JP2001058831A - Ferrimagnetic garnet material for microwave - Google Patents

Ferrimagnetic garnet material for microwave

Info

Publication number
JP2001058831A
JP2001058831A JP11231341A JP23134199A JP2001058831A JP 2001058831 A JP2001058831 A JP 2001058831A JP 11231341 A JP11231341 A JP 11231341A JP 23134199 A JP23134199 A JP 23134199A JP 2001058831 A JP2001058831 A JP 2001058831A
Authority
JP
Japan
Prior art keywords
dielectric loss
garnet material
amount
ferrimagnetic garnet
ferrimagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231341A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanaka
博明 田中
Yutaka Ikeda
豊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11231341A priority Critical patent/JP2001058831A/en
Publication of JP2001058831A publication Critical patent/JP2001058831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ferrimagnetic garnet material which has a small magnetic resonance half value width and a reduced dielectric loss and is useful for microwaves, by replacing a part of Fe by Mn. SOLUTION: A ferrimagnetic garnet material consisting mainly of Fe, Y, Ca, In and V has large crystal grain diameters to result in the reduction of a magnetic resonance half value width due to the five component composition, while has high dielectric conductivity to result in the increase of dielectric loss due to the decrease of grain boundaries. Since the electric conductivity is mainly controlled with Fe, a part of Fe is replaced by Mn4+ as a component for inhibiting the transfer of electrons. Thereby, the resistance in the grain boundaries is enhanced to increase the dielectric loss. Concretely, a part of Fe is replaced by MnO2 in an amount of <=5 wt.% based on the total amount of the garnet material. When the amount of MnO2 is controlled within a range of 1 to 3 wt.%, the ferrimagnetic garnet material having a dielectric loss of <=5×10-4 can be obtained, and exhibits extremely preferable characteristics as a material for elements such as circulators and isolators.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波やミリ
波等(これら全てを「マイクロ波」と総称する)の高周
波領域で用いるフェリ磁性ガーネット材料に関し、更に
詳しく述べると、Fe、Y、Ca、In、及びVを主成
分とするフェリ磁性ガーネット材料において、Feの一
部をMnに置換することにより誘電損失の低減を図った
マイクロ波用フェリ磁性ガーネット材料に関するもので
ある。この材料は、例えばマイクロ波用のサーキュレー
タやアイソレータ等に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrimagnetic garnet material used in a high frequency region such as microwaves and millimeter waves (all of which are collectively referred to as "microwaves"). The present invention relates to a ferrimagnetic garnet material for microwaves in which a part of Fe is replaced by Mn in a ferrimagnetic garnet material mainly containing, In, and V to reduce dielectric loss. This material is useful for, for example, a microwave circulator or isolator.

【0002】[0002]

【従来の技術】マイクロ波用のサーキュレータやアイソ
レータ等に用いる磁性材料としては、YIG(イットリ
ウム鉄ガーネット)、Al置換YIG、Ni−Zn(ニ
ッケル−亜鉛)系フェライト、Mn−Mg(マンガン−
マグネシウム)系フェライト、Li(リチウム)系フェ
ライト、Ca−V(カルシウム−バナジウム)系ガーネ
ット等がある。
2. Description of the Related Art Magnetic materials used for microwave circulators and isolators include YIG (yttrium iron garnet), Al-substituted YIG, Ni-Zn (nickel-zinc) ferrite, Mn-Mg (manganese-manganese).
Magnesium) -based ferrite, Li (lithium) -based ferrite, Ca-V (calcium-vanadium) -based garnet, and the like.

【0003】これらの磁性材料のうちYIGは、適当な
飽和磁化(4πMs)を選択でき、磁気共鳴半値幅(Δ
H)及び誘電損失(tan δ)が比較的小さい特徴を有す
る。しかし、デジタル通信における相互変調積特性の改
善を行うには、磁気共鳴半値幅(ΔH)で表される磁気
損失が更に小さい材料が必要となる。
[0003] Among these magnetic materials, YIG can select an appropriate saturation magnetization (4πMs) and has a magnetic resonance half width (ΔΔMs).
H) and the dielectric loss (tan δ) are relatively small. However, in order to improve the intermodulation product characteristic in digital communication, a material having a smaller magnetic loss represented by a magnetic resonance half width (ΔH) is required.

