JP2001058839A - Production of synthetic quartz glass for ultraviolet light optics - Google Patents

Production of synthetic quartz glass for ultraviolet light optics

Info

Publication number
JP2001058839A
JP2001058839A JP11235258A JP23525899A JP2001058839A JP 2001058839 A JP2001058839 A JP 2001058839A JP 11235258 A JP11235258 A JP 11235258A JP 23525899 A JP23525899 A JP 23525899A JP 2001058839 A JP2001058839 A JP 2001058839A
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
temperature
time
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11235258A
Other languages
Japanese (ja)
Other versions
JP3669675B2 (en
Inventor
Masaru Shinpo
優 新保
Toshio Nakajima
稔夫 中島
Naoki Tsuji
直樹 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP23525899A priority Critical patent/JP3669675B2/en
Publication of JP2001058839A publication Critical patent/JP2001058839A/en
Application granted granted Critical
Publication of JP3669675B2 publication Critical patent/JP3669675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing synthetic quartz glass which can control the generation of fluorescent light especially on the irradiation of ultraviolet light, by thermally treating the synthetic quartz glass at a specific temperature in an atmosphere having a hydrogen pressure in a specific range for a time not less than a time for reaching a quartz glass structure-determining temperature. SOLUTION: This method for producing synthetic quartz glass for ultraviolet light optics comprises thermally treating quartz glass at a temperature of >=1,400 deg.C for a longer time than a time until reaching a structure-determining temperature, namely longer than the relaxation time, in a hydrogen atmosphere having a low pressure of 1/10 to 1/1,000 atm. The thermal treatment temperature may be >=1,400 deg.C, namely higher than the softening point of ordinary synthetic quartz glass, but is preferably 1,600 to 1,900 deg.C in order to shorten the relaxation time for reaching the structure- determining temperature to stably complete the treatment in a short time. The low pressure hydrogen atmosphere may be not only a pressure-reduced atmosphere comprising only hydrogen but also a hydrogen atmosphere diluted with an inert gas such as Ar, He, Ne, or nitrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線光学用合成
石英ガラスの製造方法に関し、より詳細には、主として
半導体素子製造分野に於いてエキシマレーザなどの短波
長紫外線用の光学機器部材として使用され、特に紫外線
照射時の蛍光の発生が抑制された紫外線光学用合成石英
ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing synthetic quartz glass for ultraviolet optics, and more particularly, to a method for producing an optical device member for short wavelength ultraviolet light such as an excimer laser in the field of semiconductor device production. More particularly, the present invention relates to a method for producing synthetic silica glass for ultraviolet optics in which the generation of fluorescence upon irradiation with ultraviolet light is suppressed.

【0002】[0002]

【従来の技術】近年、半導体素子の超微細化に対応し
て、その集積回路製造用露光機の光源には、KrF(2
48nm)やArF(193nm)エキシマレーザな
ど、短波長の紫外線が使われるようになってきている。
これらの装置の光学用部材として、多数の合成石英ガラ
ス部材が使用される。合成石英ガラスは、このような短
波長紫外線に対して高い透過率を有する優れた材料では
あるが、上記短波長の紫外線レーザ光の照射によって損
傷を受けることが判ってきた。そしてその損傷の結果と
して、650nm付近にピークを持つ可視域の蛍光を発
する。
2. Description of the Related Art In recent years, in response to the miniaturization of semiconductor elements, KrF (2
Short wavelength ultraviolet rays such as 48 nm) and ArF (193 nm) excimer lasers have been used.
Many synthetic quartz glass members are used as optical members of these devices. Synthetic quartz glass is an excellent material having a high transmittance for such short-wavelength ultraviolet rays, but has been found to be damaged by irradiation with the short-wavelength ultraviolet laser light. As a result of the damage, it emits fluorescence in the visible region having a peak near 650 nm.

