Al、Si、Sc、Ti、V、Cr、
Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、
Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、C
d、In、Sn、La、Hf、Ta、W、Re、Ir、
Pt、Au、Tl、Pbから選ばれた少なくとも一種を
示し、x、y、zは数を示し、かつ次の関係式を満た
す。
The composition of the recording layer of the present invention needs to be within the range of the following formula (I). {(Ge 0.5 Te 0.5) x (Sb 0.4 Te 0.6) 1-x} in 1-yz Sb y A z ( I) wherein, A is, Ge, Sb, from the second period in the Periodic Table of Elements except Te Elements belonging to Group 3A to Group 6B in the sixth period, that is, Al, Si, Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,
Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, C
d, In, Sn, La, Hf, Ta, W, Re, Ir,
It indicates at least one selected from Pt, Au, Tl, and Pb, x, y, and z indicate numbers and satisfy the following relational expression.

【0017】0.5≦x≦0.9、0.01≦y≦0.
08、z=0もしくは、0.5≦x≦0.9、0≦y≦
0.08、0<z≦0.2x<0.5では、結晶相と非
晶相でのコントラストが小さくなり過ぎ、十分な信号強
度を得られないことがあり、x>0.9の場合は、結晶
化速度が遅くなり、消去特性が悪化し、1ビームダイレ
クトオーバーライトが困難になることがある。z=0か
つ、y<0.01の場合は、アモルファスの安定性が低
く、アーカイバル特性が悪くなる。y>0.08の場
合、初期の消去特性が悪い場合や、オーバーライトシェ
ルフが悪くなることがある。z>0.2の場合、結晶化
速度が遅くなり、消去特性が悪化し、1ビームダイレク
トオーバーライトが困難になったり、相分離により繰り
返し特性が大きく劣化したり、オーバーライトシェルフ
が悪くなったりすることがあり、z=0の場合はアモル
ファスの安定性が低く、アーカイバル特性が悪くなるこ
とがある。
0.5 ≦ x ≦ 0.9, 0.01 ≦ y ≦ 0.
08, z = 0 or 0.5 ≦ x ≦ 0.9, 0 ≦ y ≦
If 0.08, 0 <z ≦ 0.2x <0.5, the contrast between the crystalline phase and the amorphous phase is too small, and a sufficient signal intensity may not be obtained. In some cases, the crystallization speed is reduced, the erasing characteristics are deteriorated, and one-beam direct overwriting may be difficult. When z = 0 and y <0.01, the stability of the amorphous is low, and the archival characteristics are poor. If y> 0.08, the initial erasing characteristics may be poor or the overwrite shelf may be poor. In the case of z> 0.2, the crystallization speed becomes slow, the erasing characteristics are deteriorated, one-beam direct overwriting becomes difficult, the repetition characteristics are largely deteriorated by phase separation, and the overwriting shelf is deteriorated. In the case of z = 0, the stability of the amorphous is low, and the archival characteristics may be deteriorated.

【0018】本発明の記録層の厚さとしては、5nm以
上40nm以下であることが好ましい。記録層の厚さが
上記よりも薄い場合は、繰返しオーバーライトによる記
録特性の劣化が著しく、また、記録層の厚さが上記より
も厚い場合は、繰返しオーバーライトによる記録層の移
動が起りやすくジッタの悪化が激しくなる。特に、マー
ク長記録を採用する場合は、ピットポジション記録の場
合に比べ、記録、消去による記録層の移動が起こりやす
く、これを防ぐため、記録時の記録層の冷却をより大き
くする必要があり、記録層の厚さは、好ましくは7nm
〜35nm、より好ましくは7nm〜25nmである。
The thickness of the recording layer of the present invention is preferably 5 nm or more and 40 nm or less. When the thickness of the recording layer is smaller than the above, the recording characteristics are significantly degraded due to repeated overwriting, and when the recording layer is thicker than the above, the recording layer is likely to move due to repeated overwriting. Jitter becomes worse. In particular, when mark length recording is adopted, the recording layer is more likely to move due to recording and erasing than when pit position recording is used.To prevent this, it is necessary to further increase the cooling of the recording layer during recording. The thickness of the recording layer is preferably 7 nm.
To 35 nm, more preferably 7 nm to 25 nm.

【0019】本発明の第2境界層の材質は、第1境界層
の材料としてあげたものと同様のものでも良いし、異種
の材料であってもよい。
The material of the second boundary layer of the present invention may be the same as the material of the first boundary layer, or may be a different material.

