JP2001058181A - Method and apparatus for passing liquid into liquid passing type capacitor - Google Patents

Method and apparatus for passing liquid into liquid passing type capacitor

Info

Publication number
JP2001058181A
JP2001058181A JP11236364A JP23636499A JP2001058181A JP 2001058181 A JP2001058181 A JP 2001058181A JP 11236364 A JP11236364 A JP 11236364A JP 23636499 A JP23636499 A JP 23636499A JP 2001058181 A JP2001058181 A JP 2001058181A
Authority
JP
Japan
Prior art keywords
liquid
flow
condenser
electrodes
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11236364A
Other languages
Japanese (ja)
Inventor
Yoshinobu Tajima
義宣 田嶋
Daisaku Yano
大作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP11236364A priority Critical patent/JP2001058181A/en
Publication of JP2001058181A publication Critical patent/JP2001058181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously obtain a desalted liquid by arranging liquid passing type capacitors in parallel to connect them and setting one of them to a process for removing an ion component of a liquid to be treated while setting the other one of them to a process for recovering the ion component of the liquid to be treated. SOLUTION: A liquid passing type capacitor 1 is equipped with first and second liquid passing type capacitors 1a, 1b which are connected to a supply source 5 of a liquid to be treated in common and arranged in parallel by mutually connecting desalted liquid outflow pipings. A DC power supply 34 is connected to a pair of the electrodes 30, 31 of the liquid passing type capacitor 1 and, when a liquid to be treated is passed through a column in such as state that DC voltage is applied across the electrodes, a pair of the electrodes 30, 31 adsorb ions to remove the ion component from the liquid to be treated to obtain a desalted liquid and, when a pair of the electrodes 30, 31 are short- circuited thereafter, ions are desorbed from a pair of the electrodes 30, 31 to obtain a conc. liquid wherein the ion component is recovered in high concn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、その保有する一対
の電極に直流電圧を印加して通液中の被処理液のイオン
成分が除去された脱塩液を得、その後、短絡あるいは逆
接続して一対の電極を再生すると共に、前記除去イオン
成分を通液中の被処理液と共に回収するもので、その目
的に合わせて被処理液のイオン成分を除去及び回収する
通液型コンデンサの通液方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a desalting solution in which ionic components of a liquid to be treated are removed by applying a DC voltage to a pair of electrodes held in the solution, and then a short circuit or reverse connection is performed. To regenerate a pair of electrodes and collect the removed ion components together with the liquid to be treated in the liquid, and remove the ion components of the liquid to be treated according to the purpose by passing through a liquid-flow condenser. Related to liquid method.

【0002】[0002]

【従来の技術】通液型コンデンサは、静電力を利用して
被処理液中のイオン成分の除去と回収(再生)を行うも
ので、その原理は以下の通りである。すなわち、通液型
コンデンサは、その保有する一対の電極に直流電圧を印
加して、通液中の被処理液のイオン成分、あるいは電荷
のある粒子、有機物を一対の電極に吸着することにより
除去し、イオン成分が除去された脱塩液を得て、その後
一対の電極を短絡あるいは直流電源を逆接続して、一対
の電極に吸着している前記イオン成分を離脱させ、一対
の電極を再生しつつ除去イオン成分を通液中の被処理液
と共に濃縮液として回収することを繰り返し行うもので
ある。
2. Description of the Related Art A flow-through type condenser removes and recovers (regenerates) ionic components in a liquid to be treated by using electrostatic force, and its principle is as follows. In other words, the flow-through capacitor applies a DC voltage to a pair of electrodes held by the flow-through capacitor, and removes ionic components, charged particles, and organic substances of the liquid to be processed by adsorbing the pair of electrodes. Then, a desalted solution from which the ionic components have been removed is obtained, and then the pair of electrodes is short-circuited or a DC power supply is reversely connected to release the ionic components adsorbed on the pair of electrodes, thereby regenerating the pair of electrodes. The removal of the removed ion component together with the liquid to be treated in the liquid as a concentrated solution is repeatedly performed.

【0003】このような通液型コンデンサは、特開平5
−258992号公報に開示されており、この公知例の
一例では、カラムに被処理液を導入する入口と、イオン
成分が除去された液を排出する出口とを設け、そのカラ
ム内に上記一対の電極を収容している。これら一対の電
極は、双方とも導電性支持層に高表面積導電性表面層が
支持され、更に非導電性多孔のスペーサが含まれてい
る。従って、一対の電極は、一方の電極の非導電性多孔
のスペーサ、導電性支持層、高表面積導電性表面層、他
方の電極の非導電性多孔のスペーサ、導電性支持層、高
表面積導電性表面層の6層構造となっている。この一対
の電極は、中空の多孔質中心管に高表面積導電性表面層
を内側にして巻かれてカートリッジを形成している。一
方の電極の導電性支持層及び他方の電極の導電性支持層
からはリード線がカラム外に延出され、直流電源に接続
されている。カラムの入口には被処理液供給源が接続さ
れ、出口にはイオン成分が除去された脱塩液とイオン成
分を回収した濃縮液とを分ける切替え弁が接続されてい
る。
Such a flow-through type capacitor is disclosed in Japanese Patent Application Laid-Open
In one example of this known example, an inlet for introducing a liquid to be treated into a column, and an outlet for discharging a liquid from which ionic components have been removed are provided. Contains electrodes. Each of the pair of electrodes has a high-surface area conductive surface layer supported by a conductive support layer, and further includes a non-conductive porous spacer. Accordingly, the pair of electrodes is composed of a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, and a high surface area conductive layer. It has a six-layer structure of a surface layer. This pair of electrodes is wound around a hollow porous central tube with the high surface area conductive surface layer inside, forming a cartridge. Lead wires extend from the conductive support layer of one electrode and the conductive support layer of the other electrode outside the column, and are connected to a DC power supply. A supply source of the liquid to be treated is connected to the inlet of the column, and a switching valve for separating a desalted solution from which the ionic components have been removed and a concentrated solution from which the ionic components have been recovered is connected to the outlet.