【0004】前記磁性材料のうちCa−V系ガーネット
は、Fe、Y、Ca、In、及びVを主成分とするフェ
リ磁性ガーネット材料であり、磁気共鳴半値幅(ΔH)
が小さい材料として知られている。そこで、前記の相互
変調積特性の改善を行う場合には、このCa−V系ガー
ネットの使用が検討されている。
Among the above magnetic materials, the Ca-V garnet is a ferrimagnetic garnet material containing Fe, Y, Ca, In, and V as main components, and has a magnetic resonance half width (ΔH).
Is known as a small material. Therefore, in order to improve the intermodulation product characteristics, use of this Ca-V garnet is being studied.

【0005】[0005]

【発明が解決しようとする課題】ところが、このCa−
V系ガーネットは、磁気共鳴半値幅(ΔH)が低くなる
につれて、誘電損失(tan δ)が悪化するという相反関
係があった。そのため、サーキュレータやアイソレータ
などの素子材料として使用する場合には、誘電損失(ta
n δ)の制限から、磁気共鳴半値幅(ΔH)を大幅に低
減することができなかった。
However, this Ca-
The V-based garnet had a reciprocal relationship that the dielectric loss (tan δ) became worse as the magnetic resonance half width (ΔH) became lower. Therefore, when used as an element material for circulators and isolators, dielectric loss (ta
Due to the limitation of nδ), the magnetic resonance half width (ΔH) could not be reduced significantly.

【0006】本発明の目的は、磁気共鳴半値幅(ΔH)
が小さいという特性を具備し、且つ誘電損失(tan δ)
を低減できるマイクロ波用フェリ磁性ガーネット材料を
提供することである。
An object of the present invention is to provide a magnetic resonance half width (ΔH).
Is small and dielectric loss (tan δ)
It is an object of the present invention to provide a ferrimagnetic garnet material for microwaves that can reduce the amount of ferrite.

【0007】[0007]

【課題を解決するための手段】本発明は、Fe、Y、C
a、In、及びVを主成分とするフェリ磁性ガーネット
材料において、前記Feの一部をMnに置換することに
より誘電損失を低減したマイクロ波用フェリ磁性ガーネ
ット材料である。MnO2 の置換量は、総量の5重量%
以下とする。
SUMMARY OF THE INVENTION The present invention provides Fe, Y, C
A ferrimagnetic garnet material for microwaves, wherein a dielectric loss is reduced by substituting a part of Fe with Mn in a ferrimagnetic garnet material containing a, In, and V as main components. The replacement amount of MnO 2 is 5% by weight of the total amount.
The following is assumed.

【0008】Fe、Y、Ca、In、及びVを主成分と
するフェリ磁性ガーネット材料は、焼成条件(焼成トッ
プ温度のキープ時間)など製造プロセスによっても多少
は変化するが、基本的にこの5成分系の組成のために結
晶粒子径が大きくなり、そのために磁気共鳴半値幅(Δ
H)が小さくなる。これは、結晶粒子径が大きくなると
異方性磁場による磁気共鳴半値幅(ΔH)の広がりが少
なくなるためである。他方、結晶粒子径が大きくなるこ
とによって、高抵抗層である粒界が減少することから導
電性が増加する。その結果、誘電損失(tan δ)が増大
してしまう。
The ferrimagnetic garnet material containing Fe, Y, Ca, In, and V as a main component slightly varies depending on the manufacturing process such as firing conditions (keeping time of the firing top temperature). The crystal grain size increases due to the composition of the component system, and therefore, the magnetic resonance half width (Δ
H) becomes smaller. This is because, as the crystal grain diameter increases, the spread of the magnetic resonance half width (ΔH) due to the anisotropic magnetic field decreases. On the other hand, when the crystal grain size increases, the conductivity increases because the grain boundaries that are high resistance layers decrease. As a result, the dielectric loss (tan δ) increases.