【0003】この蛍光は、光学系の調整などに於いて使
用されるHeーNeレーザ光の波長に近いために、実用
上大きな問題となっている。それ故、この蛍光発生の低
減が、光学用石英ガラスに必須な条件とされている。こ
の蛍光発生の挙動や発生メカニズムについては、例え
ば、フィジカル・レビユーB47巻、3078乃至30
82頁(1993)(N.Kuzuu,Y.Komastu,M.Murahara
著)、同48巻、6952乃至6956頁(1994)
(N.Kuzuu,Y.Matsumoto,M.Murahara著), ジャーナル・
オブ・ジ・アプライド・フィジックス68巻、3584
乃至3591(1990)(K.Awazu ,H.Kawazoe著)な
どで報告され、該蛍光発生の原因として、ガラス中に不
可避的に存在する過剰酸素に起因する酸素欠陥、所謂、
非結合酸素正孔捕獲中心(NBOHC)の生成や、オゾ
ン生成などが指摘されている。
[0003] The fluorescence is a serious problem in practical use because it is close to the wavelength of a He-Ne laser beam used for adjusting an optical system. Therefore, reduction of the generation of fluorescence is an essential condition for quartz glass for optical use. The behavior and mechanism of the generation of fluorescence are described in, for example, Physical Review, Vol.
82 (1993) (N. Kuzuu, Y. Komastu, M. Murahara
Authors, 48, 6952-6956 (1994).
(By N.Kuzuu, Y.Matsumoto, M.Murahara), Journal
Volume 68 of the Applied Physics, 3584
To 3591 (1990) (by K. Awazu, H. Kawazoe) and the like. As a cause of the fluorescence, oxygen deficiency caused by excess oxygen inevitably present in glass, so-called,
It has been pointed out that generation of non-bonded oxygen-hole trapping centers (NBOHC) and ozone generation have been pointed out.

【0004】この蛍光は、ガラス合成時に使用する酸水
素炎バーナーに供給する酸素と水素の割合を制御するこ
とにより低減できることが知られ、例えば、特開平2ー
64645号公報には、四塩化珪素を酸水素火炎により
加水分解する際、バーナーに供給する水素ガスと酸素ガ
スの比(H2 /O2 )を化学量論比より水素過剰にする
ことにより蛍光発生を低減する方法が提案されている。
また、特開平6−199531号公報には、四塩化珪素
を、酸素/水素比が化学量論量より水素過剰の酸水素火
炎中で加水分解して石英ガラスを合成する際、不活性ガ
スを含むバーナーの反応条件及び排ガスの排気条件等を
調整することにより石英中に存在するシラノール基(S
iOH)等のーOH基濃度を1000ppm以上にした
エキシマレーザー光照射時に於ける上記蛍光発生の抑制
された光学用合成石英ガラスが提案されている。
It is known that this fluorescence can be reduced by controlling the ratio of oxygen and hydrogen supplied to the oxyhydrogen flame burner used in synthesizing glass. For example, Japanese Patent Application Laid-Open No. 2-64645 discloses that silicon tetrachloride is used. A method has been proposed for reducing the generation of fluorescence by making the ratio (H 2 / O 2 ) of the hydrogen gas and the oxygen gas supplied to the burner more hydrogen-excess than the stoichiometric ratio when hydrolyzing oxyhydrogen with an oxyhydrogen flame. I have.
Japanese Patent Application Laid-Open No. 6-199531 discloses that when silica tetrachloride is hydrolyzed in an oxyhydrogen flame in which the oxygen / hydrogen ratio exceeds the stoichiometric amount of hydrogen to synthesize quartz glass, an inert gas is used. By adjusting the reaction conditions of the burner containing the gas and the exhaust conditions of the exhaust gas, the silanol group (S
There has been proposed a synthetic quartz glass for optics in which the above-mentioned generation of fluorescence is suppressed when excimer laser light is irradiated with an —OH group concentration such as iOH) of 1000 ppm or more.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ガラス
合成時の酸水素炎に於ける酸素/水素供給比は、石英の
合成速度やガラスに残存する−OH基濃度、光透過率な
ど光学用石英ガラスに必要とされる多くの諸特性に影響
を与えるので、これらへの影響を考慮しながら最適条件
を見出すのは、多大な手数と、微妙な熟練技術を必要と
し、しかもその選択の範囲も限定される。一方、ガラス
を1300℃以下の高濃度の水素雰囲気中で処理するこ
とによって、水素と過剰酸素を反応させ、不活性化させ
る方法も既に提案されている(特開平1−201664
号公報等)。
However, the oxygen / hydrogen supply ratio in an oxyhydrogen flame at the time of glass synthesis depends on the quartz synthesis speed, the concentration of -OH groups remaining in the glass, the light transmittance, etc. Because it affects many characteristics that are required in the field, finding the optimal conditions while considering these effects requires a great deal of work and delicate skill, and the range of selection is limited. Is done. On the other hand, a method has been already proposed in which glass is treated in a high-concentration hydrogen atmosphere of 1300 ° C. or less to react hydrogen with excess oxygen to inactivate the glass (Japanese Patent Application Laid-Open No. Hei 1-2201664).
No.).

