JP2001057436A - Hermetically sealed package and manufacture thereof - Google Patents

Hermetically sealed package and manufacture thereof

Info

Publication number
JP2001057436A
JP2001057436A JP11231093A JP23109399A JP2001057436A JP 2001057436 A JP2001057436 A JP 2001057436A JP 11231093 A JP11231093 A JP 11231093A JP 23109399 A JP23109399 A JP 23109399A JP 2001057436 A JP2001057436 A JP 2001057436A
Authority
JP
Japan
Prior art keywords
substrate
electrode
device element
hermetically sealed
sealed package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231093A
Other languages
Japanese (ja)
Inventor
Shinji Umeda
眞司 梅田
Koji Nomura
幸治 野村
Takeshi Masutani
武 増谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11231093A priority Critical patent/JP2001057436A/en
Publication of JP2001057436A publication Critical patent/JP2001057436A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low profile package by bonding the upper surface of a first recessed substrate having an electrode on the bottom directly to the bottom face of a second substrate being covered from above and pressing a device element thereby deforming a protrusion electrode on the element electrode and pressing the substrate electrode. SOLUTION: First and second substrates 3, 6 are cleaned in order to provide a substrate electrode 4 on the inner bottom of a recess for direct bonding. A device element 1 having a protrusion electrode 5 on an element electrode 2 is then face-down inserted into the first substrate 3. The protrusion electrode 5 is formed of a metallic material on the element electrode 2 by plating and the second substrate 6 to be sealed is set from above while being pressed. Consequently, the protrusion electrode 5 is collapsed and the upper surface of the first substrate 3 can touch the bottom face of the second substrate 6. Subsequently, the interface at a joint being heat treated while being pressed is bonded at atomic level. Since resilient repelling force of the protrusion electrode 5 is present, the element electrode 2 and the substrate electrode 4 are sustained in bonded state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気密封止が必要と
されるデバイスにおける気密封止パッケージおよびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetically sealed package for a device requiring hermetic sealing and a method for manufacturing the same.

【0002】[0002]

【従来の技術】SAWデバイスや赤外線センサなどは、
素子の表面に物体が触れたり、気密封止される気体が変
化することによって特性が変化する。SAWデバイスは
素子表面の電極に物体が付着するとその質量によって共
振周波数が変化する。また、赤外線センサは気密封止さ
れる気体の熱伝導率によって出力が違い、また雰囲気の
水分などにより信頼性が劣化したりする。従って、これ
らのデバイス素子は素子の表面に気密封止される気体以
外のものが触れないことが要求される気密封止パッケー
ジが必要となる。従来の気密封止パッケージとしてCA
N封止パッケージやセラミックパッケージがある。
2. Description of the Related Art SAW devices, infrared sensors, etc.
The characteristics change when an object touches the surface of the element or when the gas to be hermetically sealed changes. In an SAW device, when an object adheres to an electrode on the element surface, the resonance frequency changes depending on its mass. In addition, the output of the infrared sensor varies depending on the thermal conductivity of the gas to be hermetically sealed, and the reliability deteriorates due to moisture in the atmosphere. Therefore, these device elements require a hermetically sealed package which is required to prevent the surface of the element from touching other than the gas to be hermetically sealed. CA as conventional hermetic sealing package
There are N-sealed packages and ceramic packages.

【0003】従来のCAN封止パッケージを図4に示
す。SAWデバイスや赤外線センサ素子などのデバイス
素子50は有機樹脂であるダイボンディング樹脂57で
ステム54上に張り付けられる。SAWデバイスなどは
水晶やLiTaO3などの圧電単結晶上に櫛形電極を設
けたものであり、赤外線センサは焦電体に電極を設けた
ものである。ワイヤー56の接続にはワイヤーボンディ
ング法が用いられ、AlやAuの細線で素子電極と電極
取り出し用のピン55とを接続する。素子電極51はワ
イヤーボンディングが可能な電極が用いられる。例え
ば、Al,Au,Ptやもしくはそれらの積層電極であ
る。CAN58とステム54との接合は接合部に高電圧
を印加するなどして溶接する。赤外線センサなどは赤外
線を透過させるようにCAN58上にシリコン59が張
り合わせてある。このとき、シリコン59とCAN58
は気密が保たれるように半田60やガラスフリットなど
で接着される。CAN58の中に封止される封止ガス5
3は窒素などの化学的に安定なガスが封入される。また
感度の向上のために熱伝導性の低いキセノンやクリプト
ンなどの不活性ガスが封入される場合もある。
FIG. 4 shows a conventional CAN sealed package. A device element 50 such as a SAW device or an infrared sensor element is attached on the stem 54 with a die bonding resin 57 which is an organic resin. The SAW device or the like has a comb-shaped electrode provided on a piezoelectric single crystal such as quartz or LiTaO 3 , and the infrared sensor has a pyroelectric body provided with an electrode. A wire bonding method is used to connect the wires 56, and the element electrodes and the pins 55 for taking out the electrodes are connected by thin wires of Al or Au. As the element electrode 51, an electrode capable of wire bonding is used. For example, Al, Au, Pt, or a laminated electrode thereof. The CAN 58 and the stem 54 are welded by applying a high voltage to the joint. In an infrared sensor or the like, silicon 59 is bonded on CAN 58 so as to transmit infrared light. At this time, silicon 59 and CAN 58
Are bonded with solder 60, glass frit, or the like so as to maintain airtightness. Sealing gas 5 sealed in CAN 58
3 is filled with a chemically stable gas such as nitrogen. In addition, an inert gas such as xenon or krypton having low thermal conductivity may be sealed in order to improve sensitivity.