【0009】ところで、フェライト本来の導電性は、主
としてFe3++e- ⇔Fe2+により支配される。そこで
本発明では、この電子移動を阻害する成分としてMn4+
を導入し、成分置換を行うことにより、結晶粒内(結晶
粒自体)を高抵抗化し、Mnを添加していない従来技術
に比べて、誘電損失(tan δ)の増大を抑制しているの
である。
The inherent conductivity of ferrite is mainly controlled by Fe 3+ + e + Fe 2+ . Therefore, in the present invention, Mn 4+
, And component substitution is performed, thereby increasing the resistance inside the crystal grains (crystal grains themselves) and suppressing an increase in dielectric loss (tan δ) as compared with the conventional technology in which Mn is not added. is there.

【0010】具体的には、(a−x)Fe2 3 −bY
2 3 −cCaO−dIn2 3 −eV2 5 −xMn
2 で表される6成分系のフェリ磁性ガーネット材料で
あって、 0.40≦a≦0.55 0.30≦b≦0.40 0.00<c≦0.10 0.00<d≦0.15 0.00<e≦0.15 0.00<x≦0.05 の範囲内に重量比a、b、c、d、e、xがあり、且
つ、 a+b+c+d+e=1 を満たす組成とする。特に、MnO2 の量xが、0.0
1≦x≦0.03を満たすように設定するのが好まし
い。
Specifically, (ax) Fe 2 O 3 -bY
2 O 3 -cCaO-dIn 2 O 3 -eV 2 O 5 -xMn
A six-component ferrimagnetic garnet material represented by O 2 , wherein 0.40 ≦ a ≦ 0.55 0.30 ≦ b ≦ 0.40 0.00 <c ≦ 0.10 0.00 <d A composition in which the weight ratios a, b, c, d, e, and x are within a range of ≦ 0.15 0.00 <e ≦ 0.15 0.00 <x ≦ 0.05, and a + b + c + d + e = 1 is satisfied. And In particular, when the amount x of MnO 2 is 0.0
It is preferable to set so that 1 ≦ x ≦ 0.03 is satisfied.

【0011】上記6成分系のフェリ磁性ガーネット組成
物における各成分の構成割合は、上記の通りであるが、
MnO2 量xを除く5成分系で見れば、従来公知の構成
割合とほぼ同様である。それらの範囲は、磁気共鳴半値
幅(ΔH)を低減するなど、サーキュレータやアイソレ
ータなどの素子材料として必要な特性から導き出される
ものである。本発明において、MnO2 量xを0.00
<x≦0.05の範囲とするのは、Mnに置換されてい
なければ誘電損失(tan δ)が低下しないし、逆にMn
が多すぎると誘電損失(tan δ)が増加してしまうから
である。特に、MnO2 量xを0.01≦x≦0.03
とすると、誘電損失(tan δ)を5×10-4以下にで
き、上記のような素子材料として極めて好ましい特性を
呈する。
The composition ratio of each component in the six-component ferrimagnetic garnet composition is as described above.
In terms of the five-component system except for the amount x of MnO 2 , it is almost the same as the conventionally known composition ratio. These ranges are derived from characteristics required for element materials such as circulators and isolators, such as reducing the half width (ΔH) of magnetic resonance. In the present invention, the amount x of MnO 2 is 0.00
The range of <x ≦ 0.05 is that the dielectric loss (tan δ) does not decrease unless Mn is substituted, and conversely Mn
Is too large, the dielectric loss (tan δ) increases. In particular, when the amount x of MnO 2 is 0.01 ≦ x ≦ 0.03
In this case, the dielectric loss (tan δ) can be reduced to 5 × 10 −4 or less, exhibiting extremely preferable characteristics as the element material as described above.