【0004】上記のような通液型コンデンサの通液方法
を図3を参照して説明する。図3中、50は通液型コン
デンサである。先ず、切替え弁51を開、切替え弁52
を閉の状態とし、スイッチ53をオンして一対の電極5
4、55に直流電圧を印加し、被処理液供給源56から
被処理液を通液型コンデンサ50に供給すると、一対の
電極54、55にイオン成分が吸着され、切替え弁51
の下流側でイオン成分が除去された脱塩液が得られる。
この状態が継続すると、一対の電極54、55にイオン
成分が徐々に吸着され飽和状態となり、イオン成分除去
性能が徐々に低下することが水質監視装置57により測
定されるから、ある時点でスイッチ53をオフして直流
電圧の印加を止める。そして、切替え弁51を閉、切替
え弁52を開の状態にしておき、イオン成分除去性能を
再生させるために、スイッチ58をオンして一対の電極
54、55間を短絡、あるいは直流電源59を逆接続す
ると、一対の電極54、55に吸着されていたイオン成
分が離脱し、一対の電極54、55が再生されつつ、切
替え弁52の下流側でイオン成分を回収した濃縮液が得
られ、被処理液中のイオン成分の除去と回収(再生)の
1サイクルが終了する。そして、被処理液供給源56か
ら被処理液が常時に通液型コンデンサ50に供給され、
上記サイクルが繰り返されてイオン成分が除去された脱
塩液とイオン成分を回収した濃縮液とを交互に得ること
ができる。
[0004] A method of passing a liquid through the above-mentioned liquid-passing type condenser will be described with reference to FIG. In FIG. 3, reference numeral 50 denotes a liquid-flow condenser. First, the switching valve 51 is opened, and the switching valve 52 is opened.
Is closed, the switch 53 is turned on, and the pair of electrodes 5
When a DC voltage is applied to the liquid supply 4 and 55 and the liquid to be treated is supplied from the liquid supply source 56 to the liquid condenser 50, the ion component is adsorbed on the pair of electrodes 54 and 55, and the switching valve 51
On the downstream side of the deionized water from which the ionic components have been removed.
If this state continues, the water component monitoring device 57 measures that the ionic components are gradually adsorbed to the pair of electrodes 54 and 55 and become saturated, and the ionic component removal performance gradually decreases. To turn off the DC voltage application. Then, the switching valve 51 is closed and the switching valve 52 is opened, and in order to regenerate the ion component removal performance, the switch 58 is turned on to short-circuit the pair of electrodes 54 and 55, or the DC power supply 59 is turned off. When the connection is reversed, the ionic component adsorbed on the pair of electrodes 54 and 55 is released, and a concentrated solution in which the ionic components are recovered on the downstream side of the switching valve 52 is obtained while the pair of electrodes 54 and 55 is being regenerated. One cycle of removal and recovery (regeneration) of the ionic component in the liquid to be treated is completed. Then, the liquid to be treated is constantly supplied from the liquid supply source 56 to the flow-through condenser 50,
By repeating the above cycle, a desalted solution from which the ionic components have been removed and a concentrated solution from which the ionic components have been recovered can be obtained alternately.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の通液型コンデンサの通液方法では、切替え弁51、
52が切替えられて、脱塩液あるいは濃縮液を交互に得
ているから、これら両液とも連続して得ることができな
いという問題がある。
However, according to the above-mentioned conventional method of passing a liquid through a condenser, the switching valve 51,
Since 52 is switched to alternately obtain a desalted solution or a concentrated solution, there is a problem that both of these solutions cannot be obtained continuously.

【0006】従って、本発明の目的は、脱塩液を連続し
て得ることができる通液型コンデンサの通液方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a flow-through method for a flow-through condenser which can continuously obtain a desalted solution.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者らは、鋭意検討を行った結果、一対の電極に直流
電圧を印加して通液中の被処理液のイオン成分を除去し
た後、短絡あるいは逆接続させて電極に蓄積された当該
イオン成分を回収する通液型コンデンサを使用し、該通
液型コンデンサを並列に配置接続し、一方の通液型コン
デンサが被処理液のイオン成分の除去工程中に、他方の
通液型コンデンサが蓄積されたイオン成分の回収工程中
にすれば、常時被処理液を通液して、イオン成分が除去
された脱塩液を連続して得ることができることを見出
し、本発明を完成するに至った。
Under such circumstances, the present inventors have made intensive studies and as a result, have found that after applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be treated during the passage of the liquid. Use a flow-through capacitor that recovers the ionic components accumulated in the electrodes by short-circuiting or reverse-connecting, and arrange and connect the flow-through capacitors in parallel. During the component removal process, if the other flow-through condenser is in the process of recovering the accumulated ionic components, the liquid to be treated is always passed, and the desalted solution from which the ionic components have been removed is continuously fed. They have found that they can be obtained and have completed the present invention.