【0006】しかし、この処理方法は効果が不安定であ
り、且つ、高濃度、即ち、圧(分圧)の高い水素を必要
とするために、爆発などの危険性が高く、取り扱いに慎
重さを要し、その分、時間、労力と費用を要する。この
ように状況に鑑みても、エキシマレーザー等短波長紫外
線照射時に於ける上記蛍光発生が抑制された光学用合成
石英ガラスを簡便な処理により製造し、提供することが
できればその産業に上に及ぼす利点は多大である。
However, this treatment method is unstable, and requires high concentration of hydrogen, ie, high pressure (partial pressure). Cost, time, labor and cost. Thus, even in view of the situation, if it is possible to manufacture and provide a synthetic quartz glass for optics in which the above-mentioned fluorescence is suppressed during irradiation with short-wavelength ultraviolet rays such as an excimer laser by a simple process and provide it, it will have an impact on the industry. The benefits are great.

【0007】本発明は上記課題を解決するためになされ
たものであり、ステッパー等の半導体製造用露光機の光
学用部材として使用される合成石英ガラスであって、エ
キシマレーザなどの短波長紫外線を照射したときに、通
常、光照射損傷を受けて発生する650nm付近の可視
域蛍光が顕著に低減された紫外線光学用石英ガラスを、
簡便かつ安全な方法で処理、製造する方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is a synthetic quartz glass used as an optical member of an exposure machine for manufacturing a semiconductor such as a stepper, which emits short wavelength ultraviolet light such as an excimer laser. When irradiated, quartz glass for ultraviolet optics in which visible light fluorescence near 650 nm, which is usually generated by light irradiation damage, is significantly reduced,
It is an object of the present invention to provide a method for processing and manufacturing in a simple and safe manner.

【0008】[0008]

【課題を解決するための手段】本発明によれば、合成石
英ガラスを、水素圧力が1/10乃至1/1000気圧
の雰囲気中で、1400℃以上の温度に於いて該石英ガ
ラスの構造決定温度に到達するまでの時間(緩和時間)
以上の時間、熱処理することを特徴とする紫外線光学用
合成石英ガラスの製造方法が提供される。
According to the present invention, the structure of synthetic quartz glass is determined at a temperature of 1400 ° C. or more in an atmosphere having a hydrogen pressure of 1/10 to 1/1000 atm. Time to reach temperature (relaxation time)
There is provided a method for producing synthetic silica glass for ultraviolet optics, wherein the method is heat-treated for the above time.

【0009】また、本発明によれば、上記製造方法の一
好適態様として、前記雰囲気が、不活性気体と水素との
混合気体から成ることを特徴とする紫外線光学用石英ガ
ラスの製造方法が提供される。更に、本発明によれば、
前記不活性気体が、アルゴン、ヘリウム、ネオン及び窒
素から選ばれた少なくとも1種であることを特徴とする
紫外線光学用合成石英ガラスの製造方法が提供される。
Further, according to the present invention, as a preferred embodiment of the above-mentioned manufacturing method, there is provided a method of manufacturing quartz glass for ultraviolet optics, wherein the atmosphere comprises a mixed gas of an inert gas and hydrogen. Is done. Further, according to the present invention,
A method for producing a synthetic quartz glass for ultraviolet optics, wherein the inert gas is at least one selected from argon, helium, neon and nitrogen.

【0010】本発明の紫外線光学用合成石英ガラスの製
造方法は、該ガラスの製造時に於いて、1400℃以上
の温度で、かつ上記制御された特定低圧の水素圧雰囲気
中で、該石英ガラスの構造決定温度に到達するまでの時
間以上、即ち、緩和時間以上の期間熱処理するという、
特定条件下での熱処理が構成上の特徴である。
The method for producing a synthetic quartz glass for ultraviolet optics of the present invention is characterized in that the quartz glass is produced at a temperature of 1400 ° C. or more and in the above-mentioned controlled low-pressure hydrogen atmosphere at the time of producing the glass. It is said that the heat treatment is performed for a period of time equal to or longer than the time required to reach the structure determination temperature, that is, the relaxation time or longer.
Heat treatment under specific conditions is a structural feature.

【0011】ガラスの構造決定温度は、以下に説明する
ように、石英ガラスの構造安定性を表すパラメータとし
て導入されたファクターである。室温での石英ガラスの
密度揺らぎ、即ち構造安定性は、高温で融液状態にある
石英ガラスの密度、構造が冷却過程に於いてガラス転移
点付近で凍結されたときの密度、構造によって決定され
る。即ち、密度、構造が凍結されたときの温度に相当す
る熱力学密度、構造が室温下でも保存される。その密
度、構造が凍結されたときの温度を構造決定温度とい
う。
The temperature for determining the structure of glass is a factor introduced as a parameter indicating the structural stability of quartz glass, as described below. The density fluctuation of quartz glass at room temperature, that is, structural stability, is determined by the density of quartz glass in a molten state at high temperature, the density when the structure is frozen near the glass transition point in the cooling process, and the structure. You. That is, the density, the thermodynamic density corresponding to the temperature at which the structure was frozen, and the structure are preserved even at room temperature. The temperature at which the density and structure are frozen is called the structure determination temperature.