【0020】第2境界層を用いる場合は、第1境界層の
みを用いる場合に比べ、記録層の結晶化速度がより速く
なり、アモルファスの安定特性が変化するため、必要な
組成範囲が、0.02≦y≦0.08かつ、z=0、も
しくは、0≦y≦0.08かつ 0.001≦z≦0.
2となる。z=0かつ、y<0.02の場合は、アモル
ファスの安定性が低く、アーカイバル特性が悪くなる。
y>0.08の場合、長期保存後のオーバーライトが困
難になることがある。z>0.2の場合、結晶化速度が
遅くなり、消去特性が悪化し、1ビームダイレクトオー
バーライトが困難になることがある。
In the case where the second boundary layer is used, the crystallization speed of the recording layer becomes faster and the stability characteristics of the amorphous phase change as compared with the case where only the first boundary layer is used. .02 ≦ y ≦ 0.08 and z = 0, or 0 ≦ y ≦ 0.08 and 0.001 ≦ z ≦ 0.
It becomes 2. When z = 0 and y <0.02, the stability of the amorphous is low, and the archival characteristics are poor.
When y> 0.08, overwriting after long-term storage may be difficult. When z> 0.2, the crystallization speed becomes slow, the erasing characteristics deteriorate, and one-beam direct overwriting may become difficult.

【0021】本発明の第2無機保護層の材質は、第1無
機保護層の材料としてあげたものと同様のものでも良い
し、異種の材料であってもよい。厚さは、2nm以上5
0nm以下が好ましい。第2無機保護層の厚さが上記よ
り薄いと、クラック等の欠陥を生じ、繰り返し耐久性が
低下するために好ましくない。また、第2無機保護層の
厚さが、上記より厚いと記録層の冷却度が低くなるため
に好ましくない。第2無機保護層の厚さは記録層の冷却
に関し、より直接的に影響が大きく、より良好な消去特
性や、繰り返し耐久性を得るために、また、特にマーク
長記録の場合に良好な記録・消去特性を得るために、3
0nm以下がより効果的である。光を吸収し、記録、消
去に効率的に熱エネルギーとして用いることができるこ
とから、透明でない材料から形成されることも好まし
い。例えば、ZnSとSiO2 と炭素の混合物は、膜の
残留応力が小さいこと、記録、消去の繰り返しによって
も、記録感度、キャリア対ノイズ比(C/N)、消去率
などの劣化が起きにくいことからも好ましい。
The material of the second inorganic protective layer of the present invention may be the same as the material of the first inorganic protective layer, or may be a different material. The thickness is 2 nm or more and 5
0 nm or less is preferable. If the thickness of the second inorganic protective layer is smaller than the above, defects such as cracks are generated, and the durability of the second inorganic protective layer is undesirably reduced. On the other hand, if the thickness of the second inorganic protective layer is larger than the above, the cooling degree of the recording layer is undesirably low. The thickness of the second inorganic protective layer has a more direct effect on the cooling of the recording layer, and in order to obtain better erasing characteristics and repetitive durability, and particularly to achieve good recording in the case of mark length recording. .3 to obtain erasing characteristics
0 nm or less is more effective. Since it absorbs light and can be efficiently used as thermal energy for recording and erasing, it is also preferable to be formed from a non-transparent material. For example, a mixture of ZnS, SiO 2, and carbon has low residual stress in the film, and hardly causes deterioration in recording sensitivity, carrier-to-noise ratio (C / N), erasure rate, and the like even when recording and erasing are repeated. Is also preferred.

【0022】反射層の材質としては、光反射性を有する
金属、合金、および金属と金属化合物の混合物などがあ
げられる。具体的には、Al、Au、Ag、Cuなどの
高反射率の金属や、それを主成分とした合金、Al、S
iなどの窒化物、酸化物、カルコゲン化物などの金属化
合物が好ましい。Al、Au、Agなどの金属、及びこ
れらを主成分とする合金は、光反射性が高く、かつ熱伝
導率を高くできることから特に好ましい。特に、材料の
価格が安くできることから、AlまたはAgを主成分と
する合金が好ましい。反射層の厚さとしては、通常、お
おむね10nm以上300nm以下である。記録感度を
高く、再生信号強度が大きくできることから30nm以
上200nm以下が好ましい。
Examples of the material of the reflective layer include metals and alloys having light reflectivity, and mixtures of metals and metal compounds. Specifically, a metal having a high reflectivity, such as Al, Au, Ag, or Cu, an alloy containing the same as a main component, Al, S
Metal compounds such as nitrides, oxides, and chalcogenides such as i are preferable. Metals such as Al, Au, and Ag, and alloys containing these as main components are particularly preferable because of their high light reflectivity and high thermal conductivity. In particular, an alloy containing Al or Ag as a main component is preferable because the price of the material can be reduced. The thickness of the reflective layer is generally about 10 nm or more and 300 nm or less. The thickness is preferably 30 nm or more and 200 nm or less because the recording sensitivity is high and the reproduction signal intensity can be increased.

