JPH0536518A - Manufacture of garnet-type ferrite unit - Google Patents

Manufacture of garnet-type ferrite unit

Info

Publication number
JPH0536518A
JPH0536518A JP3209782A JP20978291A JPH0536518A JP H0536518 A JPH0536518 A JP H0536518A JP 3209782 A JP3209782 A JP 3209782A JP 20978291 A JP20978291 A JP 20978291A JP H0536518 A JPH0536518 A JP H0536518A
Authority
JP
Japan
Prior art keywords
unit
manufacture
garnet
type ferrite
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209782A
Other languages
Japanese (ja)
Inventor
Hidekazu Maeda
英一 前田
Nobuhito Ooshima
序人 大島
Nobuyuki Kojima
信行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3209782A priority Critical patent/JPH0536518A/en
Publication of JPH0536518A publication Critical patent/JPH0536518A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a polycrystal garnet-type ferrite unit easy to manufacture with a fluctuation width of a magnetic resonance half width DELTAH narrowed at a relatively low cost. CONSTITUTION:The invention refers to a manufacture method comprising steps wherein powder of raw materials of Y2O3, Fe2O3 and materials with part of Y and Fe substituted is weighed and mixed so that Y3Fe5O12 is mainly constituted, the mixture is temporarily baked at 1000 to 1200 deg.C to be roughly ground, then is subjected to wet fine-grinding, and then a binder is added to the fine powder to manufacture a slurry, which is to be pressure-molded in a magnetic field to have a unit formed, before the unit is sintered at 1400 to 1500 deg.C to manufacture a garnet-type ferrite unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波に用いられるサ
ーキュレータ、アイソレータ等の高周波素子又は高周波
IC基板として用いられる高周波用多結晶構造のガーネ
ット型フェライトユニットの製造方法に関し、特に磁気
共鳴半値幅ΔHを減少させ、安定した品質にできる多結
晶ガーネット型フェライトユニットの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a garnet-type ferrite unit having a polycrystalline structure for high frequency used as a high frequency element such as a circulator or isolator used for high frequency or a high frequency IC substrate. The present invention relates to a method for manufacturing a polycrystalline garnet-type ferrite unit capable of reducing the amount of noise and achieving stable quality.

【0002】[0002]

【従来の技術】従来より、多結晶構造のガーネット型フ
ェライトユニットは、図3に示すように、一般の多結晶
フェライト(Ni−Znフェライト、Mn−Znフェラ
イト等)と同様に、原料の粉末を秤量して混合し、10
00〜1200℃で仮焼し、粗粉砕してから湿式微粉砕
する。次いで、この微粉にバインダを加えて造粒し、加
圧成形してユニットを形成し、このユニットを1400
〜1500℃で焼成し、さらに必要に応じて所要の加工
をしていた。
2. Description of the Related Art Conventionally, as shown in FIG. 3, a garnet-type ferrite unit having a polycrystalline structure is prepared by using raw material powder as in the case of general polycrystalline ferrite (Ni-Zn ferrite, Mn-Zn ferrite, etc.). Weigh and mix 10
It is calcined at 00 to 1200 ° C., coarsely pulverized, and then wet finely pulverized. Next, a binder is added to this fine powder to granulate it, and pressure molding is performed to form a unit.
It was fired at ˜1500 ° C. and was further processed as required.

【0003】[0003]

【発明が解決しようとする課題】近年、コードレス電
話、自動車無線機、携帯電話等の高周波を応用した製品
が普及し、サーキュレータ、アイソレータに多結晶ガー
ネット型フェライトユニットが使用され、その特性改善
の要求が強くなってきた。上記従来の製造方法による多
結晶ガーネット型フェライトユニットの磁気共鳴半値幅
ΔHは、図2に点線で示すように広がりが大きかった。
これは、組成で決まるΔH1 、多結晶中の個々の結
晶粒が任意の方向を向いていることに起因した異方性磁
界によるΔH2 、気孔などの微細構造によるΔH3
複合作用により決定されるためであった。なお、単結晶
ガーネット型フェライトを使用すれば、磁気共鳴半値幅
ΔHは、多結晶中の個々の結晶粒が任意の方向を向いて
いることに起因した異方性磁界によるΔH2 がないの
で、小さくできて特性改善の要求は満たせるが、コスト
が高く実用化に問題があった。
In recent years, products using high frequencies such as cordless phones, automobile radios, and mobile phones have become widespread, and polycrystalline garnet-type ferrite units are used for circulators and isolators. Is getting stronger. The magnetic resonance half-value width ΔH of the polycrystalline garnet-type ferrite unit manufactured by the above-described conventional manufacturing method has a large spread as shown by the dotted line in FIG.
This is determined by the combined action of ΔH 1 determined by the composition, ΔH 2 due to the anisotropic magnetic field due to the individual crystal grains in the polycrystal being oriented in an arbitrary direction, and ΔH 3 due to the fine structure such as pores. It was to be done. If a single-crystal garnet-type ferrite is used, the magnetic resonance half-value width ΔH does not have ΔH 2 due to an anisotropic magnetic field due to individual crystal grains in the polycrystal being oriented in an arbitrary direction. Although it can be made small and the requirement for characteristic improvement can be satisfied, the cost is high and there is a problem in practical application.