【0012】石英ガラス製造時に、本発明の上記特定条
件の熱処理を施すことにより、通常の方法で製造された
光学用合成石英ガラスが紫外線照射時に生する650n
m付近の可視域蛍光を有効に抑制することができる。
By performing the heat treatment under the above-mentioned specific conditions of the present invention during the production of quartz glass, the synthetic quartz glass for optics produced by an ordinary method is produced at the time of irradiation with ultraviolet rays.
m can effectively suppress the visible region fluorescence.

【0013】このエキシマレーザ光等の紫外線照射時に
石英ガラスから発生する蛍光は、赤色であって、例えば
既に挙げた公知文献に記載されているように、ガラス中
の過剰酸素が関与していると考えられており、その蛍光
中心の生成反応は、例えば次のようになると推定されて
いる。 ≡SiーO−OーSi≡+紫外光線 → 2≡Si−O・(NBOHC)(1) 一方このような過剰酸素を持つ石英ガラスを水素処理すると、 ≡SiーO−OーSi≡+H2 ←→ ≡Si−OH+H−OーSi≡ (2) の反応で過剰の酸素が不活性なーOH基に変わり、蛍光
発生が抑制される。そしてこの反応が現実的な速度で充
分安定に進行するためには、Si−Oの結合角や、分子
の占める大きさなど、ミクロ的な幾何学的形状、即ち分
子的な構造変化が生ずる必要があると考えられる。従っ
て、上記(2)式が右側に進行するためには、反応に預
かる過剰酸素の周辺の分子群全体の再配列と構造の安定
化が必要である。さもないと反応生成物が不安定とな
り、(2)式が左側に進む逆反応も優勢となるため反応
平衡に近づき、過剰酸素の上記不活性化が充分にできな
い。そして、この(2)式の反応を少しでも多く右側に
進ませるためには、高濃度の水素による処理が必要にな
る。しかも、その後の熱処理などで溶存酸素が減れば、
反応は更に左側に進み、処理前の状態に近づく。
The fluorescence generated from the quartz glass upon irradiation with ultraviolet light such as excimer laser light is red, and it is considered that excess oxygen in the glass is involved as described in, for example, the above-mentioned known documents. It is considered that the reaction of generating the fluorescent center is, for example, as follows. {Si—O—O—Si} + ultraviolet light → 2 {Si—O · (NBOHC) (1) On the other hand, when the quartz glass having such excess oxygen is hydrogen-treated, 2 ← → {Si—OH + HO—Si} (2) The excess oxygen is changed into an inactive —OH group, and the generation of fluorescence is suppressed. In order for this reaction to proceed stably at a practical rate, a microscopic geometrical shape such as a bond angle of Si—O and a size occupied by a molecule, that is, a molecular structural change must occur. It is thought that there is. Therefore, in order for the above equation (2) to proceed to the right, it is necessary to rearrange the entire molecular group around the excess oxygen and stabilize the structure. Otherwise, the reaction product becomes unstable, and the reverse reaction in which equation (2) proceeds to the left also becomes dominant, so that the reaction equilibrium is approached, and the above inactivation of excess oxygen cannot be sufficiently performed. In order to cause the reaction of the formula (2) to proceed to the right as much as possible, a treatment with high-concentration hydrogen is required. Moreover, if the dissolved oxygen is reduced by the subsequent heat treatment,
The reaction proceeds further to the left, approaching the state before the treatment.

【0014】そこで、反応に預かる過剰酸素の周辺の分
子全体の再配列と構造の安定化が極めて短時間内に可能
となるガラス軟化温度、即ち、1400℃以上の温度
で、その構造決定温度に到達するまでの時間(緩和時
間)加熱処理した結果、極めて低い水素濃度の雰囲気で
も、安定に反応が進行し、蛍光が低減されることが判っ
た。なお、熱処理温度がガラスの歪点より低ければ、緩
和時間が無限大となるので、長時間の水素処理を施して
も、当然、低圧の水素濃度での上記効果は期待できない
ことも実験により確認された。従って、本発明の方法に
於ける熱処理温度は、少なくとも石英ガラス軟化温度以
上、即ち1400℃以上、であり、好ましくは1600
℃以上である。この熱処理温度は、高温であるほど反応
速度上の見地からは好ましい、しかしながら、1900
℃を越えるとSi02 分の蒸発や熱処理用容器材との反
応等の別の不都合が生じるため1900℃以下の温度で
の熱処理が好ましい
Therefore, the rearrangement of the whole molecule around the excess oxygen and the stabilization of the structure in the reaction become possible within a very short time, that is, at a glass softening temperature of 1400 ° C. or more, the structure determination temperature is increased. As a result of the heat treatment until the temperature reaches the relaxation time (relaxation time), it was found that the reaction proceeded stably even in an atmosphere with an extremely low hydrogen concentration and the fluorescence was reduced. If the heat treatment temperature is lower than the strain point of the glass, the relaxation time becomes infinite. Therefore, even if the hydrogen treatment is performed for a long time, it is naturally confirmed by experiments that the above effects cannot be expected at a low hydrogen concentration. Was done. Therefore, the heat treatment temperature in the method of the present invention is at least the softening temperature of quartz glass, that is, 1400 ° C. or more, and preferably 1600 ° C. or more.
° C or higher. The higher the heat treatment temperature, the better from the viewpoint of the reaction rate.
If the temperature exceeds 100 ° C., other inconveniences such as evaporation of SiO 2 and reaction with the heat treatment container material occur, so that heat treatment at a temperature of 1900 ° C. or less is preferable.