【0012】[0012]

【発明の実施の形態】このようなマイクロ波用フェリ磁
性ガーネット材料は、次のようなプロセスで製造でき
る。各原料粉体を各組成に応じて秤量し、ボールミルに
て24時間程度湿式混合する。次に、1000〜120
0℃で6時間程度仮焼成し、得られる仮焼粉体をボール
ミルにて24時間程度湿式粉砕する。これを乾燥した
後、結合剤(バインダ)等を加えて造粒し、所定の形状
に成形して1300〜1450℃で20時間程度本焼成
する。このようにして得られた材料を、所定の寸法に加
工する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Such a ferrimagnetic garnet material for microwaves can be manufactured by the following process. Each raw material powder is weighed according to each composition, and wet-mixed for about 24 hours by a ball mill. Next, 1000-120
The calcined powder is calcined at 0 ° C. for about 6 hours, and the obtained calcined powder is wet-ground with a ball mill for about 24 hours. After drying, a binder (binder) or the like is added to the mixture, and the mixture is granulated, formed into a predetermined shape, and finally baked at 1300 to 1450 ° C for about 20 hours. The material obtained in this way is processed into a predetermined size.

【0013】[0013]

【実施例】(0.48−x)Fe2 3 −0.35Y2
3 −0.06CaO−0.06In2 3 −0.05
2 5 −xMnO2 で表される試料(6成分系のフェ
リ磁性ガーネット組成物)を作製した。MnO2 量x
は、0(置換していない従来と同等品、即ち5成分系)
から0.05までの6種類である。
EXAMPLES (0.48-x) Fe 2 O 3 -0.35Y 2
O 3 -0.06CaO-0.06In 2 O 3 -0.05
A sample represented by V 2 O 5 -xMnO 2 (six-component ferrimagnetic garnet composition) was prepared. MnO 2 amount x
Is 0 (equivalent to the conventional product without substitution, that is, a five-component system)
To 0.05.

【0014】試料は次のように作製した。MnO2 量x
を0〜0.05まで変化させた各組成(6種類)に応じ
て原料粉体を秤量し、ボールミルによって24時間湿式
混合した。次に1100℃で6時間仮焼成し、得られた
仮焼成粉体をボールミルにて24時間湿式粉砕した。こ
れを乾燥した後、結合剤を加えて造粒し、所定形状にプ
レス成形し、1390℃で20時間本焼成した。このよ
うにして得られた材料を、所定の寸法に加工し、周波数
10GHzにおいて誘電損失(tan δ)と磁気共鳴半値幅
(ΔH)を測定した。測定結果を図1に示す。
A sample was prepared as follows. MnO 2 amount x
The raw material powders were weighed according to each composition (six types) in which was changed from 0 to 0.05, and were wet-mixed by a ball mill for 24 hours. Next, the powder was calcined at 1100 ° C. for 6 hours, and the resultant calcined powder was wet-pulverized by a ball mill for 24 hours. After this was dried, a binder was added and the mixture was granulated, pressed into a predetermined shape, and finally baked at 1390 ° C. for 20 hours. The material thus obtained was processed into a predetermined size, and a dielectric loss (tan δ) and a magnetic resonance half width (ΔH) were measured at a frequency of 10 GHz. FIG. 1 shows the measurement results.

【0015】図1に示されているように、MnO2 量x
を増加していくにつれて、誘電損失(tan δ)が減少し
ていく。しかし、MnO2 量xが0.02を超えると、
逆に増加に転じ、0.05を超えると誘電損失(tan
δ)は無置換に近い状態まで悪化する。本発明におい
て、0.00<x≦0.05と規定したのは、このこと
による。即ち、0.05以下であれば、Mnが無置換で
ある従来技術よりも誘電損失(tan δ)を低減できるか
らである。なお、磁気共鳴半値幅(ΔH)は、MnO2
量xの変化に対して殆ど変化していない。
As shown in FIG. 1, the amount of MnO 2 x
Increases, the dielectric loss (tan δ) decreases. However, when the amount x of MnO 2 exceeds 0.02,
On the contrary, it starts increasing, and when it exceeds 0.05, the dielectric loss (tan
δ) deteriorates to a state close to non-substitution. In the present invention, this is why 0.00 <x ≦ 0.05. That is, if it is 0.05 or less, the dielectric loss (tan δ) can be reduced as compared with the conventional technology in which Mn is not substituted. The magnetic resonance half width (ΔH) is MnO 2
There is almost no change with respect to the change of the quantity x.