【0004】本発明は、上記従来技術の有する問題点に
鑑みてなされたもので、製造が容易で比較的低コスト
で、磁気共鳴半値幅ΔHを減らして特性改善した多結晶
ガーネット型フェライトユニットを製造する方法を提供
することを目的としている。
The present invention has been made in view of the above problems of the prior art, and is a polycrystalline garnet type ferrite unit which is easy to manufacture, is relatively low in cost, and has improved characteristics by reducing the magnetic resonance half-value width ΔH. It is intended to provide a method of manufacturing.

【0005】[0005]

【課題を解決するための手段】本発明による多結晶ガー
ネット型フェライトユニットの製造方法は、Y3 Fe5
12を主に構成するようにY2 3 ,Fe2 3 、及び
Y,Feの一部を置換する成分の原料の粉末を秤量して
混合し、1000〜1200℃で仮焼し、粗粉砕してか
ら湿式微粉砕し、この微粉にバインダを加えてスラリー
を作製し、磁界中で加圧成形してユニットを形成し、こ
のユニットを1400〜1500℃で焼成することを特
徴とする。本発明においてY3 Fe5 12を主に構成す
る成分とY,Feの一部を置換する元素としては、イッ
トリウムの一部と置換するカルシウム(Ca)、鉄の一
部と置換するインジウム(In)、又は鉄の一部と置換
するインジウム及びバナジウム(V)等が例示される。
これら一部と置換する原料としては、CaCO,In2
3 ,V2 5 等が例示される。
A method of manufacturing a polycrystalline garnet-type ferrite unit according to the present invention comprises: Y 3 Fe 5
Powders of raw materials of Y 2 O 3 , Fe 2 O 3 and components for substituting a part of Y, Fe so as to mainly constitute O 12 are weighed and mixed, and calcined at 1000 to 1200 ° C., It is characterized in that it is coarsely pulverized, then wet finely pulverized, a binder is added to the fine powder to prepare a slurry, and the slurry is pressure molded in a magnetic field to form a unit, and the unit is fired at 1400 to 1500 ° C. .. In the present invention, as the element mainly substituting Y 3 Fe 5 O 12 and a part of Y and Fe, calcium (Ca) substituting a part of yttrium and indium (a substituting a part of iron ( In), indium and vanadium (V) which substitute a part of iron, etc. are illustrated.
As a raw material for replacing some of these, CaCO, In 2
Examples are O 3 , V 2 O 5 and the like.

【0006】[0006]

【作用】本発明は、Y3 Fe5 12を主に構成する原料
の粉末、例えば、Y2 3 ,Fe2 3 及びこれらと一
部を置換する成分用のCaCO,In2 3 ,V2 5
なる原料を所定の組成となるように秤量し、鋼製ボール
ミルにおいて分散剤を加えて湿式で混合し、分散剤を乾
燥して除去して1000〜1200℃で仮焼する。この
仮焼粉を粗粉砕してから再度鋼製ボールミルにおいて分
散剤を加えて湿式で所定の粒度に微粉砕する。次いで、
この微粉にバインダを加えてスラリーを作製し、磁界中
で加圧成形してユニットを形成し、このユニットを14
00〜1500℃で焼成し、所定の形状に加工する。上
記のように本発明は、作製したスラリーを磁界中で加圧
成形してユニットを形成しているので、多結晶中の個々
の結晶粒の向いている方向をかなり揃えることとなり、
異方性磁界によるΔH2 を減らし、磁気共鳴半値幅ΔH
の広がりを減らすことにより、多結晶ガーネット型フェ
ライトユニットの特性を改善することができる。
According to the present invention, raw material powders mainly composed of Y 3 Fe 5 O 12 , such as Y 2 O 3 , Fe 2 O 3 and CaCO, In 2 O 3 for components partially replacing these, are used. , V 2 O 5
These raw materials are weighed so as to have a predetermined composition, added with a dispersant in a steel ball mill and mixed by a wet method, the dispersant is dried and removed, and calcined at 1000 to 1200 ° C. The calcined powder is coarsely pulverized, and then a dispersant is added again in a steel ball mill and wet pulverized to a predetermined particle size. Then
A binder is added to this fine powder to prepare a slurry, which is pressure-molded in a magnetic field to form a unit.
It is fired at 00 to 1500 ° C. and processed into a predetermined shape. As described above, the present invention forms the unit by pressure-molding the produced slurry in a magnetic field, so that the directions in which the individual crystal grains in the polycrystal face are considerably aligned,
ΔH 2 due to anisotropic magnetic field is reduced to reduce magnetic resonance half-width ΔH
The characteristics of the polycrystalline garnet-type ferrite unit can be improved by reducing the spread of.