【0023】次に、本発明の光記録媒体の製造方法につ
いて述べる。第1無機保護層、第1境界層、記録層、第
2境界層、第2無機保護層、反射層などを基板上に形成
する方法としては、真空中での薄膜形成法、例えば真空
蒸着法、イオンプレーティング法、スパッタリング法な
どがあげられる。特に組成、膜厚のコントロールが容易
であることから、スパッタリング法が好ましい。形成す
る記録層などの厚さの制御は、水晶振動子膜厚計など
で、堆積状態をモニタリングすることで、容易に行え
る。
Next, a method for manufacturing the optical recording medium of the present invention will be described. As a method of forming a first inorganic protective layer, a first boundary layer, a recording layer, a second boundary layer, a second inorganic protective layer, a reflective layer, and the like on a substrate, a method of forming a thin film in a vacuum, for example, a vacuum deposition method , An ion plating method, a sputtering method and the like. In particular, the sputtering method is preferable because the composition and the film thickness can be easily controlled. The thickness of the recording layer or the like to be formed can be easily controlled by monitoring the deposited state with a quartz crystal film thickness meter or the like.

【0024】また、本発明の効果を著しく損なわない範
囲において、反射層を形成した後、傷、変形の防止など
のため、ZnS、SiO2 、ZnS−SiO2 、などの
無機保護層あるいは紫外線硬化樹脂などの保護層などを
必要に応じて設けてもよい。
In addition, after forming the reflective layer, an inorganic protective layer such as ZnS, SiO 2 , ZnS—SiO 2 , or an ultraviolet curable resin is formed within a range that does not significantly impair the effects of the present invention. A protective layer such as a resin may be provided as necessary.

【0025】[0025]

【実施例】以下、本発明を実施例に基づいて説明する。 (分析,測定方法)反射層、記録層の組成は、ICP発
光分析(セイコー電子工業(株)製)により確認した。
記録層、無機保護層、反射層の形成中の膜厚は、水晶振
動子膜厚計によりモニターした。また各層の厚さは、走
査型あるいは透過型電子顕微鏡で断面を観察することに
より測定した。第1境界層および第2境界層2の組成は
ラザフォード後方散乱法(日新ハイボルテージ(株)
製、AN−2500)により調べた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. (Analysis and Measurement Method) The compositions of the reflective layer and the recording layer were confirmed by ICP emission analysis (manufactured by Seiko Instruments Inc.).
The film thickness during the formation of the recording layer, the inorganic protective layer, and the reflective layer was monitored by a quartz oscillator film thickness meter. The thickness of each layer was measured by observing the cross section with a scanning or transmission electron microscope. The composition of the first boundary layer and the second boundary layer 2 is determined by Rutherford backscattering method (Nissin High Voltage Co., Ltd.)
Manufactured by AN-2500).

【0026】スパッタリングにより成膜した光記録媒体
は、記録を行う前にあらかじめ波長830nmの半導体
レーザのビームでディスク全面の記録層を結晶化し初期
化した。
In the optical recording medium formed by sputtering, the recording layer on the entire surface of the disk was crystallized and initialized with a beam of a semiconductor laser having a wavelength of 830 nm before recording.

【0027】次に、グルーブに、線速度4.4m/秒の
条件で、対物レンズの開口数0.6、半導体レーザの波
長408nmの光学ヘッドを使用して、8/16変調の
3T信号のC/Nを測定した。この時、記録レーザー波
形は、一般的なマルチパルスを用いた。また、この時の
ウィンドウ幅は、22.8nsとした(この場合の最短
マーク長は0.3μmであった)。信号波形の振幅の低
下、バースト欠陥の有無はオシロスコープにより観察し
た。
Next, an 8/16 modulated 3T signal was formed in the groove under the condition of a linear velocity of 4.4 m / sec using an optical head having a numerical aperture of the objective lens of 0.6 and a wavelength of 408 nm of the semiconductor laser. C / N was measured. At this time, the recording laser waveform used was a general multi-pulse. The window width at this time was 22.8 ns (the shortest mark length in this case was 0.3 μm). The decrease in the amplitude of the signal waveform and the presence or absence of a burst defect were observed with an oscilloscope.