【0004】[0004]

【発明が解決しようとする課題】従来のCAN封止パッ
ケージやセラミックパッケージは、ワイヤーボンディン
グするためのスペースが必要なため、低背化、小型化で
きないという課題を有していた。
The conventional CAN sealed package and ceramic package have a problem that a space for wire bonding is required, so that the height and the size cannot be reduced.

【0005】本発明はこれらの課題を解決し、小型、低
背化した気密封止パッケージおよびその製造方法を提供
することを目的とするものである。
An object of the present invention is to solve these problems and to provide a hermetically sealed package having a small size and a low profile and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、素子電極上に突起電極を有するデバイス素
子と、素子電極と一致する基板電極を外部に取り出すよ
うに底部に電極を有する凹型の第1の基板と、この第1
の基板の窪み部分に突起電極と基板電極とを合致するよ
うに前記デバイス素子を挿入し、その上部から蓋をする
第2の基板とを備え、前記第1の基板の上面と第2の基
板の底面とを直接接合し、その接合力により前記デバイ
ス素子を加圧し、デバイス素子を介して素子電極上の突
起電極を変形せしめることにより、突起電極を基板電極
に加圧して、素子電極と基板電極が電気的かつ機械的に
接合してなるものである。
In order to achieve the above object, the present invention comprises a device element having a protruding electrode on an element electrode and an electrode on a bottom portion for taking out a substrate electrode coinciding with the element electrode to the outside. A concave first substrate;
A second substrate for inserting the device element so that the protruding electrode and the substrate electrode are aligned with the recessed portion of the substrate, and covering the device from above, and an upper surface of the first substrate and a second substrate The device element is pressurized by the bonding force by directly bonding the device element and the projecting electrode on the element electrode is deformed through the device element, thereby pressing the projecting electrode against the substrate electrode, and The electrodes are electrically and mechanically joined.

【0007】この発明により、ワイヤーボンディングや
有機樹脂を用いないため小型、低背化で高信頼性の気密
封止パッケージが構成でき、且つ、ワーク一括処理がで
きるために低コストの気密封止パッケージが可能であ
る。
According to the present invention, a compact, low-profile, highly reliable hermetically sealed package can be constructed without using wire bonding or an organic resin, and a low-cost hermetically sealed package can be formed by batch processing of works. Is possible.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、素子電極上に突起電極を有するデバイス素子と、前
記素子電極と一致する基板電極を外部に取り出すように
底部に電極を有する凹型の第1の基板と、この第1の基
板の窪み部分に前記突起電極と前記基板電極とを合致す
るように前記デバイス素子を挿入し、その上部から蓋を
する第2の基板とを備え、前記第1の基板の上面と第2
の基板の底面とを直接接合し、その接合力により前記デ
バイス素子を加圧し、前記デバイス素子を介して前記素
子電極上の前記突起電極を変形せしめることにより、前
記突起電極を前記基板電極に加圧して、前記素子電極と
前記基板電極とを電気的かつ機械的に接合するもので、
SAWデバイスなどの素子を気密封止パッケージをする
際、ワイヤーボンディングや有機樹脂を用いないため小
型、低背化で高信頼性の気密封止パッケージが構成で
き、多数個に配列された基板を用いて、一括して直接接
合することにより、ワーク一括処理ができるために低コ
ストの気密封止パッケージが構成できるという作用を有
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention has a device element having a protruding electrode on an element electrode and an electrode on a bottom portion for taking out a substrate electrode coincident with the element electrode to the outside. A first substrate having a concave shape, and a second substrate for inserting the device element into the concave portion of the first substrate so as to match the projecting electrode and the substrate electrode, and covering the device element from above. , An upper surface of the first substrate and a second
By directly bonding the bottom surface of the substrate to the device element and pressurizing the device element by the bonding force to deform the projecting electrode on the element electrode via the device element, the projecting electrode is applied to the substrate electrode. Pressurized to electrically and mechanically join the element electrode and the substrate electrode,
When using a hermetic sealing package for elements such as SAW devices, wire bonding and organic resin are not used, so a compact, low-profile, highly reliable hermetic sealing package can be constructed, and a large number of substrates are used. In addition, since the workpieces can be batch-processed by directly joining them together, there is an effect that a low-cost hermetically sealed package can be formed.