【0016】ところで、このようなフェリ磁性ガーネッ
ト材料をサーキュレータやアイソレータなどのマイクロ
波デバイスとして使用する場合、誘電損失(tan δ)は
5×10-4以下が一応の目安となっている。そのため、
従来技術では、磁気共鳴半値幅(ΔH)を非常に小さく
できてもデバイスとして実用に供し得ない場合があっ
た。しかし本発明では、MnO2 量xを0.01≦x≦
0.03の範囲に設定することで、磁気共鳴半値幅(Δ
H)を非常に小さく、しかも誘電損失(tan δ)も小さ
く抑える(5×10-4以下)ことができる。
Incidentally, when such a ferrimagnetic garnet material is used as a microwave device such as a circulator or an isolator, a dielectric loss (tan δ) of 5 × 10 −4 or less is a rough guide. for that reason,
In the prior art, even if the magnetic resonance half width (ΔH) can be made very small, it may not be practically usable as a device. However, in the present invention, the amount x of MnO 2 is set to 0.01 ≦ x ≦
By setting the range to 0.03, the magnetic resonance half width (Δ
H) can be made very small and the dielectric loss (tan δ) can be kept small (5 × 10 −4 or less).

【0017】[0017]

【発明の効果】本発明は上記のように、Fe、Y、C
a、In、及びVを主成分とし、そのFeの一部をMn
に置換したマイクロ波用フェリ磁性ガーネット材料であ
るから、磁気共鳴半値幅(ΔH)が小さいという特性を
具備し、且つ誘電損失(tan δ)を低減できる。
According to the present invention, as described above, Fe, Y, C
a, In, and V as main components, and a part of Fe is Mn.
Since it is a ferrimagnetic garnet material for microwaves, the characteristic that the magnetic resonance half width (ΔH) is small and the dielectric loss (tan δ) can be reduced.

【0018】特に、MnO2 量xを、0.01≦x≦
0.03の範囲に収めると、誘電損失(tan δ)を5×
10-4以下にまで低減でき、サーキュレータやアイソレ
ータなどのマイクロ波デバイスとして最適なフェリ磁性
ガーネット材料が得られる。
In particular, when the amount x of MnO 2 is 0.01 ≦ x ≦
If it falls within the range of 0.03, the dielectric loss (tan δ) becomes 5 ×
Ferrimagnetic garnet material which can be reduced to 10 -4 or less and is optimal as a microwave device such as a circulator or an isolator can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】MnO2 量xに対する誘電損失(tan δ)と磁
気共鳴半値幅(ΔH)の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between dielectric loss (tan δ) and magnetic resonance half width (ΔH) with respect to the amount x of MnO 2 .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA09 AB02 AE02 AE05 4G018 AA08 AA12 AA17 AA21 AA30 AB06 AC01 AC02 AC05 AC08 AC16 5E041 AB15 AB19 BD01 CA08 NN02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G002 AA09 AB02 AE02 AE05 4G018 AA08 AA12 AA17 AA21 AA30 AB06 AC01 AC02 AC05 AC08 AC16 5E041 AB15 AB19 BD01 CA08 NN02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Fe、Y、Ca、In、及びVを主成分
とするフェリ磁性ガーネット材料において、 前記Feの一部をMnに置換することにより誘電損失を
低減することを特徴とするマイクロ波用フェリ磁性ガー
ネット材料。
1. A microwave based ferrimagnetic garnet material containing Fe, Y, Ca, In, and V as a main component, wherein a part of Fe is replaced by Mn to reduce dielectric loss. For ferrimagnetic garnet material.
【請求項2】 Feの一部を、総量の5重量%以下の量
のMnO2 で置換する請求項1記載のマイクロ波用フェ
リ磁性ガーネット材料。
2. The ferrimagnetic garnet material for microwaves according to claim 1, wherein a part of Fe is replaced by MnO 2 in an amount of 5% by weight or less of the total amount.
【請求項3】 (a−x)Fe2 3 −bY2 3 −c
CaO−dIn2 3 −eV2 5 −xMnO2 で表さ
れる6成分系のフェリ磁性ガーネット材料であって、 0.40≦a≦0.55 0.30≦b≦0.40 0.00<c≦0.10 0.00<d≦0.15 0.00<e≦0.15 0.00<x≦0.05 の範囲内に重量比a、b、c、d、e、xがあり、且
つ、 a+b+c+d+e=1 を満たす組成であることを特徴とするマイクロ波用フェ
リ磁性ガーネット材料。
3. (ax) FeTwoOThree-BYTwoOThree-C
CaO-dInTwoO Three-EVTwoOFive-XMnOTwoRepresented by
A six-component ferrimagnetic garnet material, wherein 0.40 ≦ a ≦ 0.55 0.30 ≦ b ≦ 0.40 0.00 <c ≦ 0.10 0.00 <d ≦ 0.150 The weight ratios a, b, c, d, e, and x are within a range of 0.000 <e ≦ 0.15 0.00 <x ≦ 0.05, and
And a composition satisfying a + b + c + d + e = 1.
Remagnetic garnet material.
【請求項4】 MnO2 の量xが、 0.01≦x≦0.03 の範囲内にある請求項3記載のマイクロ波用フェリ磁性
ガーネット材料。
4. The ferrimagnetic garnet material for microwaves according to claim 3, wherein the amount x of MnO 2 is in the range of 0.01 ≦ x ≦ 0.03.
JP11231341A 1999-08-18 1999-08-18 Ferrimagnetic garnet material for microwave Pending JP2001058831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231341A JP2001058831A (en) 1999-08-18 1999-08-18 Ferrimagnetic garnet material for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231341A JP2001058831A (en) 1999-08-18 1999-08-18 Ferrimagnetic garnet material for microwave