【0028】(実施例1)厚さ0.6mm、直径12c
m、0.64μmピッチ(ランド幅0.32μm、グル
ーブ幅0.32μm)のスパイラルグルーブ付きポリカ
ーボネート製基板を毎分30回転で回転させながら、ス
パッタを行った。まず、真空容器内を1×10-3Paま
で排気した後、0.2PaのArガス零囲気中でSiO
2 を20mol%添加したZnSをスパッタし、基板上
に膜厚130nmの第1無機保護層を形成した。次に炭
素ターゲットをスパッタし、炭素層を2nm形成した。
続いて、Ge、Sb、Teからなる合金ターゲットをス
パッタして、厚さ12nm、組成Ge35.7Sb12.8Te
51.5[すなわち{(Ge0.5Te0.50.729(Sb0.4
0.60.2710.98Sb0.02]の記録層を得た。さらに
第2境界層として炭素層を2nm形成し、第2無機保護
層として第1無機保護層と同じZnS・SiO 2をスパ
ッタして、20nm形成し、この上に、Al97.5Cr
2.5合金をスパッタして膜厚100nmの反射層を形成
した。このディスクを真空容器より取り出した後、この
反射層上にアクリル系紫外線硬化樹脂(大日本インキ
(株)製SD−101)をスピンコートし、紫外線照射
により硬化させて膜厚3μmの樹脂層を形成し、次にス
クリーン印刷機を用いて遅効性の紫外線効果効果樹脂を
塗布し、紫外線を照射した後、同様に作製したディスク
2枚を貼り合わせて本発明の光記録媒体を得た。
(Example 1) thickness 0.6 mm, diameter 12c
m, 0.64 μm pitch (land width 0.32 μm, glue
Polycarbonate with spiral groove of 0.32μm)
While rotating the substrate made of carbonate at 30 revolutions per minute,
Went putter. First, 1 × 10-3Pa
And then exhausted with SiO 2 in a 0.2 Pa Ar gas atmosphere.
Two Is sputtered with ZnS added with 20 mol%
Then, a first inorganic protective layer having a thickness of 130 nm was formed. Then charcoal
A carbon target was sputtered to form a carbon layer of 2 nm.
Subsequently, an alloy target made of Ge, Sb, and Te was scanned.
Put on, thickness 12nm, composition Ge35.7Sb12.8Te
51.5 [that is, {(Ge0.5Te0.5)0.729(Sb0.4T
e0.6)0.2710.98Sb0.02Was obtained. further
A carbon layer is formed to a thickness of 2 nm as a second boundary layer, and a second inorganic protective layer is formed.
The same ZnS / SiO as the first inorganic protective layer as a layer TwoThe spa
To form a 20 nm film, on which Al97.5Cr
2.5Sputtering alloy to form 100nm thick reflective layer
did. After removing this disk from the vacuum container,
Acrylic UV curable resin (Dainippon Ink) on the reflective layer
Spin-coated by SD-101 manufactured by Co., Ltd. and irradiated with ultraviolet rays
To form a resin layer having a thickness of 3 μm.
Using a slow-acting UV-effect resin using a clean printer
After coating and irradiating with ultraviolet light, a disk made in the same way
Two sheets were laminated to obtain an optical recording medium of the present invention.

【0029】C/NとDC消去率を測定したところ、そ
れぞれ51dBと21dBと、いずれも実用レベルのC
/N50dB、1ビームダイレクトオーバーライトが可
能となる消去率20dBを上回る十分なものであった。
記録した状態のまま、90℃、相対湿度80%の条件で
100時間放置した後、記録信号を再生し、C/Nを測
定したところ、全く変化がなかった。また、剥離による
バースト欠陥などもみられなかった。
When the C / N and the DC erasure rate were measured, they were 51 dB and 21 dB, respectively, and both were at practical levels.
/ N50 dB, which is sufficient to exceed the erasure rate of 20 dB at which one-beam direct overwrite is possible.
After standing for 100 hours at 90 ° C. and a relative humidity of 80% in the recorded state, the recorded signal was reproduced and the C / N was measured. As a result, there was no change at all. Also, no burst defects due to peeling were observed.

【0030】(実施例2)記録層の組成をGe36.2Sb
10.9Te52.5Nb0.4[すなわち{(Ge0.5Te 0.5
0.729(Sb0.4Te0.60.2710.995Sb0.001Nb
0.004]とした以外は、実施例1と同様なディスクを作
製した。
Example 2 The composition of the recording layer was Ge36.2Sb
10.9Te52.5Nb0.4[That is, {(Ge0.5Te 0.5)
0.729(Sb0.4Te0.6)0.2710.995Sb0.001Nb
0.004The same disc as in Example 1 was created except that
Made.