【0009】請求項2に記載の発明は、凹型の窪み部分
の底部に基板電極を有する第1の基板と平板状の第2の
基板を洗浄して表面を活性化させ、この第1の基板の窪
み部分に素子電極上に突起電極を有したデバイス素子を
前記突起電極と前記基板電極とが合致するように挿入
し、挿入したデバイス素子の底部が前記第1の基板の最
上面よりも高くなりかつ前記第1の基板の最上面からデ
バイス素子の底部までの高さが前記突起電極よりも低く
なるようにあらかじめ前記第1の基板の窪み深さを設定
しておき、前記第1の基板の最上面と第2の基板の下面
とを合致するように上下方向から加圧して、前記突起電
極を変形させて前記素子電極と前記基板電極とを電気的
かつ機械的に接合させるとともに、加圧したまま加熱、
昇温させることにより前記第1の基板の最上面と第2の
基板の下面を直接接合させるもので、ワイヤーボンディ
ングや有機樹脂を用いないため小型、低背化で高信頼性
の気密封止パッケージが構成できる。また、ワーク一括
処理ができるために低コストの気密封止パッケージが構
成できるという作用を有する。
According to a second aspect of the present invention, the first substrate having a substrate electrode at the bottom of the concave recess portion and the flat second substrate are cleaned to activate the surface, and the first substrate is activated. A device element having a protruding electrode on a device electrode is inserted into the recessed portion of the device so that the protruding electrode and the substrate electrode match, and the bottom of the inserted device element is higher than the uppermost surface of the first substrate. And the depth of the depression of the first substrate is set in advance so that the height from the top surface of the first substrate to the bottom of the device element is lower than that of the protruding electrode. Is pressed from above and below so that the uppermost surface of the second substrate and the lower surface of the second substrate coincide with each other to deform the protruding electrodes, thereby electrically and mechanically joining the element electrodes and the substrate electrodes. Heating with pressure,
The uppermost surface of the first substrate is directly joined to the lower surface of the second substrate by raising the temperature. Since no wire bonding or organic resin is used, a small, low-profile, highly reliable hermetic sealing package is used. Can be configured. In addition, since the work batch processing can be performed, there is an effect that a low-cost hermetically sealed package can be configured.

【0010】請求項3に記載の発明は、請求項2記載の
デバイス素子を赤外線センサ素子とし、シリコン基板上
に酸化膜を形成し、その酸化膜上に基板電極を形成し、
前記赤外線センサ素子の赤外線受光部に赤外線が前記シ
リコン基板を透過して到達するように、赤外線が通過す
る領域の前記シリコン基板上の酸化膜を除去し、前記シ
リコン基板と枠体状の基板をガラス封着材などで接着し
て形成することにより凹型の第1の基板を形成するもの
で、赤外線透過窓すなわちシリコン窓を必要とする赤外
線センサ素子の気密封止パッケージングが、小型、低背
化で高信頼性でかつ赤外線透過窓であるシリコンを有効
に活用できるため安価であるという作用も有する。
According to a third aspect of the present invention, the device element of the second aspect is an infrared sensor element, an oxide film is formed on a silicon substrate, and a substrate electrode is formed on the oxide film.
An oxide film on the silicon substrate in a region through which the infrared light passes is removed so that the infrared light reaches the infrared light receiving portion of the infrared sensor element through the silicon substrate, and the silicon substrate and the frame-shaped substrate are removed. The concave first substrate is formed by bonding with a glass sealing material or the like. The hermetic sealing packaging of the infrared sensor element that requires an infrared transmission window, that is, a silicon window, is small and low-profile. In addition, it is possible to effectively utilize silicon, which is a highly reliable infrared transmission window, by using a semiconductor device, and has an effect of being inexpensive.

【0011】請求項4に記載の発明は、請求項2記載の
第1の基板の最上面と第2の基板の下面を合致させた
後、第1の基板の裏面に平板状の第1のゴム材を設置
し、第2の基板の上面に平板状の第2のゴム材を設置し
さらに第1のゴム材と第2のゴム材を挟み込むように2
つの剛体を設置して、2つの前記剛体を上下方向から加
圧することで突起電極を変形させて前記素子電極と基板
電極が電気的かつ機械的に接合させて、この剛体ごと加
圧したまま加熱、昇温させることにより第1の基板の最
上面と第2の基板の下面を直接接合させるもので、多数
個配列させた大面積の基板でも、基板のうねりや厚みば
らつきなどをゴム材によって吸収することができるた
め、均一な圧力を各素子に加えることができるため、基
板を均一な厚みに研磨する必要がなく、安価な基板でワ
ーク一括処理が可能な気密封止パッケージが構成できる
という作用を有する。
According to a fourth aspect of the present invention, after the uppermost surface of the first substrate and the lower surface of the second substrate are matched with each other, a first flat substrate is formed on the rear surface of the first substrate. A rubber material is provided, a flat second rubber material is provided on the upper surface of the second substrate, and a second rubber material is sandwiched between the first rubber material and the second rubber material.
Two rigid bodies are installed, and the two rigid bodies are pressed from above and below to deform the protruding electrodes, thereby electrically and mechanically joining the element electrode and the substrate electrode. The upper surface of the first substrate and the lower surface of the second substrate are directly joined by increasing the temperature. Even with a large number of large-sized substrates, the undulations and thickness variations of the substrates are absorbed by the rubber material. Since a uniform pressure can be applied to each element, there is no need to polish the substrate to a uniform thickness, and an airtight package capable of batch processing of workpieces with an inexpensive substrate can be configured. Having.