【0008】すなわち、請求項1の発明は、一対の電極
に直流電圧を印加して通液中の被処理液のイオン成分を
除去して脱塩液を得、その後前記一対の電極を短絡ある
いは直流電源を逆接続して、前記除去されたイオン成分
を通液中の被処理液と共に濃縮液として回収する通液型
コンデンサを並列に配置接続し、一方の通液型コンデン
サが被処理液のイオン成分の除去工程中に、他方の通液
型コンデンサが被処理液のイオン成分の回収工程中と
し、常時、被処理液を通液して、イオン成分が除去され
た脱塩液又は前記イオン成分が濃縮された濃縮液を連続
して得るようにしたことを特徴とする通液型コンデンサ
の通液方法を提供するものである。
That is, according to the first aspect of the present invention, a direct current voltage is applied to a pair of electrodes to remove ionic components of a liquid to be processed in a flowing solution to obtain a desalted solution. A direct current power supply is reversely connected, and a flow-through condenser for collecting the removed ionic component as a concentrated solution together with the liquid to be processed is connected and connected in parallel. During the step of removing the ionic component, the other flow-through condenser is in the process of recovering the ionic component of the liquid to be treated, and always passes the liquid to be treated, and the desalted solution from which the ionic component has been removed or the ion It is an object of the present invention to provide a method for passing a liquid through a condenser, wherein a concentrated liquid in which components are concentrated is continuously obtained.

【0009】また、請求項2の発明は、前記通液型コン
デンサによって、被処理液のイオン成分が除去された脱
塩液及び当該イオン成分を回収した濃縮液の液質をそれ
ぞれ測定し、該各液の液質の測定値に基づき、前記イオ
ン成分が除去された脱塩液及びイオン成分を回収した濃
縮液の集液のタイミングを図ることを特徴とする請求項
1記載の通液型コンデンサの通液方法を提供するもので
ある。
Further, the invention of claim 2 is to measure the liquid quality of the desalted liquid from which the ionic component of the liquid to be treated has been removed and the concentration of the concentrated liquid from which the ionic component has been recovered by the flow-through condenser. 2. The flow-through condenser according to claim 1, wherein a timing of collecting the desalted solution from which the ionic components have been removed and a concentrated solution from which the ionic components have been collected is determined based on the measured value of the quality of each liquid. Is provided.

【0010】また、請求項3の発明は、被処理液供給源
と、一対の電極に直流電圧を印加して通液中の被処理液
のイオン成分を除去し、前記一対の電極を短絡あるいは
直流電源を逆接続して、除去されたイオン成分を通液中
の被処理液に回収する通液型コンデンサと、前記被処理
液供給源と前記通液型コンデンサを接続する供給配管
と、前記通液型コンデンサの流出側に接続される流出配
管と、前記流出配管から二つに分岐して途中に切替え弁
を備える脱塩液流出配管及び濃縮液流出配管と、を有す
る通液型コンデンサ装置の複数機を並列に配置し、前記
脱塩液流出配管同士を連接し、前記濃縮液流出配管同士
を連接してなることを特徴とする通液型コンデンサ装置
を提供するものである。
Further, according to a third aspect of the present invention, a DC voltage is applied to a liquid supply source to be treated and a pair of electrodes to remove ionic components of the liquid to be treated during passage, and the pair of electrodes is short-circuited or short-circuited. Reversely connecting a DC power supply, a liquid-flow condenser for recovering the removed ionic component into the liquid to be processed, and a supply pipe for connecting the liquid-to-be-processed supply source and the liquid-flow condenser; A flow-through condenser device having an outflow pipe connected to the outflow side of the through-flow condenser, a desalinate outflow pipe and a concentrate outflow pipe branched from the outflow pipe into two parts and provided with a switching valve on the way. Are provided in parallel, the desalted liquid outflow pipes are connected to each other, and the concentrated liquid outflow pipes are connected to each other.

【0011】また、請求項4の発明は、前記被処理液供
給源は共通の被処理液供給源として使用されることを特
徴とする請求項3記載の通液型コンデンサ装置を提供す
るものである。
Further, the invention of claim 4 provides the liquid-flow condenser device according to claim 3, wherein the liquid supply source is used as a common liquid supply source. is there.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態におけ
る通液型コンデンサの通液方法を図1及び図2に基づい
て説明する。図1は本発明の実施形態である通液型コン
デンサの通液方法を示すフロー図、図2は通液型コンデ
ンサの流出液の導電率と時間との関係を示す特性図であ
る。図中、通液型コンデンサ1は、第1通液型コンデン
サ1a及び第2通液型コンデンサ1bを備え、それらの
上流側はいずれも供給配管3、供給配管4により被処理
液供給源5に接続され、一方、その下流側はいずれも接
続配管6、接続配管7により第1水質監視装置8及び第
2水質監視装置9にそれぞれ接続されている。そして、
これら第1水質監視装置8及び第2水質監視装置9は、
いずれも接続配管10、接続配管11により第1自動弁
12及び第2自動弁13に接続され、これら第1自動弁
12及び第2自動弁13は互いに接続配管14により接
続されている。更に、第1自動弁12は接続配管14及
び集合排出管15(濃縮液流出配管)により濃縮液回収
槽16に接続され、接続配管17及び集合排出管18
(脱塩液流出配管)により脱塩液回収槽19に接続され
ている。また、第2自動弁13は接続配管20及び集合
排出管18(脱塩液流出配管)により脱塩液回収槽19
に接続され、接続配管21及び接続配管15(濃縮液流
出配管)により濃縮液回収槽19に接続されている。こ
のように、第1通液コンデンサ1aと第2通液コンデン
サ1bは、被処理液供給源5を共通とし、脱塩液流出配
管同士を連接し、濃縮液流出配管同士を連接することに
より並列に配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a description will be given of a method of passing a liquid through a flow-through condenser according to an embodiment of the present invention with reference to FIGS. FIG. 1 is a flow chart showing a method for passing a liquid through a condenser according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the conductivity of the effluent of the condenser and time. In the drawing, a liquid-passing condenser 1 includes a first liquid-passing condenser 1a and a second liquid-passing condenser 1b, and the upstream side thereof is connected to a processing liquid supply source 5 by a supply pipe 3 and a supply pipe 4. On the other hand, the downstream side is connected to a first water quality monitoring device 8 and a second water quality monitoring device 9 by a connection pipe 6 and a connection pipe 7, respectively. And
These first water quality monitoring device 8 and second water quality monitoring device 9
Both are connected to a first automatic valve 12 and a second automatic valve 13 by a connection pipe 10 and a connection pipe 11, and the first automatic valve 12 and the second automatic valve 13 are connected to each other by a connection pipe 14. Further, the first automatic valve 12 is connected to a concentrate recovery tank 16 by a connection pipe 14 and a collective discharge pipe 15 (concentrate discharge pipe), and a connection pipe 17 and a collective discharge pipe 18
(Desalinated liquid outlet pipe) is connected to the desalted liquid recovery tank 19. Further, the second automatic valve 13 is connected to the desalinated liquid collecting tank 19 by the connection pipe 20 and the collective discharge pipe 18 (desalted liquid outflow pipe).
And a connection pipe 21 and a connection pipe 15 (concentrated liquid outflow pipe) to a concentrated liquid recovery tank 19. As described above, the first liquid-passing condenser 1a and the second liquid-passing condenser 1b share the liquid-to-be-processed liquid supply source 5, connect the desalting liquid outflow pipes, and connect the concentrated liquid outflow pipes, thereby forming a parallel connection. Are located in