【0015】上記本発明の方法よれば、高圧あるいは高
濃度の水素を用いて1150℃程度の温度で反応させる
従来の方法に比べてむしろ安定した効果が得られるだけ
でなく、高圧あるいは高濃度の水素を扱う必要がないた
め、爆発などの危険性が無く、取り扱いが極めて容易
で、時間的にも、労力的にも大きな節減効果を奏する。
According to the method of the present invention, a stable effect can be obtained rather than the conventional method in which the reaction is performed at a temperature of about 1150 ° C. using high pressure or high concentration of hydrogen. Since there is no need to handle hydrogen, there is no danger of explosion and the like, handling is extremely easy, and there is a large time and labor saving effect.

【0016】[0016]

【発明の実施の形態】以下に本発明をより詳細に、か
つ、具体的に説明する。本発明の製造方法に於いて、処
理の対象物である合成石英ガラスは、典型的には、四塩
化珪素を酸水素炎で加水分解して得られる所謂、直接法
合成石英ガラスを対象とするが、例えばVAD法合成石
英ガラスなど、その他の合成方法の石英ガラスに適用し
て十分な効果が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail and specifically. In the manufacturing method of the present invention, the synthetic quartz glass to be treated is typically a so-called direct synthetic quartz glass obtained by hydrolyzing silicon tetrachloride with an oxyhydrogen flame. However, a sufficient effect can be obtained by applying the present invention to quartz glass of another synthetic method such as VAD synthetic quartz glass.

【0017】本発明の方法に於いは、石英ガラスを14
00℃以上の温度で、その構造決定温度に到達するまで
の時間より長く、即ち、その緩和時間より長く、1/1
0乃至1/1000気圧の低圧(分圧)水素雰囲気中で
熱処理する。熱処理温度は1400℃以上、即ち、通常
の合成石英ガラスの軟化点以上の温度であれば充分にそ
の目的を達成できるが、構造決定温度に到達するための
緩和時間を可及的に短くし、短時間に、かつ、安定的に
処理を完結するためには、好ましくは、1600℃以上
で実施する。また、1900℃を越えると石英の蒸発や
容器材との反応等の不都合が生じるため、熱処理温度は
1900℃以下とすることが好ましい。
In the method of the present invention, quartz glass is
At temperatures above 00 ° C., longer than the time to reach its structure determination temperature, ie longer than its relaxation time, 1/1
Heat treatment is performed in a low pressure (partial pressure) hydrogen atmosphere of 0 to 1/1000 atm. The heat treatment temperature is 1400 ° C. or higher, that is, a temperature higher than the softening point of ordinary synthetic quartz glass can sufficiently achieve the object, but the relaxation time for reaching the structure determination temperature is shortened as much as possible, In order to complete the treatment in a short time and stably, it is preferably carried out at 1600 ° C. or higher. If the temperature exceeds 1900 ° C., inconveniences such as evaporation of quartz and reaction with the container material occur, so that the heat treatment temperature is preferably set to 1900 ° C. or less.

【0018】石英ガラスの熱処理温度と緩和時間との関
係は、例えば、ダブリュ・プリマック(W.Primak)著、
フィジックス・アンド・ケミストリ・オブ・グラス(Ph
ysics and Chemistry of Glass)24巻No.1、8〜
18頁(1983)などに記載され、例えば、1400
℃では、約1分程度である。なお、前記資料には具体的
にには記載されていないが、1600℃では、約0.1
分程度である。
The relationship between the heat treatment temperature and the relaxation time of quartz glass is described, for example, by W. Primak,
Physics and Chemistry of Glass (Ph
ysics and Chemistry of Glass), 24 vol. 1,8 ~
18 (1983), for example, 1400
At about ° C, it is about 1 minute. Although not specifically described in the above materials, at 1600 ° C., about 0.1
Minutes.