【0007】以下、本発明の実施例を説明する。図1に
示すような工程に従い、先ず、Y3 Fe5 12となるよ
うにY2 3 ,Fe2 3 なる原料を秤量し、鋼製ボー
ルミルにおいて分散剤としてカルボン酸系分散剤0.2
wt% を加えて湿式で混合し、分散剤を乾燥して除去して
1000〜1200℃で仮焼する。この仮焼粉を粗粉砕
してから再度鋼製ボールミルにおいて分散剤としてカル
ボン酸系分散剤0.2wt% を加えて湿式で所定の粒度に
微粉砕する。次いで、この微粉に酢酸ビニル系バインダ
4wt% を加えてスラリーを作製し、磁界中3000(A
/m)で加圧成形して直径5mmの円盤状のユニットを形
成し、このユニットを1400〜1500℃で焼成し
た。比較のため、磁界中でなく大気中で加圧成形した以
外は上記実施例と同様にして円盤状のユニットを形成
し、焼成して試料を作製し、従来例とした。
Hereinafter, examples of the present invention will be described. According to the process as shown in FIG. 1, first, raw materials of Y 2 O 3 and Fe 2 O 3 are weighed so as to be Y 3 Fe 5 O 12, and a carboxylic acid-based dispersant as a dispersant in a steel ball mill. Two
wt% is added and mixed by a wet method, the dispersant is dried and removed, and calcined at 1000 to 1200 ° C. The calcined powder is coarsely crushed, and then 0.2 wt% of a carboxylic acid-based dispersant as a dispersant is added again in a steel ball mill to be finely crushed to a predetermined particle size by a wet method. Next, 4 wt% of vinyl acetate binder was added to this fine powder to prepare a slurry, and 3000 (A
/ M) to form a disk-shaped unit having a diameter of 5 mm, and the unit was fired at 1400 to 1500 ° C. For comparison, a disk-shaped unit was formed and fired in the same manner as in the above-described example except that pressure molding was performed in the atmosphere, not in a magnetic field, to prepare a sample, which was used as a conventional example.

【0008】上記で作製したユニットの特性を、飽和磁
化4πMs(Gauss)、磁気共鳴半値幅ΔH(エル
ステッド)、誘電体損失係数tanδ(×104 )、誘
電率εについて測定した。その測定結果を下記した。ま
た、磁気共鳴半値幅ΔHと磁界との関係を図2に、本実
施例による結果を実線で、従来例による結果を点線で示
した。
The characteristics of the unit produced above were measured for saturation magnetization 4πMs (Gauss), magnetic resonance half-value width ΔH (Oersted), dielectric loss coefficient tan δ (× 10 4 ), and dielectric constant ε. The measurement results are shown below. Further, the relationship between the magnetic resonance half-value width ΔH and the magnetic field is shown in FIG. 2, the result of this example is shown by a solid line, and the result of the conventional example is shown by a dotted line.

【0009】 本実施例 従来例 飽和磁化 4πMs(Gauss) 1800 1790 磁気共鳴半値幅 ΔH(エルステッド) 20 30 誘電体損失係数 tanδ×104 0.45 0.50 誘 電 率 ε 13.8 14.2 この結果から、明らかなように本実施例によれば、磁気
共鳴半値幅ΔHを約30%改善し、その他の測定項目に
ついても、僅かであるが改善されている。
Example Example Conventional example Saturation magnetization 4πMs (Gauss) 1800 1790 Magnetic resonance half width ΔH (Oersted) 20 30 Dielectric loss coefficient tan δ × 10 4 0.45 0.50 Dielectric constant ε 13.8 14.2 As is apparent from these results According to the present embodiment, the magnetic resonance half-width ΔH is improved by about 30%, and the other measurement items are also slightly improved.

【0010】[0010]

【発明の効果】本発明によれば、磁気共鳴半値幅ΔHの
バラツキ幅を狭くして多結晶ガーネット型フェライトユ
ニットの特性を改善できるので、低コストでアイソレー
タ等の高周波素子に用いることができる多結晶ガーネッ
ト型フェライトユニットが得られる。
According to the present invention, since the characteristic width of the polycrystalline garnet type ferrite unit can be improved by narrowing the variation width of the magnetic resonance half-value width ΔH, it can be used in high frequency devices such as isolators at low cost. A crystalline garnet type ferrite unit is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多結晶ガーネット型フェライトユ
ニットの製造方法の工程を示す図である。
FIG. 1 is a diagram showing steps of a method for manufacturing a polycrystalline garnet-type ferrite unit according to the present invention.