【0013】前記第1通液型コンデンサ1a及び第2通
液型コンデンサ1bは、いずれも一対の電極30、31
を内蔵し、双方の電極30はスイッチ32、33を介し
て直流電源34の陰極に接続され、双方の電極31は直
流電源34の陽極に接続されている。また、第1通液型
コンデンサ1aの一対の電極30、31はスイッチ35
を介して互いに接続され、第2通液型コンデンサ1bの
一対の電極30、31はスイッチ36を介して互いに接
続されている。そして、これらの図1に表示の機器類の
運転制御は、シーケンサー、マイコン等の公知の制御機
器で行われ、その詳細な運転制御としては、例えば、後
述の通液型コンデンサの通液方法が挙げられる。
Each of the first and second flow-through capacitors 1a and 1b has a pair of electrodes 30, 31.
, And both electrodes 30 are connected to the cathode of a DC power supply 34 via switches 32 and 33, and both electrodes 31 are connected to the anode of the DC power supply 34. A pair of electrodes 30 and 31 of the first flow-through capacitor 1a is connected to a switch 35.
, And the pair of electrodes 30 and 31 of the second flow-through capacitor 1b are connected to each other via a switch 36. The operation control of the devices shown in FIG. 1 is performed by a known control device such as a sequencer or a microcomputer. The detailed operation control includes, for example, a method of passing a liquid through a condenser described later. No.

【0014】通液型コンデンサ1の構造は、特に制限さ
れないが、例えばカラム中に金属、黒鉛等の集電極に高
表面積活性炭を接してなる電極30、31を収容し、こ
れら電極30、31間に非導電性のスペーサを介在させ
たものが挙げられる。そして、この通液型コンデンサ1
は、一対の電極30、31に直流電源34を接続し、直
流電圧、例えば、1〜2Vを印加した状態で、カラム中
にイオンを含有する被処理液を通すと、一対の電極3
0、31がイオンを吸着して、イオン成分が除去され脱
塩液を得ることができ、その後、一対の電極30、31
を短絡させると、電気的に中和し吸着していたイオンが
一対の電極30、31から離脱し、一対の電極30、3
1を再生させると共に、濃厚なイオン成分を回収した濃
縮液を得ることができる。
The structure of the liquid-passing type capacitor 1 is not particularly limited. For example, electrodes 30 and 31 in which a high-surface-area activated carbon is in contact with a collecting electrode such as metal or graphite are accommodated in a column. In which a non-conductive spacer is interposed. Then, this liquid-flow condenser 1
When a DC power source 34 is connected to the pair of electrodes 30 and 31 and a liquid containing ions is passed through the column in a state where a DC voltage, for example, 1 to 2 V is applied, the pair of electrodes 3
0 and 31 adsorb the ions, the ionic components are removed, and a desalted solution can be obtained.
Is short-circuited, the ions that have been electrically neutralized and adsorbed are separated from the pair of electrodes 30 and 31, and the pair of electrodes 30, 3
1 can be regenerated, and a concentrated liquid in which a concentrated ionic component is recovered can be obtained.

【0015】通液型コンデンサ1の他の構造例として
は、非導電性多孔質通液性シートからなるスペーサを挟
んで、高比表面積活性炭を主材とする活性炭層である一
対の電極を配置し、該電極の外側に一対の集電極を配置
し、更に該集電極の外側に押え板を配置した平板形状と
し、集電極に直流電源を接続し、更に集電極間の短絡又
は直流電源の逆接続を行うものであってもよい。また、
電極と集電極とは一体化されたものでもよい。
As another example of the structure of the liquid-passing type capacitor 1, a pair of electrodes, which are activated carbon layers mainly composed of activated carbon having a high specific surface area, are arranged with a spacer made of a non-conductive porous liquid-permeable sheet interposed therebetween. Then, a pair of collector electrodes are arranged outside the electrodes, and a flat plate shape is further provided with a pressing plate outside the collector electrodes, a DC power supply is connected to the collector electrodes, and a short circuit between the collector electrodes or a DC power supply is further provided. A reverse connection may be performed. Also,
The electrode and the collecting electrode may be integrated.