【0019】しかしながら、被処理ガラスの大きさや水
素の圧(分圧)等のにより、水素と過剰酸素との反応に
要する時間は多少変動する。また、反応完結のため多少
熱処理時間に余裕を持たせることが好ましく、この観点
から1400乃至1600℃の熱処理温度で、水素圧
(分圧)が1/10乃至1/1000気圧の場合、緩和
時間〜30分程度、1600℃以上の場合は、水素圧5
/10〜5/1000気圧で、緩和時間〜5分程度、5
/1000気圧未満の低濃度では緩和時間〜30分程度
の保持が好ましい。なおガラスが完全に軟化流動化する
高温(1600℃以上)での熱処理には、黒鉛容器など
を用いれば形状保持できるので、石英ガラスの成形を同
時に行うことができ好都合である。
However, the time required for the reaction between hydrogen and excess oxygen slightly varies depending on the size of the glass to be treated and the pressure (partial pressure) of hydrogen. In order to complete the reaction, it is preferable to allow some time for the heat treatment time. From this viewpoint, when the hydrogen pressure (partial pressure) is 1/10 to 1/1000 atm at the heat treatment temperature of 1400 to 1600 ° C., the relaxation time If the temperature is 1600 ° C or more, the hydrogen pressure is 5
/ 10 to 5/1000 atm, relaxation time to about 5 minutes, 5
At a low concentration of less than / 1000 atm, the relaxation time is preferably maintained for about 30 minutes. In the heat treatment at a high temperature (1600 ° C. or higher) at which the glass is completely softened and fluidized, the shape can be maintained by using a graphite container or the like, so that quartz glass can be formed at the same time, which is convenient.

【0020】本発明の方法に於いて、水素ガス圧は、1
/1000気圧以上あることが必要で、これより低い圧
では効果が急減する。このような水素圧(濃度)は、減
圧された水素雰囲気、即ち水素ガスののみの雰囲気の場
合は勿論、アルゴン、ヘリウム、ネオン、クリプトン、
キセノン及び窒素等の不活性ガスで希釈された水素雰囲
気でも充分に達成できる。不活性気体との混合雰囲気を
用いる場合、雰囲気ガスの水素分圧を所定とすれば良
く、その全圧は石英ガラスの蛍光発生防止効果には何ら
の影響を与えないが、全圧が高いと石英ガラスの蒸発抑
制に有効であるという利点がある。但し、全圧が1気圧
(105 Pa)を超えると、耐圧炉が必要となるため、
炉の建設コストや操作の簡便性等の観点から1気圧以下
が好ましい。
In the method of the present invention, the hydrogen gas pressure is 1
The pressure must be at least / 1000 atm. At lower pressures, the effect decreases rapidly. Such a hydrogen pressure (concentration) is not limited to a reduced-pressure hydrogen atmosphere, that is, an atmosphere containing only hydrogen gas, but also includes argon, helium, neon, krypton, and the like.
It can be sufficiently achieved even in a hydrogen atmosphere diluted with an inert gas such as xenon and nitrogen. When using a mixed atmosphere with an inert gas, the hydrogen partial pressure of the atmosphere gas may be set to a predetermined value, and the total pressure does not affect the fluorescence generation preventing effect of the quartz glass at all. There is an advantage that it is effective in suppressing evaporation of quartz glass. However, if the total pressure exceeds 1 atm (10 5 Pa), a pressure-resistant furnace is required,
The pressure is preferably 1 atm or less from the viewpoints of furnace construction cost and simplicity of operation.

【0021】[0021]