【0012】請求項5に記載の発明は、請求項2記載の
第1の基板の最上面か第2の基板の裏面のどちらかに金
属薄膜を形成し、前記第1の基板の上面と第2の基板の
底面を直接接合するかわりに、陽極接合するもので、直
接接合工程時の洗浄が不充分であった場合に生じる接合
不良の問題が、陽極接合では充分な接合強度が得られる
ため改善されるという作用を有する。
According to a fifth aspect of the present invention, a metal thin film is formed on either the uppermost surface of the first substrate or the rear surface of the second substrate. Instead of directly bonding the bottom surface of the substrate 2, anodic bonding is performed, and the problem of poor bonding that occurs when cleaning during the direct bonding process is inadequate is because sufficient bonding strength can be obtained with anodic bonding It has the effect of being improved.

【0013】(実施の形態1)以下、本発明の実施の形
態1における気密封止パッケージの製造方法について図
面を参照しながら説明する。
Embodiment 1 Hereinafter, a method for manufacturing a hermetically sealed package according to Embodiment 1 of the present invention will be described with reference to the drawings.

【0014】図1は本発明の実施の形態である気密封止
パッケージの製造方法を説明する図である。
FIG. 1 is a view for explaining a method of manufacturing a hermetically sealed package according to an embodiment of the present invention.

【0015】まず、図1(a)に示すように、直接接合
のために、第1の基板3と第2の基板6を洗浄する。第
1の基板3は凹型の形状をしており、凹型の内側底部に
は基板電極4を設けておく。この第1の基板3は基板電
極4を有した平板状の基板と枠体状の基板を封止用のガ
ラスなどで接着して形成する。基板電極4の形成は真空
蒸着などの方法やもしくは印刷、焼成などの方法で形成
する。このとき、基板電極4やガラス接着の部分は後で
気密漏れが生じてしまうことがないように緻密な構造の
材料としなければならない。第1の基板3の材質は直接
接合が可能な絶縁性の基板でガラス、水晶、石英などで
ある。
First, as shown in FIG. 1A, the first substrate 3 and the second substrate 6 are cleaned for direct bonding. The first substrate 3 has a concave shape, and a substrate electrode 4 is provided on the inner bottom of the concave shape. The first substrate 3 is formed by bonding a flat substrate having a substrate electrode 4 and a frame-shaped substrate with sealing glass or the like. The substrate electrode 4 is formed by a method such as vacuum evaporation or a method such as printing or baking. At this time, the substrate electrode 4 and the glass-bonded portion must be made of a material having a dense structure so that airtight leakage does not occur later. The material of the first substrate 3 is an insulative substrate that can be directly bonded, such as glass, quartz, or quartz.

【0016】次に、図1(b)に示すように、素子電極
2上に突起電極5を有したデバイス素子1をフェースダ
ウンで第1の基板3に挿入する。デバイス素子1は各種
センサやSAWデバイスなどの気密封止が要求される素
子である。これらのデバイス素子1は素子の表面に気密
封止される気体以外のものが触れないことが要求される
気密封止パッケージである。突起電極5は、金属などの
材質で素子電極上にメッキなどで形成する。
Next, as shown in FIG. 1B, the device element 1 having the projecting electrode 5 on the element electrode 2 is inserted face down into the first substrate 3. The device element 1 is an element requiring hermetic sealing such as various sensors and SAW devices. These device elements 1 are hermetically sealed packages that are required to prevent the surface of the element from touching other than the gas that is hermetically sealed. The protruding electrode 5 is formed of a material such as metal on the element electrode by plating or the like.

【0017】次に、図1(c)に示すように、封止をす
る第2の基板6を上方から加圧しながら設置する。この
とき、凹型の第1の基板3のデバイス素子1の挿入する
部分の深さは素子の厚みよりも深く、かつ、素子の底面
から突起電極5までの高さよりも浅く設定しておく。つ
まり加圧することにより突起電極5は潰されて変形する
ことで第1の基板3の上面と第2の基板6の底面は接す
ることができる。第1の基板3と第2の基板6はあらか
じめ洗浄して表面が活性化されているので、水素結合力
により接合することになる。このままでは接合部界面は
弱い結合力であるが、次に加圧したまま加熱処理するこ
とで接合部界面は原子レベルで接合する。その後で加圧
を解除しても直接接合界面は良好な接合を保ち、突起電
極5の弾性力による反発力が存在するので、素子電極2
は突起電極5を介して基板電極4と電気的、機械的結合
力を維持することができる。この熱処理時の熱膨張係数
差によるストレスを緩和するために、第1の基板3は挿
入するデバイス素子1の基材と同じ材質か、同程度の熱
膨張係数を有した材質が望ましい。弾性力による電極同
士の結合力を維持するために、突起電極5はAuなどの
柔らかく弾力性のある金属が良い。また、Auの突起電
極などはワイヤーボンディングなどの工法を応用しても
形成できるが、多数個並べて一括処理を使用したときは
突起電極5を変形させる加える総荷重が大きくなるの
で、突起電極5はなるべく小さな径のものがよい。
Next, as shown in FIG. 1C, a second substrate 6 to be sealed is placed while being pressed from above. At this time, the depth of the recessed first substrate 3 where the device element 1 is inserted is set to be deeper than the element thickness and shallower than the height from the bottom surface of the element to the protruding electrode 5. In other words, the projection electrode 5 is crushed and deformed by pressing, so that the upper surface of the first substrate 3 and the bottom surface of the second substrate 6 can be in contact with each other. Since the first substrate 3 and the second substrate 6 have been cleaned and their surfaces have been activated in advance, they are joined by a hydrogen bonding force. In this state, the bonding interface has a weak bonding force. However, the bonding interface is bonded at an atomic level by performing heat treatment while applying pressure. Even if the pressurization is subsequently released, the direct bonding interface maintains good bonding, and a repulsive force due to the elastic force of the protruding electrode 5 exists.
Can maintain an electrical and mechanical coupling force with the substrate electrode 4 via the protruding electrode 5. In order to alleviate the stress due to the difference in the coefficient of thermal expansion during the heat treatment, the first substrate 3 is desirably made of the same material as the substrate of the device element 1 to be inserted or a material having a similar coefficient of thermal expansion. In order to maintain the coupling force between the electrodes due to the elastic force, the protruding electrode 5 is preferably made of a soft and elastic metal such as Au. Also, Au bump electrodes and the like can be formed by applying a method such as wire bonding. However, when a large number of bump electrodes are arranged and used in batch processing, the total load applied to deform the bump electrodes 5 becomes large. The smaller the diameter is, the better.