【0016】前記被処理液供給源5は、被処理液タンク
と、これから被処理液を2台の通液型コンデンサー1
a、1bに独立して定量的に供給するための送液ポンプ
とを含んでいる(不図示)。また、前記第1水質監視装
置8及び第2水質監視装置9は、いずれも液質を測定す
るものでイオン除去の程度を正確に把握できる指標の測
定機器であれば特に限定されず、導電率計、比抵抗計が
挙げられ、本実施の形態では導電率計である。また、第
1自動弁12及び第2自動弁13は三方弁であり、いず
れも上流側の受入ポート12a及び13a、回収ポート
12b及び13b、除去ポート12c及び13cがあ
り、受入ポート12a及び13aは第1水質監視装置8
及び第2水質監視装置9に、回収ポート12b及び13
bは濃縮液回収槽16に、除去ポート12c及び13c
は脱塩液回収槽19にそれぞれ接続している。
The liquid-to-be-treated supply source 5 comprises a liquid-to-be-treated tank and a liquid-to-be-processed from which two liquid-flow condensers 1 are connected.
a and 1b, and a liquid feed pump for independently and quantitatively supplying them (not shown). In addition, the first water quality monitoring device 8 and the second water quality monitoring device 9 are not particularly limited as long as they are liquid measurement devices, and are not particularly limited as long as they are index measuring devices capable of accurately grasping the degree of ion removal. And a resistivity meter, and in this embodiment, a conductivity meter. The first automatic valve 12 and the second automatic valve 13 are three-way valves, each of which has upstream receiving ports 12a and 13a, collecting ports 12b and 13b, removing ports 12c and 13c, and receiving ports 12a and 13a. First water quality monitoring device 8
And the second water quality monitoring device 9 has collection ports 12b and 13
b indicates that the concentrate recovery tank 16 has removal ports 12c and 13c.
Are connected to the desalting liquid recovery tank 19, respectively.

【0017】次に、本発明の通液型コンデンサの通液方
法を図1及び図2に基づいて説明する。図1中、先ず、
通液型コンデンサ1aに被処理液を通液する。すなわ
ち、スイッチ35をオフ、スイッチ32をオンして直流
電圧を一対の電極30、31に印加し、第1自動弁12
を回収ポート12bに操作し、第1水質監視装置8を監
視可能状態にして、被処理液供給源5のポンプを作動さ
せ、被処理液を第1通液型コンデンサ1aに定量的に供
給する。被処理液は第1通液型コンデンサ1aの一対の
電極30、31にイオン成分を吸着され、イオン成分が
除去された脱塩液となり、第1水質監視装置8にて導電
率が測定される。しかし、この脱塩液は最初の運転段階
では導電率が高いので充分イオン成分を除去したものと
なっていないため、第1自動弁12の回収ポート12b
から接続配管14、集合排出管15を通り濃縮液回収槽
16に排出される。なお、イオン成分濃縮液として、濃
度の高いものを必要とする場合は、この最初の運転段階
のイオン成分除去液を濃縮液回収槽16に入れずに被処
理液に戻したり他に移す等の操作をして、最初の運転段
階を終了させる。
Next, a method of passing a liquid through the liquid-flow condenser according to the present invention will be described with reference to FIGS. In FIG. 1, first,
The liquid to be treated is passed through the flow-through condenser 1a. That is, the switch 35 is turned off, the switch 32 is turned on, and a DC voltage is applied to the pair of electrodes 30 and 31 so that the first automatic valve 12 is turned off.
Is operated to the recovery port 12b, the first water quality monitoring device 8 can be monitored, the pump of the liquid supply source 5 is operated, and the liquid to be processed is quantitatively supplied to the first liquid condenser 1a. . The liquid to be treated is adsorbed on the pair of electrodes 30 and 31 of the first flow-through condenser 1a to form a desalted solution from which the ionic components have been removed, and the conductivity is measured by the first water quality monitoring device 8. . However, since the desalinated solution has a high conductivity in the first operation stage and does not sufficiently remove ionic components, the recovery port 12b of the first automatic valve 12 is not used.
Then, it is discharged to the concentrated liquid recovery tank 16 through the connection pipe 14 and the collective discharge pipe 15. When a high-concentration ionic component is required, the ionic component-removed solution in the first operation stage is returned to the liquid to be treated without being put in the concentrated solution recovery tank 16 or is transferred to another solution. Operate to end the first operating phase.

【0018】次に、第1水質監視装置8にて測定された
導電率が図2に示す採液可能値になると、第1自動弁1
2を除去ポート12cに操作し、イオン成分が除去され
た液を脱塩液回収槽19に排出する。すなわち、この段
階で初めて第1通液型コンデンサ1aはイオン成分除去
工程に入る。
Next, when the electric conductivity measured by the first water quality monitoring device 8 reaches the liquid sampling possible value shown in FIG.
2 is operated to the removal port 12c, and the liquid from which the ionic components have been removed is discharged to the desalted liquid recovery tank 19. That is, for the first time at this stage, the first flow-through condenser 1a enters the ion component removing step.