【0031】C/NとDC消去率を測定したところ、そ
れぞれ51dBと21dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、全く変化がなかった。また、剥離
によるバースト欠陥などもみられなかった。また、Nb
の替わりにAl、Si、Sc、Ti、V、Cr、Mn、
Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Z
r、Mo、Ru、Rh、Pd、Ag、Cd、In、S
n、La、Hf、Ta、W、Re、Ir、Pt、Au、
Tl、Pbを用いた場合でも、ほぼ同様な結果が得られ
た。
The measured C / N and DC erasure rates were 51 dB and 21 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed. Also, Nb
Instead of Al, Si, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Z
r, Mo, Ru, Rh, Pd, Ag, Cd, In, S
n, La, Hf, Ta, W, Re, Ir, Pt, Au,
Almost the same results were obtained when Tl and Pb were used.

【0032】(実施例3)記録層の組成をGe25.0Sb
21.6Te53.4[すなわち{(Ge0.5Te0.50. 51(S
0.4Te0.60.490.98Sb0.02]とした以外は、実
施例1と同様なディスクを作製した。
Example 3 The composition of the recording layer was Ge 25.0 Sb
21.6 Te 53.4 [i.e. {(Ge 0.5 Te 0.5) 0. 51 (S
b 0.4 Te 0.6 ) 0.490.98 Sb 0.02 ], and the same disk as in Example 1 was produced.

【0033】C/NとDC消去率を測定したところ、そ
れぞれ50dBと21dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、全く変化がなかった。また、剥離
によるバースト欠陥などもみられなかった。
When the C / N and DC erasure rates were measured, they were 50 dB and 21 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed.

【0034】(実施例4)第1境界層と第2境界層をA
lターゲットを酸素16.7%、アルゴン63.3%の
混合ガスでスパッタして厚さ2nmのAl22.50とし
た以外は実施例1と同様にしてディスクを作製した。
(Embodiment 4) The first boundary layer and the second boundary layer are A
A disk was produced in the same manner as in Example 1 except that the target was sputtered with a mixed gas of 16.7% oxygen and 63.3% argon to obtain Al 2 O 2.50 having a thickness of 2 nm.

【0035】C/NとDC消去率を測定したところ、そ
れぞれ51dBと22dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、全く変化がなかった。また、剥離
によるバースト欠陥などもみられなかった。
The measured C / N and DC erasure rates were 51 dB and 22 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed.

【0036】(実施例5)第1境界層と第2境界層をT
iターゲットを窒素8.2%、アルゴン91.8%の混
合ガスでスパッタして厚さ2nmのTiN0.87とした以
外は実施例1と同様にしてディスクを作製した。
(Embodiment 5) The first boundary layer and the second boundary layer
A disk was produced in the same manner as in Example 1 except that the i target was sputtered with a mixed gas of 8.2% of nitrogen and 91.8% of argon to obtain TiN 0.87 having a thickness of 2 nm.

【0037】C/NとDC消去率を測定したところ、そ
れぞれ50dBと21dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したとことろ、全く変化がなかった。また、剥
離によるバースト欠陥などもみられなかった。
When the C / N and DC erasure rate were measured, they were 50 dB and 21 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed.

【0038】(実施例6)第1境界層と第2境界層をC
rターゲットを窒素28.6%、アルゴン71.4%の
混合ガスでスパッタして、厚さ2nmのCrN0.92とし
た以外は実施例1と同様にしてディスクを作製した。
(Embodiment 6) The first boundary layer and the second boundary layer are C
A disk was prepared in the same manner as in Example 1 except that the r target was sputtered with a mixed gas of 28.6% of nitrogen and 71.4% of argon to obtain CrN 0.92 having a thickness of 2 nm.

【0039】C/NとDC消去率を測定したところ、そ
れぞれ51dBと20dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、全く変化がなかった。また、剥離
によるバースト欠陥などもみられなかった。
When the C / N and DC erasure rates were measured, they were 51 dB and 20 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed.

【0040】(実施例7)第1境界層と第2境界層をS
iターゲットとSiCターゲッをアルゴンガスで同時ス
パッタして、厚さ2nmのSiC0.85とした以外は実施
例1と同様にしてディスクを作製した。
(Embodiment 7) The first boundary layer and the second boundary layer
A disk was prepared in the same manner as in Example 1 except that the i target and the SiC target were simultaneously sputtered with argon gas to obtain a 2 nm thick SiC 0.85.

【0041】C/NとDC消去率を測定したところ、そ
れぞれ51dBと22dBと実用レベル以上のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、全く変化がなかった。また、剥離
によるバースト欠陥などもみられなかった。
When the C / N and DC erasure rates were measured, they were 51 dB and 22 dB, respectively, which were higher than practical levels. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, there was no change at all. Also, no burst defects due to peeling were observed.