【0018】以上のように、気密封止のパッケージング
をする際、ワイヤーボンディングや有機樹脂を用いない
ため小型、低背化で高信頼性の気密封止パッケージが構
成できる。また、多数個に配列された基板を用いて、一
括して直接接合したのち、各個片に分割することができ
る。すなわち、ワーク一括処理をすることで、個片で処
理するより工数が削減できるため安価で作りやすい気密
封止パッケージを実現できる。
As described above, since air-tight packaging is performed without using wire bonding or an organic resin, a compact, low-profile, highly reliable hermetic sealing package can be constructed. In addition, after a large number of substrates are directly bonded together in a lump, they can be divided into individual pieces. That is, by performing the batch processing of the workpieces, the number of processes can be reduced as compared with the case where the workpieces are processed individually, so that a hermetically sealed package that is inexpensive and easy to manufacture can be realized.

【0019】また、第1の基板や第2の基板をガラス材
質とすれば、良好で信頼性の高い気密封止が安価で構成
できる。これは、ガラス材質はアモルファス構造である
がために、OH基の拡散がバルク中に拡散しやすいた
め、非常に低温で良好な直接接合が可能であり、また、
ガラス基板が研磨なしで非常に良好な表面平坦性を有し
ているため安価である。なお、ガラス材質はその中の組
成により熱膨張係数が大きく変化するため、各デバイス
素子の熱膨張係数に合わせた材料が選択できる。
If the first substrate and the second substrate are made of a glass material, a good and highly reliable hermetic seal can be formed at a low cost. This is because, although the glass material has an amorphous structure, the diffusion of OH groups easily diffuses into the bulk, so that good direct bonding can be performed at a very low temperature.
Inexpensive because the glass substrate has very good surface flatness without polishing. Since the thermal expansion coefficient of the glass material greatly changes depending on the composition therein, a material suitable for the thermal expansion coefficient of each device element can be selected.

【0020】なお、上記気密封止パッケージの製造方法
において、凹型の第1の基板の最上面か、もしくは第2
の基板の裏面のどちらかに金属薄膜を形成しておき、第
1の基板の上面と第2の基板の底面を直接接合するかわ
りに、陽極接合することを特徴とする気密封止パッケー
ジの製造方法としても同様な気密封止パッケージが形成
できる。この方法によれば、金属薄膜を形成する工程が
増えるものの、直接接合工程時の洗浄が不充分であった
場合に生じる接合不良の問題が、洗浄不足でも陽極接合
では電気化学的作用により充分な接合強度が得られると
いう効果がある。
In the above method for manufacturing a hermetically sealed package, it is preferable that the upper surface of the concave first substrate
Manufacturing a hermetically sealed package characterized in that a metal thin film is formed on one of the back surfaces of the substrates and anodically bonded instead of directly bonding the upper surface of the first substrate and the bottom surface of the second substrate. As a method, a similar hermetically sealed package can be formed. According to this method, although the number of steps for forming a metal thin film increases, the problem of poor bonding that occurs when cleaning during the direct bonding step is insufficient is insufficient even with insufficient cleaning due to electrochemical action in anodic bonding. There is an effect that joining strength can be obtained.