【0019】この状態を継続すると、やがて一対の電極
のイオン吸着能が飽和状態に近づき、イオン除去能は低
下し、徐々に脱塩液の導電率が上昇する。第1水質監視
装置8にて測定された導電率が図2に示す採液不可値に
なると、第1自動弁12を回収ポート12bに操作し、
直ちにスイッチ32をオフして直流電圧の印加を止め、
更にスイッチ35をオンして一対の電極30、31を短
絡させ、吸着したイオン成分を一対の電極30、31か
ら離脱させ、液側に移動させて一対の電極30、31を
再生すると共に、濃縮液を濃縮液回収槽16に排出す
る。すなわち、第1通液型コンデンサ1aはイオン成分
の回収工程、すなわち再生工程に入る。
When this state is continued, the ion adsorbing capacity of the pair of electrodes approaches a saturated state, the ion removing ability decreases, and the conductivity of the desalted solution gradually increases. When the electric conductivity measured by the first water quality monitoring device 8 becomes the uncollectable value shown in FIG. 2, the first automatic valve 12 is operated to the collection port 12b,
Immediately turn off the switch 32 to stop applying the DC voltage,
Further, the switch 35 is turned on to short-circuit the pair of electrodes 30 and 31, the adsorbed ionic component is separated from the pair of electrodes 30, 31 and moved to the liquid side to regenerate the pair of electrodes 30, 31 and concentrate. The liquid is discharged to the concentrated liquid recovery tank 16. That is, the first flow-through condenser 1a enters a recovery step of the ionic component, that is, a regeneration step.

【0020】一方、第2通液型コンデンサ1bにおいて
は、前述の第1通液型コンデンサ1aの初期の運転段
階、続いて行われるイオン成分除去工程が同様の方法で
行われ、その後、上記と同様の再生工程に入る。すなわ
ち、第1通液型コンデンサ1aがイオン成分回収工程に
ある場合、第2通液型コンデンサ1bはイオン成分除去
工程にあり、第1通液型コンデンサ1aがイオン成分除
去工程にある場合、第2通液型コンデンサ1bはイオン
成分回収工程にある。
On the other hand, in the second liquid-flow condenser 1b, the initial operation stage of the first liquid-flow condenser 1a and the subsequent ion component removing step are performed in a similar manner. The same regeneration process is started. That is, when the first liquid-flow condenser 1a is in the ionic component removing step, the second liquid-flow condenser 1b is in the ionic component removing step, and when the first liquid-flow condenser 1a is in the ionic component removing step, The two-liquid condenser 1b is in an ionic component recovery step.

【0021】このイオン成分除去工程とイオン成分回収
工程が繰り返して行われ、定常運転に入っており、第1
通液型コンデンサ1aがイオン成分除去工程にある場
合、第2通液型コンデンサ1bは、イオン成分回収工程
にあるから、第2自動弁13は回収ポート13bに操作
し、スイッチ36はオン、スイッチ33はオフにして一
対の電極30、31を短絡させ、吸着したイオン成分を
一対の電極30、31から離脱させ、液側に移動させて
一対の電極30、31を再生する。
The ion component removing step and the ion component recovering step are repeatedly performed, and a steady operation has been started.
When the flow-through condenser 1a is in the ionic component removing step, the second automatic valve 13 is operated to the recovery port 13b, and the switch 36 is turned on and the switch is turned on, because the second flow-through condenser 1b is in the ionic component recovery step. Reference numeral 33 is turned off to short-circuit the pair of electrodes 30 and 31, the adsorbed ionic component is separated from the pair of electrodes 30 and 31, and moved to the liquid side to regenerate the pair of electrodes 30 and 31.

【0022】イオン成分を回収した濃縮液は、接続配管
21及び集合配管15を通って濃縮液回収槽16に送ら
れる。やがて第2通液型コンデンサ1bから排出された
濃縮液が第2水質監視装置9にて導電率が測定される
と、これが採取可能値と判断され、被処理液の供給を停
止し、第2c通液型コンデンサ1bは待機状態に入る。
なお、イオン成分を回収した濃縮液を連続して得るため
に、回収時の流速を落として、待機時間を無くすことも
できる。
The concentrated liquid from which the ionic components have been recovered is sent to the concentrated liquid recovery tank 16 through the connecting pipe 21 and the collecting pipe 15. When the conductivity of the concentrated liquid discharged from the second flow-through condenser 1b is measured by the second water quality monitoring device 9, it is determined that the concentration can be collected, and the supply of the liquid to be treated is stopped. The flow-through condenser 1b enters a standby state.
In addition, in order to continuously obtain the concentrated liquid from which the ionic components have been recovered, the flow speed at the time of recovery can be reduced to eliminate the waiting time.

【0023】前記第1水質監視装置8が図2の採液不可
値を測定すると、第1通液型コンデンサ1aのイオン成
分回収工程の再生工程に入る。すなわち、第1自動弁1
2を回収ポート12bに操作して、スイッチ32をオ
フ、スイッチ35をオンして一対の電極30、31を短
絡させ一対の電極30、31を再生する。そして、イオ
ン成分を回収した濃縮液を濃縮液回収槽16に入れる。
次に、第1水質監視装置8が採取可能値を測定すると、
第1自動弁12を除去ポート12cに切替え、流出液を
濃縮液回収槽16へ送るのを停止し、脱塩液回収槽19
へ送るようにして、第1通液型コンデンサ1aはイオン
成分除去工程に入る。
When the first water quality monitoring device 8 measures the uncollectable value shown in FIG. 2, the process proceeds to the regeneration process of the ion component recovery process of the first flow-through condenser 1a. That is, the first automatic valve 1
2 is operated to the collection port 12b, the switch 32 is turned off, and the switch 35 is turned on to short-circuit the pair of electrodes 30 and 31 to regenerate the pair of electrodes 30 and 31. Then, the concentrated liquid from which the ionic components have been recovered is put into the concentrated liquid recovery tank 16.
Next, when the first water quality monitoring device 8 measures the value that can be collected,
The first automatic valve 12 is switched to the removal port 12c to stop sending the effluent to the concentrated liquid recovery tank 16, and the desalted liquid recovery tank 19 is stopped.
Then, the first flow-through condenser 1a enters an ion component removing step.