【0042】(比較例1)記録層の組成をGe2Sb2
5すなわち、(Ge0.5Te0.50.444(Sb0. 4Te
0.60.556とした以外は、実施例1と同様にしてディス
クを作製した。
Comparative Example 1 The composition of the recording layer was Ge 2 Sb 2 T
e 5 That, (Ge 0.5 Te 0.5) 0.444 (Sb 0. 4 Te
0.6 ) A disc was produced in the same manner as in Example 1 except that the disc was changed to 0.556 .

【0043】C/NとDC消去率を測定したところ、そ
れぞれ45dBと18dBと実用レベル以下のものであ
った。記録した状態のまま、90℃、相対湿度80%の
条件で100時間放置した後、記録信号を再生し、C/
Nを測定したところ、43dBと2dB低下していた。
When the C / N and DC erasure rates were measured, they were 45 dB and 18 dB, respectively, which were below the practical level. After being left for 100 hours under the condition of 90 ° C. and 80% relative humidity in the recorded state, the recorded signal was reproduced,
When N was measured, it was 43 dB, a decrease of 2 dB.

【0044】(比較例2)記録層の組成をGeTeすな
わち、(Ge0.5Te0.51.00(Sb0.4Te0.60.00
とした以外は、実施例1と同様にしてディスクを作製し
た。
Comparative Example 2 The composition of the recording layer was GeTe, that is, (Ge 0.5 Te 0.5 ) 1.00 (Sb 0.4 Te 0.6 ) 0.00
A disc was produced in the same manner as in Example 1 except that the above conditions were satisfied.

【0045】C/NとDC消去率を測定したところ、そ
れぞれ51dBと15dBであった。C/Nは実用上十
分であったが、消去率は実用レベル以下であった。
When the C / N and DC erasure rates were measured, they were 51 dB and 15 dB, respectively. Although the C / N ratio was sufficient for practical use, the erasing rate was lower than the practical level.

【0046】(比較例3)記録層の組成をGe29.2Sb
28.7Te42.1[すなわち{(Ge0.5Te0.5
0. 729(Sb0.4Te0.60.2710.8Sb0.2]とした以
外は、実施例1と同様なディスクを作製した。
Comparative Example 3 The composition of the recording layer was Ge 29.2 Sb
28.7 Te 42.1 [that is, {(Ge 0.5 Te 0.5 )
Except that the 0. 729 (Sb 0.4 Te 0.6) 0.271} 0.8 Sb 0.2] was prepared the same disk as in Example 1.

【0047】C/NとDC消去率を測定したところ、そ
れぞれ50dBと10dBであった。C/Nは実用上十
分であったが、消去率は実用レベル以下であった。
The measured C / N and DC erasure rates were 50 dB and 10 dB, respectively. Although the C / N ratio was sufficient for practical use, the erasing rate was lower than the practical level.

【0048】[0048]