【0021】(実施の形態2)図2は本発明の第2の実
施の形態における気密封止パッケージの断面図である。
31は赤外線センサ素子、32は素子電極、33はガラ
ス枠体、34は基板電極、35は突起電極、36は第2
の基板、37は赤外線受光部、38は絶縁膜、39はシ
リコン基板である。赤外線センサも気密封止パッケージ
が必要なセンサの一つである。赤外線センサの感度は封
止ガスの熱伝導率に依存することや、湿度によっても感
度が変化するためである。この赤外線センサの気密封止
パッケージを実施の形態1で示した場合、図2のような
基板の構成としなければならない。まず、シリコン基板
39上に絶縁膜38を形成する。絶縁膜38はシリコン
酸化膜や窒化シリコンなどの膜が形成しやすい。次に赤
外線を透過するように赤外線透過領域の箇所だけ絶縁膜
38を除去する。絶縁膜38の除去には半導体プロセス
などで一般的に用いられるフォトリソグラフィとエッチ
ングの工法によって除去する。そして絶縁膜38上に基
板電極34を形成する。基板電極34の形成は真空蒸着
などの方法やもしくは印刷、焼成などの方法で形成す
る。その後、ガラス枠体33をシリコン基板に張り付け
る。この張り付けはガラス封止材などを用いて接着す
る。このようにして実施の形態1で示した第1の基板を
形成する。後は実施の形態1で示した工程と同様であ
る。
(Embodiment 2) FIG. 2 is a sectional view of a hermetically sealed package according to a second embodiment of the present invention.
31 is an infrared sensor element, 32 is an element electrode, 33 is a glass frame, 34 is a substrate electrode, 35 is a protruding electrode, and 36 is a second
, 37 is an infrared receiving section, 38 is an insulating film, and 39 is a silicon substrate. An infrared sensor is one of the sensors requiring a hermetically sealed package. This is because the sensitivity of the infrared sensor depends on the thermal conductivity of the sealing gas and the sensitivity also changes with humidity. When the hermetically sealed package of this infrared sensor is shown in Embodiment 1, it must have a substrate configuration as shown in FIG. First, an insulating film 38 is formed on a silicon substrate 39. As the insulating film 38, a film such as a silicon oxide film or silicon nitride is easily formed. Next, the insulating film 38 is removed only in the infrared transmission region so as to transmit infrared light. The insulating film 38 is removed by a photolithography and etching method generally used in a semiconductor process or the like. Then, the substrate electrode 34 is formed on the insulating film 38. The substrate electrode 34 is formed by a method such as vacuum evaporation or a method such as printing or baking. After that, the glass frame 33 is attached to the silicon substrate. This attachment is performed using a glass sealing material or the like. Thus, the first substrate described in Embodiment 1 is formed. Subsequent steps are the same as the steps described in the first embodiment.

【0022】以上のように、赤外線透過窓すなわちシリ
コン窓を必要とする赤外線センサ素子31の気密封止パ
ッケージングが、小型、低背化で高信頼性で実現でき
る。しかも赤外線透過窓である高価なシリコン基板を非
常に小さな面積で活用できるため、安価であるなどの効
果がある。
As described above, the hermetically sealed packaging of the infrared sensor element 31 requiring an infrared transmission window, ie, a silicon window, can be realized with a small size, a low profile, and high reliability. Moreover, since an expensive silicon substrate, which is an infrared transmission window, can be used in a very small area, there are effects such as low cost.

【0023】(実施の形態3)図3は本発明の実施の形
態3における気密封止パッケージの断面図を示したもの
である。41はデバイス素子、42は突起電極、43は
基板電極、44は第1の基板、45は第2の基板、46
は第1のゴム材、47は第2のゴム材、48は剛体であ
る。実施の形態1や実施の形態2で説明した方法におい
て、多数個に配列された基板を用いて一括して直接接合
する場合を考えた場合、基板面積が広くなる。すると、
基板のうねりや厚みばらつきなどで、加圧する圧力が各
デバイス素子に均一に加わらなくなる場合が生ずる。各
デバイス素子に均一に圧力が加わらないと、図3(a)
に示すように、直接接合部に隙間が生じるため、接合不
良が生じる。そこで、図3(b)に示すように、第1の
基板44の最上面と第2の基板45の下面を合致させた
後、第1の基板44の裏面に平板状の第1のゴム材46
を設置し、第2の基板45の上面に平板状の第2のゴム
材47を設置しさらに第1のゴム材46と第2のゴム材
47を挟み込むように2つの剛体を設置して、この剛体
を加圧することで各デバイス素子に均一に圧力を加え
る。ゴム材の材質は耐熱性のあるポリイミドやテフロン
などが良い。
(Embodiment 3) FIG. 3 is a sectional view of a hermetically sealed package according to Embodiment 3 of the present invention. 41 is a device element, 42 is a protruding electrode, 43 is a substrate electrode, 44 is a first substrate, 45 is a second substrate, 46
Is a first rubber material, 47 is a second rubber material, and 48 is a rigid body. In the method described in the first or second embodiment, when a case is considered in which a large number of substrates are directly joined together at once, the substrate area is increased. Then
Due to undulation or thickness variation of the substrate, the pressure to be applied may not be uniformly applied to each device element. If pressure is not uniformly applied to each device element, FIG.
As shown in (1), a gap is generated in the direct bonding portion, so that a bonding failure occurs. Therefore, as shown in FIG. 3B, after the uppermost surface of the first substrate 44 and the lower surface of the second substrate 45 are matched, a flat first rubber material is formed on the rear surface of the first substrate 44. 46
Is installed, a flat second rubber member 47 is installed on the upper surface of the second substrate 45, and two rigid bodies are installed so as to sandwich the first rubber member 46 and the second rubber member 47 therebetween. By pressing this rigid body, pressure is uniformly applied to each device element. The rubber material is preferably a heat-resistant polyimide or Teflon.