【図2】磁気共鳴半値幅ΔHと磁界との関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a magnetic resonance half width ΔH and a magnetic field.

【図3】従来例に係る多結晶ガーネット型フェライトユ
ニットの製造方法の工程を示す図である。
FIG. 3 is a diagram showing steps of a method for manufacturing a polycrystalline garnet-type ferrite unit according to a conventional example.

Claims (1)

【特許請求の範囲】 【請求項1】 Y3 Fe5 12を主に構成するようにY
2 3 ,Fe2 3 、及びY,Feの一部を置換する成
分の原料の粉末を秤量して混合し、1000〜1200
℃で仮焼し、粗粉砕してから湿式微粉砕し、この微粉に
バインダを加えてスラリーを作製し、磁界中で加圧成形
してユニットを形成し、このユニットを1400〜15
00℃で焼成することを特徴とする多結晶ガーネット型
フェライトユニットの製造方法。
Claims: 1. Y 3 Fe 5 O 12 is composed mainly of Y.
2 O 3, Fe 2 O 3 , and Y, were weighed and mixed raw material powder component for substituting a part of Fe, 1000 to 1200
Calcination at ℃, coarse pulverization, then wet fine pulverization, binder is added to the fine powder to prepare slurry, and pressure molding is performed in a magnetic field to form a unit.
A method for producing a polycrystalline garnet-type ferrite unit, which comprises firing at 00 ° C.
JP3209782A 1991-07-26 1991-07-26 Manufacture of garnet-type ferrite unit Pending JPH0536518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209782A JPH0536518A (en) 1991-07-26 1991-07-26 Manufacture of garnet-type ferrite unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209782A JPH0536518A (en) 1991-07-26 1991-07-26 Manufacture of garnet-type ferrite unit

Publications (1)

Publication Number Publication Date
JPH0536518A true JPH0536518A (en) 1993-02-12

Family

ID=16578516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209782A Pending JPH0536518A (en) 1991-07-26 1991-07-26 Manufacture of garnet-type ferrite unit

Country Status (1)

Country Link
JP (1) JPH0536518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635854A1 (en) * 1993-07-20 1995-01-25 Murata Manufacturing Co., Ltd. Magnetic material for high frequencies
CN110981461A (en) * 2019-12-26 2020-04-10 南京大成材料科技有限公司 Yttrium iron garnet ferrite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635854A1 (en) * 1993-07-20 1995-01-25 Murata Manufacturing Co., Ltd. Magnetic material for high frequencies
US5458797A (en) * 1993-07-20 1995-10-17 Murata Mfg. Co., Ltd. Magnetic material for high frequencies
CN110981461A (en) * 2019-12-26 2020-04-10 南京大成材料科技有限公司 Yttrium iron garnet ferrite material and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI802144B (en) Temperature insensitive dielectric constant garnets
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
KR100236155B1 (en) Ferrite magnet, and powder for ferrite magnet and production process thereof
CN112745122A (en) Preparation method of high-power high-dielectric-constant garnet and garnet
CN110105063A (en) A kind of 5G communication spin Ferrite Material and preparation method thereof
CN111925201B (en) Sc doped hexagonal Zn2W ferrite material and preparation method thereof
CN113363041A (en) High-saturation low-loss bi-component microwave ferrite material and preparation method and application thereof
CN113896521B (en) Low-saturation narrow-linewidth gyromagnetic material and preparation method thereof
Vrehen et al. Microwave properties of fine-grain Ni and Mg ferrites
JPH0536518A (en) Manufacture of garnet-type ferrite unit
KR20020026346A (en) Method for making m-type hexaferrite powders or wafers
JP3321552B2 (en) Composition of magnetic ceramic for microwave device, magnetic ceramic for microwave device using the same, and method of manufacturing the same
CN113845359A (en) Low-loss LiZnTiMn gyromagnetic ferrite material and preparation method thereof
EP0635854B1 (en) Magnetic material for high frequencies
US3563897A (en) Ferromagnetic garnet with stress insensitive b-h loop and method of making same
KR102407046B1 (en) Ferrite magnetic material and ferrite sintered magnet
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
KR20180111041A (en) Ferrite magnetic material and sintered ferrite magnet
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
KR102406630B1 (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
JP2006024980A (en) Nonreciprocal circuit element
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
JPH07157313A (en) Production of calcium-vanadium based ferrimagnetic garnet