【発明の効果】本発明の光記録媒体によれば、以下の効
果が得られる。 (1)波長450nm以下のレーザー光を用いた記録に
おいても実用上十分なC/Nが得られ、かつ1ビームダ
イレクトオーバーライトが可能である。 (2)記録後長時間放置しても、バースト欠陥の発生
や、記録マークの消失がない。 (3)スパッタ法により容易に製作できる。
According to the optical recording medium of the present invention, the following effects can be obtained. (1) Practically sufficient C / N is obtained even in recording using a laser beam having a wavelength of 450 nm or less, and one-beam direct overwrite is possible. (2) Even if left for a long time after recording, there is no occurrence of burst defects and no disappearance of recording marks. (3) It can be easily manufactured by a sputtering method.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H111 EA04 EA11 EA12 EA14 EA23 EA36 EA40 EA43 FA01 FA11 FA14 FA24 FA25 FA28 FB04 FB05 FB08 FB09 FB12 FB16 FB20 FB22 FB24 FB30 5D029 JA01 JB47 JC02 KC17 LA12 LA14 LA16  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H111 EA04 EA11 EA12 EA14 EA23 EA36 EA40 EA43 FA01 FA11 FA14 FA24 FA25 FA28 FB04 FB05 FB08 FB09 FB12 FB16 FB20 FB22 FB24 FB30 5D029 JA01 JB12 JC14 LA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】波長450nm以下のレーザー光を照射す
ることによって、情報の記録、消去、再生が可能であっ
て、情報の記録および消去が、非晶相と結晶相の間の可
逆的な相変化により行われ、少なくとも基板上に第1無
機保護層、記録層に接する第1境界層、記録層、第2無
機保護層をこの順に備えた光記録媒体において、前記記
録層が下記式(I) {(Ge0.5Te0.5x(Sb0.4Te0.61-x1-y-zSbyz (I) (ここで、Aは、Ge、Sb、Teを除く元素周期律表
における第2周期から第6周期の3A族から6B族に属
する元素を示し、x、y、zは数を示し、かつ次の関係
式を満たす。 0.5≦x≦0.9、0.01≦y≦0.08、z=0
もしくは、0.5≦x≦0.9、0≦y≦0.08、0
<z≦0.2)からなり、前記第1境界層が、(1)元
素周期律表における第2周期から第6周期の3A族から
6B族に属する元素M1と酸素とが化合してなる物質、
(2)元素周期律表における第2周期から第6周期の3
A族から6B族に属する元素M2と炭素とが化合してな
る物質、(3)元素周期律表における第2周期から第6
周期の3A族から6B族に属する元素M3と窒素とが化
合してなる物質、および(4)炭素から選ばれた少なく
とも1種からなることを特徴とする光記録媒体。
An information recording, erasing, and reproducing operation can be performed by irradiating a laser beam having a wavelength of 450 nm or less, and the information recording and erasing can be performed in a reversible phase between an amorphous phase and a crystalline phase. In an optical recording medium having at least a first inorganic protective layer, a first boundary layer in contact with the recording layer, a recording layer, and a second inorganic protective layer in this order on a substrate, the recording layer is formed by the following formula (I) ) {(Ge 0.5 Te 0.5) x (Sb 0.4 Te 0.6) 1-x} 1-yz Sb y a z (I) ( wherein, a represents, Ge, Sb, second in the periodic table excluding Te The elements belonging to the groups 3A to 6B in the period from the sixth period to the sixth period are shown, x, y, and z are numbers and satisfy the following relational expressions: 0.5 ≦ x ≦ 0.9, 0.01 ≦ y ≦ 0.08, z = 0
Or, 0.5 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.08, 0
<Z ≦ 0.2), and the first boundary layer is formed by combining (1) an element M1 belonging to Group 3A to Group 6B in the second to sixth periods in the periodic table of elements and oxygen. material,
(2) 3 of the second to sixth periods in the periodic table of the elements
A substance obtained by combining an element M2 belonging to Group A to Group 6B with carbon; (3) a second to sixth elements in the periodic table of the elements;
1. An optical recording medium comprising: a substance obtained by combining nitrogen with an element M3 belonging to Group 3A to Group 6B of the period and nitrogen; and (4) at least one selected from carbon.
【請求項2】記録層に接する第2境界層を記録層と第2
無機保護層との間に備え、前記第2境界層が、(1)元
素周期律表における第2周期から第6周期の3A族から
6B族に属する元素M1と酸素とが化合してなる物質、
(2)元素周期律表における第2周期から第6周期の3
A族から6B族に属する元素M2と炭素とが化合してな
る物質、(3)元素周期律表における第2周期から第6
周期の3A族から6B族に属する元素M3と窒素とが化
合してなる物質、および(4)炭素から選ばれた少なく
とも1種からなることを特徴とする請求項1記載の光記
録媒体。
A second boundary layer which is in contact with the recording layer;
The second boundary layer, which is provided between the inorganic protective layer and the inorganic protective layer, is formed by combining (1) an element M1 belonging to Group 3A to Group 6B in the second to sixth periods of the periodic table of elements with oxygen. ,
(2) 3 of the second to sixth periods in the periodic table of the elements
A substance obtained by combining an element M2 belonging to Group A to Group 6B with carbon; (3) a second to sixth elements in the periodic table of the elements;
2. The optical recording medium according to claim 1, wherein the optical recording medium comprises at least one selected from the group consisting of a compound obtained by combining nitrogen with an element M3 belonging to the group 3A to group 6B and nitrogen.
【請求項3】第1境界層と第2境界層が炭素を主成分と
する物質からなることを特徴とする請求項1記載の光記
録媒体。
3. The optical recording medium according to claim 1, wherein the first boundary layer and the second boundary layer are made of a substance containing carbon as a main component.
【請求項4】記録最短マークの長さおよび/またはマー
ク間隔が0.4μm以下のマーク長記録に用いることを
特徴とする請求項1記載の光記録媒体。
4. The optical recording medium according to claim 1, wherein said optical recording medium is used for recording a mark having a recording shortest mark length and / or a mark interval of 0.4 μm or less.
JP24567299A 1999-08-31 1999-08-31 Optical recording medium Pending JP2001067720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24567299A JP2001067720A (en) 1999-08-31 1999-08-31 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24567299A JP2001067720A (en) 1999-08-31 1999-08-31 Optical recording medium