【0024】[0024]

【発明の効果】上記の発明によれば、各種センサ素子や
SAWデバイスなどの素子を気密封止のパッケージング
をする際、ワイヤーボンディングや有機樹脂を用いない
ため小型、低背化で高信頼性の気密封止パッケージが構
成できる。また、多数個に配列された基板を用いて、一
括して直接接合したのち、各個片に分割することができ
る。すなわち、ワーク一括処理をすることで、個片で処
理するより工数が削減できるため安価で作りやすい気密
封止パッケージを実現できる。
According to the above invention, when packaging various sensor elements and SAW devices in a hermetically sealed manner, since no wire bonding or organic resin is used, a small size, low profile and high reliability are achieved. Airtightly sealed package can be configured. In addition, after a large number of substrates are directly bonded together in a lump, they can be divided into individual pieces. That is, by performing the batch processing of the workpieces, the number of processes can be reduced as compared with the case where the workpieces are processed individually, so that a hermetically sealed package that is inexpensive and easy to manufacture can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における気密封止パッケ
ージの製造方法を説明する図
FIG. 1 illustrates a method for manufacturing a hermetically sealed package according to a first embodiment of the present invention.

【図2】本発明の実施の形態2における気密封止パッケ
ージの断面図
FIG. 2 is a sectional view of a hermetically sealed package according to a second embodiment of the present invention.

【図3】本発明の実施の形態3における気密封止パッケ
ージの断面図
FIG. 3 is a cross-sectional view of a hermetically sealed package according to a third embodiment of the present invention.

【図4】従来のCAN封止パッケージの断面図FIG. 4 is a cross-sectional view of a conventional CAN sealed package.

【符号の説明】[Explanation of symbols]

1 デバイス素子 2 素子電極 3 第1の基板 4 基板電極 5 突起電極 6 第2の基板 REFERENCE SIGNS LIST 1 device element 2 element electrode 3 first substrate 4 substrate electrode 5 protruding electrode 6 second substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増谷 武 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F044 KK01 LL15 QQ01 5F088 BA15 BA16 BA18 BA20 BB10 FA09 JA01 JA05 JA09 LA01 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takeshi Masutani 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F term (reference) 5F044 KK01 LL15 QQ01 5F088 BA15 BA16 BA18 BA20 BB10 FA09 JA01 JA05 JA09 LA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 素子電極上に突起電極を有するデバイス
素子と、前記素子電極と一致する基板電極を外部に取り
出すように底部に電極を有する凹型の第1の基板と、こ
の第1の基板の窪み部分に前記突起電極と前記基板電極
とを合致するように前記デバイス素子を挿入し、その上
部から蓋をする第2の基板とを備え、前記第1の基板の
上面と第2の基板の底面とを直接接合し、その接合力に
より前記デバイス素子を加圧し、前記デバイス素子を介
して前記素子電極上の前記突起電極を変形せしめること
により、前記突起電極を前記基板電極に加圧して、前記
素子電極と前記基板電極とを電気的かつ機械的に接合し
てなる気密封止パッケージ。
1. A device element having a protruding electrode on an element electrode, a concave first substrate having an electrode on a bottom portion for taking out a substrate electrode coincident with the element electrode, A second substrate for inserting the device element into the recessed portion so as to match the projecting electrode and the substrate electrode, and covering the device element from above; a top surface of the first substrate and a second substrate By directly bonding the bottom surface and pressing the device element by the bonding force and deforming the projecting electrode on the element electrode through the device element, the projecting electrode is pressed against the substrate electrode, A hermetically sealed package in which the device electrode and the substrate electrode are electrically and mechanically joined.
【請求項2】 凹型の窪み部分の底部に基板電極を有す
る第1の基板と平板状の第2の基板を洗浄して表面を活
性化させ、この第1の基板の窪み部分に素子電極上に突
起電極を有したデバイス素子を前記突起電極と前記基板
電極とが合致するように挿入し、挿入したデバイス素子
の底部が前記第1の基板の最上面よりも高くなりかつ前
記第1の基板の最上面からデバイス素子の底部までの高
さが前記突起電極よりも低くなるようにあらかじめ前記
第1の基板の窪み深さを設定しておき、前記第1の基板
の最上面と第2の基板の下面とを合致するように上下方
向から加圧して前記突起電極を変形させて前記素子電極
と前記基板電極とを電気的かつ機械的に接合させるとと
もに加圧したまま加熱、昇温させることにより前記第1
の基板の最上面と第2の基板の下面を直接接合させる気
密封止パッケージの製造方法。
2. A first substrate having a substrate electrode at the bottom of a concave recess and a flat second substrate are cleaned to activate the surface, and a device electrode is provided on the recess of the first substrate. A device element having a protruding electrode is inserted so that the protruding electrode and the substrate electrode coincide with each other, and the bottom of the inserted device element is higher than the uppermost surface of the first substrate and the first substrate The depth of the depression of the first substrate is set in advance so that the height from the uppermost surface of the device element to the bottom of the device element is lower than that of the projecting electrode, and the uppermost surface of the first substrate is Pressing from above and below so as to match the lower surface of the substrate to deform the protruding electrode to electrically and mechanically join the element electrode and the substrate electrode, and to heat and raise the temperature while pressing. By the first
A method for manufacturing a hermetically sealed package in which the uppermost surface of the substrate is directly joined to the lower surface of the second substrate.
【請求項3】 デバイス素子を赤外線センサ素子とし、
シリコン基板上に酸化膜を形成し、その酸化膜上に基板
電極を形成し、前記赤外線センサ素子の赤外線受光部に
赤外線が前記シリコン基板を透過して到達するように、
赤外線が通過する領域の前記シリコン基板上の酸化膜を
除去し、前記シリコン基板と枠体状の基板をガラス封着
材などで接着して形成することにより凹型の第1の基板
を形成する請求項2記載の気密封止パッケージの製造方
法。
3. The device element is an infrared sensor element,
Forming an oxide film on a silicon substrate, forming a substrate electrode on the oxide film, so that infrared rays reach the infrared light receiving portion of the infrared sensor element through the silicon substrate,
Forming a concave first substrate by removing an oxide film on the silicon substrate in a region through which infrared light passes, and forming the silicon substrate and a frame-shaped substrate by bonding with a glass sealing material or the like; Item 3. A method for manufacturing a hermetically sealed package according to Item 2.
【請求項4】 第1の基板の最上面と第2の基板の下面
を合致させる際に、第1の基板の裏面に平板状の第1の
ゴム材を設置し、第2の基板の上面に平板状の第2のゴ
ム材を設置し、さらに第1のゴム材と第2のゴム材を挟
み込むように2つの剛体を設置して、前記剛体を上下方
向から加圧することで突起電極を変形させて前記素子電
極と基板電極が電気的かつ機械的に接合させて、この剛
体ごと加圧したまま加熱、昇温させることにより第1の
基板の最上面と第2の基板の下面を直接接合させる請求
項2記載の気密封止パッケージの製造方法。
4. When the uppermost surface of the first substrate and the lower surface of the second substrate coincide with each other, a first rubber material having a flat plate shape is provided on the rear surface of the first substrate, and the upper surface of the second substrate is provided. A second rubber material having a flat plate shape is installed on the second rubber material, and two rigid bodies are further provided so as to sandwich the first rubber material and the second rubber material. The element electrode and the substrate electrode are electrically and mechanically joined by being deformed, and the rigid body is heated and heated while being pressed, so that the uppermost surface of the first substrate and the lower surface of the second substrate are directly contacted. The method for manufacturing a hermetically sealed package according to claim 2, wherein the package is joined.
【請求項5】 第1の基板の最上面か第2の基板の裏面
のどちらかに金属薄膜を形成し、前記第1の基板の上面
と第2の基板の底面を直接接合するかわりに、陽極接合
する請求項2記載の気密封止パッケージの製造方法。
5. Instead of forming a metal thin film on either the top surface of the first substrate or the back surface of the second substrate and directly joining the top surface of the first substrate and the bottom surface of the second substrate, 3. The method for manufacturing a hermetically sealed package according to claim 2, wherein anodic bonding is performed.
JP11231093A 1999-08-18 1999-08-18 Hermetically sealed package and manufacture thereof Pending JP2001057436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231093A JP2001057436A (en) 1999-08-18 1999-08-18 Hermetically sealed package and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231093A JP2001057436A (en) 1999-08-18 1999-08-18 Hermetically sealed package and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2001057436A true JP2001057436A (en) 2001-02-27