【0024】第1通液型コンデンサ1aがイオン成分回
収工程に入る際、第2通液型コンデンサ1bはイオン成
分除去工程に入る。すなわち、スイッチ33をオン、ス
イッチ36をオフ、第2自動弁13を除去ポート13c
にし、第2通液型コンデンサ1bを除去工程にして、イ
オン成分が除去された脱塩液を脱塩液回収槽19に送
る。
When the first liquid-flow condenser 1a enters the ion component recovery step, the second liquid-flow condenser 1b enters the ion component removal step. That is, the switch 33 is turned on, the switch 36 is turned off, and the second automatic valve 13 is removed from the port 13c.
The desalting solution from which the ionic components have been removed is sent to the desalting solution recovery tank 19.

【0025】一つの通液型コンデンサにおいて、上記除
去工程及び回収工程を1サイクルとし、このサイクルを
繰り返し行うことにより、被処理液からイオン濃度の低
い脱塩液を常時連続して得ると共に、濃縮液も得ること
ができる。このように、第1通液型コンデンサ1a及び
第2通液型コンデンサ1bの各一対の電極30、31の
使用、飽和、再生が繰り返えされる。なお、第1通液型
コンデンサー1aの除去工程が終了する直前に第2通液
型コンデンサー1bを初期脱塩工程(脱塩ブロー工程)
にしておくことが好ましい。
In one flow-through condenser, the above-mentioned removal step and recovery step are made into one cycle, and by repeating this cycle, a desalted solution having a low ion concentration is continuously obtained from the liquid to be treated, and concentrated. A liquid can also be obtained. As described above, the use, saturation, and regeneration of the pair of electrodes 30 and 31 of the first liquid-flow type capacitor 1a and the second liquid-flow type capacitor 1b are repeated. Immediately before the step of removing the first liquid-flow condenser 1a is completed, the second liquid-flow condenser 1b is subjected to an initial desalination step (desalting blow step).
It is preferable to keep it.

【0026】上記実施の形態では、通液型コンデンサー
の並列配置を2台で行うが、これに制限されず、本発明
においては3台以上の複数並列配置とすることもでき
る。
In the above embodiment, the parallel arrangement of the flow-through condensers is performed by two units. However, the present invention is not limited to this, and three or more units may be arranged in parallel in the present invention.

【0027】[0027]

【発明の効果】本発明によれば、通液型コンデンサを並
列に配置接続して、一方が脱塩液を得ている時は他方か
ら濃縮液を得るようにしたから、連続して脱塩液又は濃
縮液を得ることができる。また、脱塩液及び濃縮液の液
質を測定し、その測定値に基づいて両液の集液のタイミ
ングを図るから、集液目的に沿って両液を得ることがで
きる。
According to the present invention, the flow-through condensers are arranged and connected in parallel, so that when one of the desalinated liquids is obtained, the concentrated liquid is obtained from the other, so that the desalinated liquid is continuously obtained. Liquid or concentrated
A contracted liquid can be obtained. Further, the liquid quality of the desalted liquid and the concentrated liquid is measured, and the timing of collecting both liquids is determined based on the measured values, so that both liquids can be obtained in accordance with the purpose of collecting liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である通液型コンデンサの
通液方法を示すフロー図である。
FIG. 1 is a flow chart showing a method for passing a liquid through a liquid-flow condenser according to an embodiment of the present invention.

【図2】本発明の実施の形態である通液型コンデンサの
通液方法における流出液の導電率と時間との関係を示す
特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the conductivity of the effluent and the time in the method for passing a fluid through a fluid-flow condenser according to an embodiment of the present invention.

【図3】従来の通液型コンデンサの通液方法を示すフロ
ー図である。
FIG. 3 is a flowchart showing a method of passing a liquid through a conventional liquid-passage type condenser.

【符号の説明】[Explanation of symbols]