【実施例】「実施例1乃至9、比較例1乃至5」四塩化
珪素を酸水素炎で加水分解して得た合成石英ガラスのイ
ンゴット1kgを試料として用いた。この試料を、内径
120mm、縁の高さ50mmの円形の黒鉛容器に入
れ、炭素発熱体を備え、真空から1気圧の不活性及び還
元性雰囲気で加熱できる電気炉中に入れて熱処理した。
雰囲気の全圧は、1気圧であって、表ー1に示したよう
な割合のArと水素の混合気体とした。また、熱処理温
度、時間は、それぞれ表ー1に記載した条件で実施し
た。熱処理後の試料を、12×12×50mmの角柱に
切り出し、面を光学研磨した。この光学研磨した試料を
ArFエキシマレーザを用いて、100mJ/cm2のエネル
ギ密度で105 ショット照射した後、分光蛍光光度計
(日立製作所(株)製650−10型)を用いて、25
5nmの励起光に於ける640nmの蛍光の強さを測定
した。一方、熱処理しないガラス試料について、同じ方
法でレーザ照射後の蛍光強度を測定し、その値を1とし
て、熱処理試料の蛍光強度との比を用いて、効果の評を
を行った結果を表1に示す。なおレーザ照射しない試料
は蛍光が観察されなかった。
EXAMPLES Examples 1 to 9 and Comparative Examples 1 to 5 1 kg of a synthetic quartz glass ingot obtained by hydrolyzing silicon tetrachloride with an oxyhydrogen flame was used as a sample. This sample was placed in a circular graphite container having an inner diameter of 120 mm and a height of a rim of 50 mm, and placed in an electric furnace equipped with a carbon heating element and capable of heating in an inert and reducing atmosphere from vacuum to 1 atm and heat-treated.
The total pressure of the atmosphere was 1 atm, and a mixture gas of Ar and hydrogen was used at the ratio shown in Table 1. In addition, the heat treatment temperature and time were each set under the conditions described in Table 1. The sample after the heat treatment was cut into a prism of 12 × 12 × 50 mm, and the surface was optically polished. The optically polished sample using an ArF excimer laser, after 10 5 shots at an energy density of 100 mJ / cm 2, using a fluorescence spectrophotometer (the Hitachi Ltd. 650-10 type), 25
The intensity of fluorescence at 640 nm under excitation light of 5 nm was measured. On the other hand, for a glass sample that was not heat-treated, the fluorescence intensity after laser irradiation was measured by the same method, and the value was set to 1, and the effect was evaluated using the ratio to the fluorescence intensity of the heat-treated sample. Shown in No fluorescence was observed in the sample without laser irradiation.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の比較例1、2にあっては、処理時間
が不足し、強い蛍光を発することが認められた。また比
較例3、4にあっては、強い蛍光を発しないものの、高
圧・長時間の処理を必要とすることが認められた。
In Comparative Examples 1 and 2 shown in Table 1, it was recognized that the processing time was insufficient, and strong fluorescence was emitted. In Comparative Examples 3 and 4, it was recognized that high-pressure and long-time treatment was required, though no strong fluorescence was emitted.

【0024】また、表1から判るように、1400℃以
上の温度に於いて、0.001〜0.1気圧の水素を含
む雰囲気中で、その構造決定温度に到達するに充分な時
間処理したガラスは、640nmの蛍光が検出されなか
った(実施例1〜8)。あるいはまた、ほとんど検出さ
れなかった(実施例9)。しかし比較例5として、水素
を含まない純アルゴンの雰囲気で熱処理したガラスは、
未処理品の3倍の蛍光が発生した。
Further, as can be seen from Table 1, at a temperature of 1400 ° C. or more, the treatment was carried out in an atmosphere containing 0.001 to 0.1 atm of hydrogen for a time sufficient to reach the structure determination temperature. In the glass, no fluorescence of 640 nm was detected (Examples 1 to 8). Alternatively, it was hardly detected (Example 9). However, as Comparative Example 5, the glass heat-treated in an atmosphere of pure argon containing no hydrogen was:
Three times the fluorescence of the untreated product was generated.

【0025】「実施例10」上記実施例1乃至9と同様
の石英ガラス試料を、実施例1乃至9で使用した電気炉
で熱処理した。熱処理条件は、1700℃、15分と
し、炉内に水素を流しながら真空ポンプで減圧する方法
で、雰囲気水素の圧力を制御した。得られたガラスを上
記実施例1乃至9と同様の方法で処理し、レーザ照射後
の蛍光を調べた。水素圧が1、0.1、0.01、0.
002、0.001(1/1000)気圧までの処理条
件では、いずれも蛍光が観測されなかった。しかし、2
/10000気圧の減圧下で処理すると、未処理試料の
60%の強さの蛍光が観測された。
Example 10 The same quartz glass samples as in Examples 1 to 9 were heat-treated in the electric furnace used in Examples 1 to 9. The heat treatment was performed at 1700 ° C. for 15 minutes, and the pressure of atmospheric hydrogen was controlled by a method of reducing the pressure with a vacuum pump while flowing hydrogen into the furnace. The obtained glass was treated in the same manner as in Examples 1 to 9, and the fluorescence after laser irradiation was examined. When the hydrogen pressure is 1, 0.1, 0.01, 0.
Under the processing conditions up to 002 and 0.001 (1/1000) atm, no fluorescence was observed. However, 2
When treated under a reduced pressure of / 10,000 atmospheres, 60% of the fluorescence of the untreated sample was observed.