Publications (1)

Publication Number Publication Date
JP2001067720A true JP2001067720A (en) 2001-03-16

Family

ID=17137110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24567299A Pending JP2001067720A (en) 1999-08-31 1999-08-31 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2001067720A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119175A1 (en) * 2010-03-26 2011-09-29 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
US8093140B2 (en) 2007-10-31 2012-01-10 Advanced Technology Materials, Inc. Amorphous Ge/Te deposition process
US8268665B2 (en) 2006-11-02 2012-09-18 Advanced Technology Materials, Inc. Antimony and germanium complexes useful for CVD/ALD of metal thin films
US8288198B2 (en) 2006-05-12 2012-10-16 Advanced Technology Materials, Inc. Low temperature deposition of phase change memory materials
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
US8410468B2 (en) 2009-07-02 2013-04-02 Advanced Technology Materials, Inc. Hollow GST structure with dielectric fill
US8617972B2 (en) 2009-05-22 2013-12-31 Advanced Technology Materials, Inc. Low temperature GST process
US8674127B2 (en) 2008-05-02 2014-03-18 Advanced Technology Materials, Inc. Antimony compounds useful for deposition of antimony-containing materials
US8796068B2 (en) 2008-02-24 2014-08-05 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
US8852686B2 (en) 2007-10-11 2014-10-07 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9385310B2 (en) 2012-04-30 2016-07-05 Entegris, Inc. Phase change memory structure comprising phase change alloy center-filled with dielectric material
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288198B2 (en) 2006-05-12 2012-10-16 Advanced Technology Materials, Inc. Low temperature deposition of phase change memory materials
US8268665B2 (en) 2006-11-02 2012-09-18 Advanced Technology Materials, Inc. Antimony and germanium complexes useful for CVD/ALD of metal thin films
US9219232B2 (en) 2006-11-02 2015-12-22 Entegris, Inc. Antimony and germanium complexes useful for CVD/ALD of metal thin films
US8852686B2 (en) 2007-10-11 2014-10-07 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
US8093140B2 (en) 2007-10-31 2012-01-10 Advanced Technology Materials, Inc. Amorphous Ge/Te deposition process
US8796068B2 (en) 2008-02-24 2014-08-05 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US9537095B2 (en) 2008-02-24 2017-01-03 Entegris, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US9034688B2 (en) 2008-05-02 2015-05-19 Entegris, Inc. Antimony compounds useful for deposition of antimony-containing materials
US8674127B2 (en) 2008-05-02 2014-03-18 Advanced Technology Materials, Inc. Antimony compounds useful for deposition of antimony-containing materials
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
US8617972B2 (en) 2009-05-22 2013-12-31 Advanced Technology Materials, Inc. Low temperature GST process
US9070875B2 (en) 2009-05-22 2015-06-30 Entegris, Inc. Low temperature GST process
US8410468B2 (en) 2009-07-02 2013-04-02 Advanced Technology Materials, Inc. Hollow GST structure with dielectric fill
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
WO2011119175A1 (en) * 2010-03-26 2011-09-29 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9385310B2 (en) 2012-04-30 2016-07-05 Entegris, Inc. Phase change memory structure comprising phase change alloy center-filled with dielectric material
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure

Similar Documents

Publication Publication Date Title
US6479121B1 (en) Optical recording medium and method of fabricating same
JP2001067720A (en) Optical recording medium
EP1001415A1 (en) Optical recording medium
US6406771B1 (en) Optical recording medium and optical recording apparatus
JPH08190734A (en) Optical recording medium
JP2001039031A (en) Optical information recording medium and method for optical recording
JP3784819B2 (en) Optical recording method
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
JP3102431B1 (en) Optical recording medium
JP2001167475A (en) Optical recording medium
JPH11339314A (en) Optical recording medium
JP3810025B2 (en) Sputtering target, method for producing the same, optical recording medium using the target, film forming method for the optical recording medium, and optical recording method
JP2001126308A (en) Optical recording medium and its manufacturing method
JP2002157786A (en) Optical recording medium
JP2002056576A (en) Optical recording medium
JP2002074739A (en) Optical recording medium and optical recording equipment
JPH06127135A (en) Optical record medium
JP3216552B2 (en) Optical recording medium and manufacturing method thereof
JPH11283277A (en) Optical recording medium
JPH11339316A (en) Optical recording medium
JP2001167476A (en) Optical recording medium
JPH06191161A (en) Optical recording medium
JP2007062319A (en) Optical recording medium
JPH11339315A (en) Optical recording medium
JPH0916962A (en) Optical recording medium