Publications (1)

Publication Number Publication Date
JP2001058831A true JP2001058831A (en) 2001-03-06

Family

ID=16922123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231341A Pending JP2001058831A (en) 1999-08-18 1999-08-18 Ferrimagnetic garnet material for microwave

Country Status (1)

Country Link
JP (1) JP2001058831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070389A (en) * 2002-02-25 2003-08-30 주식회사 하이닉스반도체 Magnetic materials for microwave and production method thereof
CN111662079A (en) * 2020-06-28 2020-09-15 中国电子科技集团公司第九研究所 Small-linewidth low-loss microwave garnet material with adjustable dielectric constant and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070389A (en) * 2002-02-25 2003-08-30 주식회사 하이닉스반도체 Magnetic materials for microwave and production method thereof
CN111662079A (en) * 2020-06-28 2020-09-15 中国电子科技集团公司第九研究所 Small-linewidth low-loss microwave garnet material with adjustable dielectric constant and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109563640B (en) Temperature insensitive dielectric constant garnet
JP4432482B2 (en) High frequency magnetic material and high frequency circuit components
US3763045A (en) Calcium-vanadium ferrimagnetic garnets
JP2001058831A (en) Ferrimagnetic garnet material for microwave
EP0635854B1 (en) Magnetic material for high frequencies
US5589096A (en) Magnetic material for high frequencies
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JP2958800B2 (en) Microwave / millimeter wave magnetic composition
US5055214A (en) Magnetic material for microwave and millimeter wave frequencies
KR100290233B1 (en) method for fabricating Mn-Zn ferrite core
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
US5028348A (en) Magnetic material for high frequencies
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
JP2958809B2 (en) Microwave / millimeter wave magnetic composition
US5874020A (en) Ni-Zn base ferrite
JPH0474842B2 (en)
KR100279732B1 (en) Magnetic ceramic compositions for microwave devices, Magnetic ceramics for microwave devices using the same, and manufacturing method thereof
JPS5815923B2 (en) Microha Millihayo Ferrite
JP2001126912A (en) Magnetic material for high-frequency and non-reciprocal circuit for high frequency using the same
JPH0536518A (en) Manufacture of garnet-type ferrite unit
JP2003059711A (en) Oxide magnetic material
JPH1187124A (en) Manufacture of nickel-zinc ferrite for microwave
JPH11273928A (en) Magnetic material
JPH03215907A (en) Magnetic composition for microwave and millimeter wave
JPS6151405B2 (en)