Family

ID=16918192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231093A Pending JP2001057436A (en) 1999-08-18 1999-08-18 Hermetically sealed package and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2001057436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074846A1 (en) * 2005-12-26 2007-07-05 Kyocera Corporation Microelectronic machine and method for manufacturing same
JP2013168509A (en) * 2012-02-15 2013-08-29 Seiko Instruments Inc Optical device and manufacturing method of optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074846A1 (en) * 2005-12-26 2007-07-05 Kyocera Corporation Microelectronic machine and method for manufacturing same
US8008739B2 (en) 2005-12-26 2011-08-30 Kyocera Corporation Microelectromechanical apparatus and method for producing the same
JP2013168509A (en) * 2012-02-15 2013-08-29 Seiko Instruments Inc Optical device and manufacturing method of optical device

Similar Documents

Publication Publication Date Title
JP4159895B2 (en) Capacitance type pressure sensor and manufacturing method thereof
JPH0263300B2 (en)
JP5282392B2 (en) Direct bonding wafer
JP5264281B2 (en) Method for manufacturing piezoelectric component
JP2001057436A (en) Hermetically sealed package and manufacture thereof
JP3144345B2 (en) Mounting method of surface acoustic wave chip
JPH07249957A (en) Electronic parts and their formation
JP7448381B2 (en) Package and package manufacturing method
JPH1167839A (en) Manufacture of electronic equipment
WO2011118786A1 (en) Manufacturing method for glass-embedded silicon substrate
JP2013153455A (en) Wafer for bonding
JP7112866B2 (en) Infrared sensor and method for manufacturing infrared sensor
JP2016054195A (en) Manufacturing method of package and package
JP2016122783A (en) Vacuum-sealed module and manufacturing method thereof
JPH11344721A (en) Device for manufacturing liquid crystal display element
JP2003060472A (en) Piezoelectric vibrator
JPH07111435A (en) Production of crystal piezoelectric device
Enquist Room temperature direct wafer bonding for three dimensional integrated sensors
JP2000019040A (en) Method for manufacturing pressure sensor
JPH07154185A (en) Surface acoustic wave device and its manufacture
JP2000195903A (en) Method and device for manufacturing electronic component connection body
JP3453822B2 (en) Method for manufacturing piezoelectric-semiconductor composite substrate and piezoelectric device using the same
JPS59217126A (en) Absolute-pressure type semiconductor pressure transducer element
JP2002026068A (en) Method and device for manufacturing solid-state image pickup device
JPH10163799A (en) Surface acoustic wave device and its production