1、50 通液型コンデンサ 1a 第1通液型コンデンサ 1b 第2通液型コンデンサ 3、4 供給配管 6、7、10、11、14、17、20 接続配管 5、56 被処理液供給源 8 第1水質監視装置 9 第2水質監視装置 12 第1自動弁 12a、13a 受入ポート 12b、13b 回収ポート 12c、13c 除去ポート 13 第2自動弁 16 濃縮液回収槽 15、18 集合排出管 19 脱塩液回収槽 30、31、54、55 電極 32、33、35、36、53、58 スイッチ 34、59 直流電源 51、52 切替弁 57 水質監視装置 1,50 Liquid-flow condenser 1a First liquid-flow condenser 1b Second liquid-flow condenser 3,4 Supply pipe 6,7,10,11,14,17,20 Connection pipe 5,56 Treatment liquid supply source 8 First water quality monitoring device 9 Second water quality monitoring device 12 First automatic valve 12a, 13a Receiving port 12b, 13b Recovery port 12c, 13c Removal port 13 Second automatic valve 16 Concentrated liquid recovery tank 15, 18 Collecting discharge pipe 19 Desalination Liquid recovery tank 30, 31, 54, 55 Electrode 32, 33, 35, 36, 53, 58 Switch 34, 59 DC power supply 51, 52 Switching valve 57 Water quality monitoring device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D061 DA01 DB18 DC19 EA02 EB04 EB05 EB14 EB16 EB29 EB31 EB37 EB39 GA21 GC02 GC14 GC16  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D061 DA01 DB18 DC19 EA02 EB04 EB05 EB14 EB16 EB29 EB31 EB37 EB39 GA21 GC02 GC14 GC16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去して脱塩液を得、その後
前記一対の電極を短絡あるいは直流電源を逆接続して、
前記除去されたイオン成分を通液中の被処理液と共に濃
縮液として回収する通液型コンデンサを並列に配置接続
し、一方の通液型コンデンサが被処理液のイオン成分の
除去工程中に、他方の通液型コンデンサが被処理液のイ
オン成分の回収工程中とし、常時、被処理液を通液し
て、イオン成分が除去された脱塩液又は前記イオン成分
が濃縮された濃縮液を連続して得ることを特徴とする通
液型コンデンサの通液方法。
1. A direct current voltage is applied to a pair of electrodes to remove a ionic component of a liquid to be treated in a flowing solution to obtain a desalted solution. Thereafter, the pair of electrodes is short-circuited or a direct current power supply is reversely connected. ,
A flow-through condenser for recovering the removed ionic component as a concentrated solution together with the liquid to be processed in the liquid is arranged and connected in parallel, and one of the flow-through condensers is in the step of removing the ionic component of the liquid to be processed, The other flow-through condenser is in the process of recovering the ionic components of the liquid to be treated, and always passes the liquid to be treated, and the desalted solution from which the ionic components have been removed or the concentrated solution in which the ionic components have been concentrated. A method for passing a liquid through a condenser, wherein the liquid is continuously obtained.
【請求項2】 前記通液型コンデンサによって、被処理
液のイオン成分が除去された脱塩液及び当該イオン成分
を回収した濃縮液の液質をそれぞれ測定し、該各液の液
質の測定値に基づき、前記イオン成分が除去された脱塩
液及びイオン成分を回収した濃縮液の集液のタイミング
を図ることを特徴とする請求項1記載の通液型コンデン
サの通液方法。
2. The liquid type condenser is used to measure the liquid quality of the desalted solution from which the ionic components of the liquid to be treated are removed and the liquid quality of the concentrated liquid from which the ionic components are recovered, and to measure the liquid quality of each liquid. 2. The method according to claim 1, wherein the timing of collecting the desalted liquid from which the ionic components have been removed and the concentrated liquid from which the ionic components have been recovered is determined based on the value.
【請求項3】 被処理液供給源と、一対の電極に直流電
圧を印加して通液中の被処理液のイオン成分を除去し、
前記一対の電極を短絡あるいは直流電源を逆接続して、
除去されたイオン成分を通液中の被処理液に回収する通
液型コンデンサと、前記被処理液供給源と前記通液型コ
ンデンサを接続する供給配管と、前記通液型コンデンサ
の流出側に接続される流出配管と、前記流出配管から二
つに分岐して途中に切替え弁を備える脱塩液流出配管及
び濃縮液流出配管と、を有する通液型コンデンサ装置の
複数機を並列に配置し、前記脱塩液流出配管同士を連接
し、前記濃縮液流出配管同士を連接してなることを特徴
とする通液型コンデンサ装置。
3. A liquid supply source to be treated and a DC voltage applied to a pair of electrodes to remove ionic components of the liquid to be treated during the passage.
Short-circuit the pair of electrodes or reverse connect a DC power supply,
A flow-through condenser for collecting the removed ionic components into the liquid to be processed in the flow-through, a supply pipe connecting the liquid-to-be-processed liquid supply source and the liquid-flow condenser, and an outlet side of the liquid-flow condenser. A plurality of flow-through condenser devices each having a connected outflow pipe, a desalted liquid outflow pipe and a concentrated liquid outflow pipe branched from the outflow pipe into two, and provided with a switching valve in the middle, are arranged in parallel. A flow-through type condenser device, wherein the desalted liquid outflow pipes are connected to each other, and the concentrated liquid outflow pipes are connected to each other.
【請求項4】 前記被処理液供給源は共通の被処理液供
給源として使用されることを特徴とする請求項3記載の
通液型コンデンサ装置。
4. The liquid-flow condenser device according to claim 3, wherein the liquid supply source is used as a common liquid supply source.
JP11236364A 1999-08-24 1999-08-24 Method and apparatus for passing liquid into liquid passing type capacitor Pending JP2001058181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11236364A JP2001058181A (en) 1999-08-24 1999-08-24 Method and apparatus for passing liquid into liquid passing type capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11236364A JP2001058181A (en) 1999-08-24 1999-08-24 Method and apparatus for passing liquid into liquid passing type capacitor

Publications (1)

Publication Number Publication Date
JP2001058181A true JP2001058181A (en) 2001-03-06

Family

ID=16999712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11236364A Pending JP2001058181A (en) 1999-08-24 1999-08-24 Method and apparatus for passing liquid into liquid passing type capacitor

Country Status (1)

Country Link
JP (1) JP2001058181A (en)

Similar Documents

Publication Publication Date Title
US20080198531A1 (en) Capacitive deionization system for water treatment
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
JP4286931B2 (en) Liquid-permeable capacitor and liquid processing method using the same
CA2471705A1 (en) Chromatography apparatus and electrolytic method for purifying an aqueous stream containing a contaminant ion
JPH11319838A (en) Apparatus and method for electrolytic capacitor type desalting
KR20120133229A (en) Capacitive deionization method for drinking water treatment
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4135802B2 (en) Desalination equipment
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
KR20140100601A (en) Water treatment apparatus
US5647969A (en) Method and system for removing ionic species from water
CN2764765Y (en) Spiral wound type capacitive ion remover
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2001058181A (en) Method and apparatus for passing liquid into liquid passing type capacitor
JP3881120B2 (en) How to pass liquid-type capacitors
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2004024990A (en) Method of removing ionic substance in liquid and liquid treatment apparatus
JP2001058183A (en) Operation method and apparatus of liquid passing type condenser
JP4148628B2 (en) Liquid purification process
JP2002273434A (en) Treating device and treating method for ionic substance- containing water using activated carbon electrode and regenerating method of activated carbon electrode
JP2002336863A (en) Method and apparatus for making desalted water
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
WO2023175873A1 (en) Ion removal apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701