【0026】[0026]

【発明の効果】上述のように、本発明によれば、紫外線
照射による赤色蛍光の発生が、安定して除去できるだけ
でなく、用いる水素圧力が極めて少なくて良いので、爆
発や火災の危険が無く、安全対策に要する設備が簡素化
されて低コストで済み、かつ処理に要する時間も短く、
更に操作も極めて簡便に処理できる。更に、本発明によ
れば、ガラス形状の成形と、蛍光除去操作が同時にでき
るので、実用上の利点が極めて大きい。
As described above, according to the present invention, the generation of red fluorescence due to the irradiation of ultraviolet rays can be stably removed, and the pressure of hydrogen used can be extremely small, so that there is no danger of explosion or fire. , The equipment required for safety measures is simplified, the cost is low, and the processing time is short,
Further, the operation can be processed very simply. Further, according to the present invention, since the shaping of the glass shape and the fluorescence removing operation can be performed at the same time, the practical advantage is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 直樹 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社秦野工場内 Fターム(参考) 4G014 AH00  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Naoki Tsuji 30 Soya, Hadano-shi, Kanagawa F-term in Hadano Plant, Toshiba Ceramics Co., Ltd. 4G014 AH00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラスを、水素圧力が1/10
乃至1/1000気圧の雰囲気中で、1400℃以上の
温度に於いて、該石英ガラスの構造決定温度に到達する
までの時間(緩和時間)以上の時間、熱処理することを
特徴とする紫外線光学用合成石英ガラスの製造方法。
1. A synthetic quartz glass having a hydrogen pressure of 1/10
A heat treatment at a temperature of 1400 ° C. or more in an atmosphere of 1 to 1000 atmospheres for a time longer than a time required to reach the structure determining temperature of the quartz glass (relaxation time) or more. A method for producing synthetic quartz glass.
【請求項2】 前記雰囲気が、不活性気体と水素との混
合気体から成ることを特徴とする請求項1記載の紫外線
光学用合成石英ガラスの製造方法。
2. The method according to claim 1, wherein the atmosphere comprises a mixed gas of an inert gas and hydrogen.
【請求項3】 前記不活性気体が、アルゴン、ヘリウ
ム、ネオン及び窒素から選ばれた少なくとも1種である
ことを特徴とする請求項2記載の紫外線光学用合成石英
ガラスの製造方法。
3. The method according to claim 2, wherein the inert gas is at least one selected from argon, helium, neon and nitrogen.
JP23525899A 1999-08-23 1999-08-23 Method for producing synthetic quartz glass for ultraviolet optics Expired - Fee Related JP3669675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23525899A JP3669675B2 (en) 1999-08-23 1999-08-23 Method for producing synthetic quartz glass for ultraviolet optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23525899A JP3669675B2 (en) 1999-08-23 1999-08-23 Method for producing synthetic quartz glass for ultraviolet optics

Publications (2)

Publication Number Publication Date
JP2001058839A true JP2001058839A (en) 2001-03-06
JP3669675B2 JP3669675B2 (en) 2005-07-13

Family

ID=16983429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23525899A Expired - Fee Related JP3669675B2 (en) 1999-08-23 1999-08-23 Method for producing synthetic quartz glass for ultraviolet optics

Country Status (1)

Country Link
JP (1) JP3669675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415978A (en) * 2021-07-03 2021-09-21 四川神光石英科技有限公司 Preparation method of irradiation-resistant quartz glass, crucible for preparation and material rack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415978A (en) * 2021-07-03 2021-09-21 四川神光石英科技有限公司 Preparation method of irradiation-resistant quartz glass, crucible for preparation and material rack

Also Published As

Publication number Publication date
JP3669675B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
CA2056271C (en) Uv light-permeable glass and article comprising the same
EP0401845B1 (en) Optical members and blanks of synthetic silica glass and method for their production
US6364946B2 (en) Methods for growing large-volume single crystals from calcium fluoride and their uses
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP2003081654A (en) Synthetic quartz glass, and production method therefor
JP2001058839A (en) Production of synthetic quartz glass for ultraviolet light optics
JP3702904B2 (en) Method for producing synthetic quartz glass
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
JP2784708B2 (en) Optical quartz glass member for excimer laser and method for producing the same
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP4323319B2 (en) Fused silica containing aluminum
JP3303918B2 (en) Synthetic quartz glass and its manufacturing method
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP2003238195A (en) Synthetic quartz glass member
TW200413267A (en) Fused silica containing aluminum
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP3669674B2 (en) Manufacturing method of quartz glass for ultraviolet optics
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JP2762188B2 (en) Method for producing synthetic quartz glass compact for ultraviolet laser
JP2822854B2 (en) Synthetic quartz glass optical member and method of manufacturing the same
JPH0776092B2 (en) Glass manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees