WO2011118786A1 - Manufacturing method for glass-embedded silicon substrate - Google Patents

Manufacturing method for glass-embedded silicon substrate Download PDF

Info

Publication number
WO2011118786A1
WO2011118786A1 PCT/JP2011/057400 JP2011057400W WO2011118786A1 WO 2011118786 A1 WO2011118786 A1 WO 2011118786A1 JP 2011057400 W JP2011057400 W JP 2011057400W WO 2011118786 A1 WO2011118786 A1 WO 2011118786A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
silicon substrate
recess
glass substrate
embedded
Prior art date
Application number
PCT/JP2011/057400
Other languages
French (fr)
Japanese (ja)
Inventor
亮 友井田
友洋 中谷
巧 田浦
真 奥村
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to JP2012507096A priority Critical patent/JPWO2011118786A1/en
Publication of WO2011118786A1 publication Critical patent/WO2011118786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Definitions

  • the present invention relates to a method for manufacturing a glass-embedded silicon substrate in which glass is disposed inside a silicon substrate body.
  • Patent Document 1 Conventionally, for example, a technique described in Patent Document 1 is known for the purpose of manufacturing a glass substrate having a fine structure.
  • the inner space of the depression becomes a closed space. Therefore, when a part of the glass substrate is embedded in the recess, the gas inside the recess is difficult to escape, so that the glass embedding process takes time, which is an adverse effect of shortening the process time. In addition, voids are easily generated in the re-solidified glass material, and the production yield is reduced.
  • the feature of the present invention that achieves the above object relates to a method for manufacturing a glass-embedded silicon substrate.
  • This manufacturing method includes at least first to fifth steps.
  • a recess is formed in the main surface of the silicon substrate body.
  • a glass substrate having a thick portion at a position facing the recess is prepared, the first main surface of the glass substrate is superimposed on the main surface of the silicon substrate body, and the recess is sealed.
  • the glass substrate is softened by applying heat, and a part of the glass substrate is embedded in the recess of the silicon substrate body.
  • the atmospheric pressure when the second step is performed is set lower than the atmospheric pressure when the third step is performed.
  • the glass substrate is cooled.
  • the fifth step the portion of the glass substrate embedded in the recess of the silicon substrate body is left and the other portion is removed.
  • FIG. 1A is a perspective view showing a configuration of a package lid in the semiconductor device according to the first embodiment of the present invention
  • FIG. 1B is a diagram illustrating the first embodiment of the present invention. It is a perspective view which shows the structure except a package lid
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of an acceleration sensor chip A in FIG. 2. 4 (a) to 4 (e) show a process for producing a glass-embedded silicon substrate as an example of the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS. It is sectional drawing.
  • FIG. 1A is a perspective view showing a configuration of a package lid in the semiconductor device according to the first embodiment of the present invention
  • FIG. 1B is a diagram illustrating the first embodiment of the present invention. It is a perspective view which shows the structure except a package lid
  • FIG. 5A is a cross-sectional view showing the configuration of a specific processing apparatus for performing the second step shown in FIG. 4C
  • FIG. 5B is a cross-sectional view of FIG. It is sectional drawing which shows the structure of the specific processing apparatus for enforcing the 3rd process shown to. It is a flowchart which shows the detailed procedure of the 2nd process and 3rd process performed using the manufacturing apparatus shown to Fig.5 (a) and FIG.5 (b).
  • 7A to 7E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the second embodiment.
  • FIGS. 8A to 8E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the third embodiment.
  • FIG. 9A to FIG. 9E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the fourth embodiment.
  • the semiconductor device includes an acceleration sensor chip A as an example of a MEMS device, a control IC chip B on which a signal processing circuit that processes a signal output from the acceleration sensor chip A is formed, and an acceleration sensor chip A and a control IC chip B. Are mounted on the surface mounting type package 101.
  • the package 101 includes a plastic package main body 102 having a box-like shape with one open surface located on the upper surface in FIG. 1B and a package lid (lid) 103 that closes one open surface of the package 101.
  • the plastic package body 102 includes a plurality of leads 112 that are electrically connected to the acceleration sensor chip A and the control IC chip B.
  • Each lead 112 includes an outer lead 112 b led out from the outer side surface of the plastic package main body 102 and an inner lead 112 a led out from the inner side surface of the plastic package main body 102.
  • Each inner lead 112a is electrically connected to each pad included in the control IC chip B through a bonding wire W.
  • the acceleration sensor chip A has a mounting surface 102a located at the bottom of the plastic package main body 102 by the adhesive portions 104 arranged at three locations corresponding to the three vertices of the virtual triangle defined based on the outer peripheral shape of the acceleration sensor chip A. It is fixed to.
  • the adhesive portion 104 includes a frustoconical protrusion that is continuously and integrally provided on the plastic package body 102, and an adhesive that covers the protrusion.
  • the adhesive is made of, for example, a silicone resin such as a silicone resin having an elastic modulus of 1 MPa or less.
  • all the pads included in the acceleration sensor chip A are arranged along one side of the main surface of the acceleration sensor chip A facing the open surface of the plastic package main body 102.
  • the adhesive portion 104 is located at each vertex of a virtual triangle having vertices at two locations at both ends of the one side and one location (for example, the central portion) parallel to the one side.
  • the bonding wire W can be stably bonded to each pad.
  • one portion of the side parallel to the one side is not limited to the central portion, and may be, for example, one of both ends, but the central portion makes the semiconductor element A more stable. It can be supported and the bonding wire W can be stably bonded to each pad.
  • the control IC chip B is a semiconductor chip composed of a plurality of semiconductor elements formed on a semiconductor substrate made of single crystal silicon or the like, wirings connecting them, and a passivation film that protects the semiconductor elements and wirings from the external environment.
  • the entire back surface of the control IC chip B is fixed to the bottom surface of the plastic package body 102 with a silicone resin.
  • the signal processing circuit formed on the control IC chip B may be appropriately designed according to the function of the acceleration sensor chip A, and may be any one that cooperates with the acceleration sensor chip A.
  • the control IC chip B can be formed as an ASIC (Application Specific IC).
  • a die bonding process for fixing the acceleration sensor chip A and the control IC chip B to the plastic package body 102 is performed.
  • a wire bonding step of electrically connecting the acceleration sensor chip A and the control IC chip B and the control IC chip B and the inner lead 112a via the bonding wires W is performed.
  • a resin coating portion forming step for forming the resin coating portion 116 is performed, and subsequently, a sealing step for bonding the outer periphery of the package lid 103 to the plastic package body 102 is performed.
  • the inside of the plastic package main body 102 is sealed in an airtight state.
  • a notation 113 indicating a product name, a manufacturing date and the like is formed in an appropriate part of the package lid 103 by a laser marking technique.
  • the control IC chip B is formed using a single silicon substrate, whereas the acceleration sensor chip A is formed using a plurality of stacked substrates. Therefore, since the thickness of the acceleration sensor chip A is thicker than the thickness of the control IC chip B, the mounting surface 102a on which the acceleration sensor chip A is mounted at the bottom of the plastic package body 102 is formed from the mounting portion of the control IC chip B. Is also recessed. Therefore, on the bottom surface of the plastic package main body 102, the thickness of the portion where the acceleration sensor chip A is mounted is thinner than other portions.
  • the outer shape of the plastic package body 102 is a rectangular parallelepiped, but this is only an example, and the outer shape of the acceleration sensor chip A and the control IC chip B, the number of leads 112, the pitch, etc. What is necessary is just to set suitably according to.
  • LCP liquid crystalline polyester
  • PPS polyphenylene sulfite
  • PBT polybisamide triazole
  • each lead 112 that is, the material of the lead frame that is the basis of each lead 112
  • phosphor bronze having a high spring property among copper alloys is adopted.
  • a lead frame made of phosphor bronze and a thickness of 0.2 mm is used as the lead frame, and a laminated film of a Ni film having a thickness of 2 ⁇ m to 4 ⁇ m and an Au film having a thickness of 0.2 ⁇ m to 0.3 ⁇ m.
  • a plating film made of is formed by an electrolytic plating method. Thereby, it is possible to achieve both the bonding reliability of wire bonding and the soldering reliability.
  • the plus package body 102 of the thermoplastic resin molded product has leads 112 formed integrally at the same time.
  • the adhesion between the plastic package body 102 formed by LCP, which is a thermoplastic resin, and the Au film of the lead 112 is low. Therefore, the lead 112 is prevented from falling off by providing a punch hole in a portion of the above-described lead frame embedded in the plastic package body 102.
  • the semiconductor device of FIG. 1 is provided with a resin coating portion 116 that covers the exposed portion of the inner lead 112a and the periphery thereof.
  • the resin coating portion 116 is made of a moisture-impermeable resin such as an epoxy resin such as an amine epoxy resin. After the wire bonding process, this non-moisture permeable resin is applied using a dispenser and cured to improve airtightness. Note that ceramics may be used instead of the moisture-impermeable resin, and when ceramics are used, they may be sprayed locally using a technique such as plasma spraying.
  • the bonding wire W an Au wire having higher corrosion resistance than that of an Al wire is used.
  • an Au wire having a diameter of 25 ⁇ m is adopted, the present invention is not limited to this, and for example, an Au wire having a diameter of 20 ⁇ m to 50 ⁇ m may be appropriately selected.
  • the acceleration sensor chip A is a capacitance type acceleration sensor chip, which is an SOI (Silicon On Insulator).
  • a sensor main body 1 formed using a substrate 10 a first fixed substrate 2 formed using a glass substrate 20, and a second fixed substrate 3 formed using a glass substrate 30 are provided.
  • the first fixed substrate 2 is fixed to one surface side (upper surface side in FIG. 2) of the sensor body 1, and the second fixed substrate 3 is fixed to the other surface side (lower surface side in FIG. 2) of the sensor body 1. Is done.
  • the first and second fixed substrates 2 and 3 are formed to have the same outer dimensions as the sensor body 1.
  • the sensor body 1 is not limited to the SOI substrate 10 and may be formed using, for example, a normal silicon substrate that does not include an insulating layer. Further, the first and second fixed substrates 2 and 3 may be formed of either a silicon substrate or a glass substrate, respectively.
  • the sensor main body 1 includes a frame portion 11 in which two rectangular windows 12 in a plan view are arranged side by side along the one surface, and two rectangular shapes in a plan view arranged inside each open window 12 of the frame portion 11.
  • the weight part 13 and a pair of support spring parts 14 for connecting the frame part 11 and the weight part 13 to each other are provided.
  • the two weight parts 13 having a rectangular shape in a plan view are arranged separately from the first and second fixed substrates 2 and 3, respectively.
  • Movable electrodes 15A and 15B are arranged on the main surface of each weight portion 13 facing the first fixed substrate 2, respectively.
  • the entire outer periphery of the frame portion 11 surrounding the weight portion 13 is joined to the first and second fixed substrates 2 and 3.
  • the frame portion 11 and the first and second fixed substrates 2 and 3 constitute a chip size package that houses the weight portion 13 and a stator 16 described later.
  • the pair of support spring portions 14 are arranged so as to sandwich the weight portion 13 along a straight line passing through the center of gravity of the weight portion 13 inside each opening window 12 of the frame portion 11.
  • Each support spring portion 14 is a torsion spring (torsion bar) capable of torsional deformation, and is formed to be thinner than the frame portion 11 and the weight portion 13. It can be displaced around the pair of support spring portions 14.
  • a rectangular window hole 17 in plan view that communicates with each opening window 12 is arranged in the same direction as the two opening windows 12. Inside each window hole 17, two stators 16 are arranged along the direction in which the pair of support spring portions 14 are arranged side by side.
  • each stator 16 is joined to the first and second fixed substrates 2 and 3, respectively.
  • each stator 16 is formed with a circular electrode pad 18 made of a metal thin film such as an Al—Si film.
  • a circular electrode pad 18 made of, for example, a metal thin film such as an Al—Si film is formed in a portion between adjacent window holes 17 in the frame portion 11.
  • Each electrode pad 18 formed on each stator 16 is electrically connected to each fixed electrode 25 described later, and the electrode pad 18 formed on the frame portion 11 is electrically connected to the movable electrode 15A and the movable electrode 15B. It is connected to the.
  • the plurality of electrode pads 18 described above are arranged along one side of the rectangular outer peripheral shape of the acceleration sensor chip A.
  • the first fixed substrate 2 includes a plurality of wirings 28 penetrating between a first main surface of the first fixed substrate 2 and a second main surface (a surface overlapping the sensor main body 1) facing the first main surface. And a plurality of fixed electrodes 25 formed on the second main surface.
  • the fixed electrode 25Aa and the fixed electrode 25Ab are arranged in a pair so as to face the movable electrode 15A.
  • the fixed electrode 25Ba and the fixed electrode 25Bb are arranged in a pair so as to face the movable electrode 15B.
  • Each fixed electrode 25 is made of a metal thin film such as an Al—Si film, for example.
  • Each wiring 28 is electrically connected to the electrode pad 18 of the sensor body 1 on the second main surface of the first fixed substrate 2. As a result, the potential of each fixed electrode 25 and the potential of the movable electrode 15 can be taken out from the acceleration sensor chip A via the electrode pad 18.
  • An adhesion preventing film 35 made of a metal thin film such as an Al—Si film is disposed on one surface of the second fixed substrate 3 (a surface overlapping the sensor body 1) and at a position corresponding to the weight portion 13. Yes.
  • the adhesion preventing film 35 prevents adhesion of the weight part 13 that is displaced.
  • FIG. 3 shows a configuration of the acceleration sensor chip A on a cut surface perpendicular to a straight line passing through the pair of support spring portions 14.
  • the sensor body 1 is formed using an SOI substrate 10.
  • the SOI substrate 10 includes a support substrate 10a made of single crystal silicon, an insulating layer 10b made of a silicon oxide film arranged on the support substrate 10a, and an n-type silicon layer (active) arranged on the insulating layer 10b. Layer) 10c.
  • the frame 11 and the stator 16 are joined to the first fixed substrate 2 and the second fixed substrate 3.
  • the weight portion 13 is disposed separately from the first and second fixed substrates 2 and 3, and is supported by the frame 11 by a pair of support spring portions 14.
  • a plurality of minute protrusions 13 c that restrict excessive displacement of the weight part 13 are provided so as to protrude from the surfaces of the weight part 13 facing the first and second fixed substrates 2 and 3.
  • the weight portion 13 is formed with concave portions 13a and 13b opened in a rectangular shape. Since the sizes of the recesses 13a and 13b are different from each other, the masses on the left and right of the weight portion 13 are different from each other with a straight line passing through the pair of support spring portions 14 as a boundary.
  • the wiring 28 of the first fixed substrate 2 is electrically connected to the electrode pad 18.
  • the electrode pad 18 is connected to the fixed electrode 25 through the stator 16, the connecting conductor portion 16 d, and the metal wiring 26.
  • the acceleration sensor chip A described above has four pairs of the movable electrode 15 provided on the sensor body 1 and the fixed electrode 25 provided on the first fixed substrate 2.
  • a variable capacitor is configured for each pair.
  • acceleration is applied to the acceleration sensor chip A, that is, the weight portion 13, the support spring portion 14 is twisted and the weight portion 13 is displaced.
  • the facing area and interval between the paired fixed electrode 25 and movable electrode 15 change, and the capacitance of the variable capacitor changes. Therefore, the acceleration sensor chip A can detect acceleration from the change in capacitance.
  • FIGS. 4A to 4E a glass-embedded silicon substrate as an example of the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS. The manufacturing method will be described.
  • a silicon substrate body 51 having a front surface (upper surface in FIG. 4) and a rear surface (lower surface in FIG. 4) is prepared.
  • a p-type or n-type impurity is added to the entire silicon substrate body 51, and the electrical resistance of the silicon substrate body 51 is sufficiently small.
  • an impurity is added to the entire silicon substrate body 51.
  • the impurity may not be added to the entire silicon substrate body 51. It is sufficient that impurities are added at least to the depth of the portion to be left as the wiring in FIG.
  • a predetermined region on the surface of the silicon substrate body 51 is formed by dry etching such as wet etching or reactive ion etching (RIE) using a TMAH (tetramethylammonium hydroxide) aqueous solution as an etchant.
  • TMAH tetramethylammonium hydroxide
  • the glass substrate 54 is cooled and re-solidified (fourth step). Then, as shown in FIG.4 (e), the part embedded in the recessed part 52 of the silicon substrate main body 51 is left among glass substrates 54, and another part is removed (5th process). Further, the silicon substrate body 51 is left with a portion between the surface and the plane including the bottom surface of the recess 52, and the other portions are removed.
  • the second main surface of the glass substrate 54 (such as grinding using a diamond grindstone, polishing such as chemical mechanical polishing (CMP), or dry etching such as RIE or wet etching using HF is used.
  • the upper surface in FIG. 4 is uniformly scraped to expose the silicon substrate body 51 on the second main surface of the glass substrate 54.
  • the back surface of the silicon substrate body 51 is evenly scraped to expose the glass substrate 54 embedded in the recess 52 on the back surface of the silicon substrate body 51. Either glass or silicon may be removed first.
  • the glass-embedded silicon substrate manufactured by the above steps is obtained by embedding a part of the glass substrate 54 in the silicon substrate body 51 as shown in FIG. 4E is applied to the wiring 28 shown in FIGS. 2 and 3, and the glass substrate 54 shown in FIG. 4E is replaced with the glass substrate shown in FIGS. Apply to 20.
  • the glass-embedded silicon substrate shown in FIG. 4E can be applied to the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS.
  • this manufacturing apparatus includes a vacuum chamber 305 having a size capable of accommodating the silicon substrate body 51 and the glass substrate 54, and a vacuum pump such as a rotary pump that exhausts the gas in the vacuum chamber 305. 306 at least.
  • this manufacturing apparatus additionally seals the recess 52 by superimposing the first main surface of the glass substrate on the surface of the silicon substrate body 51 in a reduced-pressure atmosphere in the vacuum chamber 305. Means.
  • the manufacturing apparatus includes means for bonding the silicon substrate body 51 and the glass substrate 54 by a method such as anodic bonding, surface activation bonding, and resin bonding in a reduced pressure atmosphere.
  • a method such as anodic bonding, surface activation bonding, and resin bonding in a reduced pressure atmosphere.
  • the recessed part 52 can be sealed in a pressure-reduced atmosphere.
  • this manufacturing apparatus includes a flat plate stage 308 and a heating / pressurizing jig 307.
  • the heating / pressurizing jig 307 includes heating means such as a heater 309 for applying heat to the glass substrate 54, and can apply heat and force to the glass substrate 54 at the same time.
  • the silicon substrate body 51 and the glass substrate 54 are disposed so as to overlap each other between the stage 308 and the heating / pressurizing jig 307.
  • the apparatus of FIG. 5 (b) operates in an air atmosphere.
  • the silicon substrate main body 51 and the glass substrate 54 are carried into the vacuum chamber 305 of the manufacturing apparatus of FIG. 5A, and the vacuum chamber 305 is sealed. Then, the vacuum pump 306 is driven to evacuate the vacuum chamber 305. At this point, at least the recess 52 is not sealed. That is, the first main surface of the glass substrate may be superimposed on the surface of the silicon substrate body 51, but it is not joined. Thereby, when exhausting the inside of the vacuum chamber 305, the gas inside the recess 52 can also be exhausted.
  • the recess 52 is sealed.
  • the silicon substrate body 51 and the glass substrate 54 are stacked in a vacuum atmosphere (S01).
  • Each of the overlapping surfaces of the silicon substrate body 51 and the glass substrate 54 is preferably processed to have a flat surface (reducing the surface roughness), whereby the overlapping surface of the silicon substrate body 51 and the glass substrate 54 is The airtightness of the concave portion 52 can be sealed.
  • the vacuum pump 306 is stopped, the inside of the vacuum chamber 305 is returned to atmospheric pressure, and the bonded silicon substrate body 51 and glass substrate 54 are taken out from the vacuum chamber 305. Since the recess 52 is hermetically sealed, the inside of the recess 52 is kept in a vacuum state.
  • step S03 The silicon substrate body 51 and the glass substrate 54 are disposed between the stage 308 and the heating / pressurizing jig 307 of the manufacturing apparatus in FIG.
  • the heater 309 is turned on to heat the glass substrate 54.
  • the switch of the heater 309 is controlled while monitoring the temperature of the glass substrate 54 to maintain the softening temperature. For example, in the case of Tempax glass, it may be heated to around 820 ° C.
  • step S05 the glass substrate 54 and the silicon substrate body 51 are pressed using a heating / pressurizing jig 307. At this time, since the pressure inside the recess 52 is lower than the outside pressure, the glass is sucked into the recess 52 by this pressure difference. Further, a part of the glass substrate 54 softened by the heat treatment in step S03 and the press treatment in step S05 is embedded in the recess 52 of the silicon substrate body 51 (third step).
  • step S07 when the concave portion 52 is filled with the softened glass substrate 54, the press is stopped, the process proceeds to step S09, the heater 309 is turned off, and a predetermined cooling means is used. Cool 54.
  • the second step and the third step are performed using the manufacturing apparatus shown in FIGS. 5 (a) and 5 (b).
  • the second step in FIG. 4 corresponds to step S01 in FIG. 6, and the third step in FIG. 4 corresponds to steps S03 to S07 in FIG.
  • the atmospheric pressure when performing the second step of sealing the concave portion 52 is set lower than the atmospheric pressure when performing the third step of embedding glass in the concave portion 52.
  • the pressure inside the recess 52 becomes lower than the outside pressure, so that the glass is sucked into the recess 52 due to this pressure difference. Therefore, the glass can be embedded quickly and voids can be suppressed.
  • the second process is performed in a vacuum
  • the third process is performed at atmospheric pressure.
  • Conduct in. When the glass is embedded in the recess 52, the external atmospheric pressure is atmospheric pressure, but the internal pressure of the recess 52 is kept in vacuum, so that the glass is sucked into the recess 52 by this pressure difference. Therefore, the glass can be embedded quickly and voids can be suppressed.
  • the first main surface and the second main surface opposite to the first main surface are described as examples using a flat glass substrate.
  • the present invention is not limited to this.
  • a glass substrate having a thick portion at a position facing the concave portion of the silicon substrate may be prepared, and the thick portion may be opposed to the concave portion to seal the concave portion. If it does in this way, glass can be embedded more effectively in a crevice.
  • this thick portion can be constituted by a convex portion formed on the first main surface or the second main surface, or both main surfaces of the first main surface and the second main surface. You may comprise by forming a convex part in a surface.
  • the first convex portion 210 that enters the concave portion 202 is formed on the first main surface of the glass substrate 204, that is, the surface overlapping the silicon substrate body 201. It may be formed. Accordingly, when a part of the glass substrate 204 is embedded in the recess 202, glass already exists in the recess 202, so that voids are less likely to occur in the recess 202, and the glass can be embedded faster.
  • FIGS. 7A and 7B are the same as the steps shown in FIGS. 4A and 4B, and description thereof is omitted.
  • the first main surface (the lower surface in FIG. 7) of the glass substrate 204 is overlaid on the surface of the silicon substrate body 201 to form the recess 202.
  • Seal (second step).
  • the 1st convex part 210 is formed in the 1st main surface of the glass substrate 204, ie, the surface which overlaps with the silicon substrate main body 201, by blast processing, laser processing, etc. previously.
  • the first convex portion 210 enters the concave portion 202.
  • the first convex portion 210 that enters the concave portion 202 when the second step is performed is formed on the first main surface of the glass substrate 204. Accordingly, when a part of the glass substrate 204 is embedded in the recess 202, glass already exists in the recess 202, so that voids are less likely to occur in the recess 202, and the glass can be embedded faster.
  • the second convex portion 310 is formed on the second main surface of the glass substrate 304, that is, the surface facing the surface overlapping the silicon substrate body 301. It may be formed.
  • FIGS. 8A and 8B are the same as the steps shown in FIGS. 4A and 4B, and a description thereof will be omitted.
  • the first main surface (the lower surface in FIG. 8) of the glass substrate 304 is overlaid on the surface of the silicon substrate body 301 to form the recess 302.
  • Seal (second step) A second convex portion 310 is formed in advance on the second main surface of the glass substrate 304, that is, the surface facing the surface overlapping the silicon substrate body 301 by blasting or laser processing.
  • the second convex portion 310 is formed at the same position as the concave portion 302 when viewed from the normal direction of the first main surface of the glass substrate 304.
  • the second protrusion 310 is located at the same position as the recess 302 when viewed from the normal direction of the first main surface of the glass substrate 304.
  • the force by which the heating / pressurizing jig 307 pushes the glass substrate 304 is concentrated on the second convex portion 310, so that voids are less likely to be generated in the concave portion 302, and the glass can be embedded more quickly.
  • a forward tapered shape may be provided in at least a part of the recess 402 of the silicon substrate body 401. Thereby, glass can be embedded more efficiently.
  • FIG. 9A The process shown in FIG. 9A is the same as the process shown in FIG. As shown in FIG. 9B, for example, a predetermined region on the surface of the silicon substrate body 401 is selectively removed by wet etching having crystal anisotropy to form a recess 402 on the surface of the silicon substrate body 401.
  • the concave portion 402 of the silicon substrate body 401 has a forward tapered shape. That is, the cross-sectional area of the recess 402 parallel to the main surface of the silicon substrate body 401 increases from the bottom surface of the recess 402 toward the main surface of the silicon substrate body 401.
  • the concave portion 402 can be provided with a forward tapered shape, glass can be embedded more efficiently. Therefore, voids are less likely to occur in the recess 402, and the glass can be embedded more quickly.
  • the forward tapered shape provided in the recess 402 may be formed in at least a part of the recess 402. If it is formed at least partially, the effects of void suppression and high processing speed can be obtained.
  • the recess 52 is sealed in a reduced pressure atmosphere (second step), and the glass is embedded in the recess 52 in an atmospheric pressure atmosphere ( (3rd process).
  • the present invention is not limited to this.
  • the recess 52 may be sealed in an atmospheric pressure atmosphere, and glass may be embedded in the recess 52 in a pressurized atmosphere. Also by this, when the glass is embedded in the recess 52, the pressure inside the recess 52 can be made smaller than the pressure outside.
  • the step of forming the recess on the main surface of the silicon substrate body a part of the silicon substrate body made of single crystal silicon is processed to form the recess made of single crystal silicon.
  • the step of forming a recess in the main surface of the silicon substrate body is performed by depositing a silicon film made of polycrystalline silicon on the main surface of the silicon substrate body made of single crystal silicon, and removing a portion of the silicon film to form the recess May be formed.
  • At least a part of the recess 202 of the silicon substrate 201 of the second embodiment and at least a part of the recess 302 of the silicon substrate 301 of the third embodiment are forward-oriented. It is good also as a taper shape of this, Thereby, glass can be embedded more efficiently.

Abstract

The disclosed manufacturing method for a glass-embedded silicon substrate enables the rapid embedding of glass and suppresses voids. Concave sections (52) are formed on the main surface of a silicon substrate main body (51). A first main surface of a glass substrate (54) is superimposed on the main surface of the silicon substrate main body (51), enclosing the concave sections (52) thereof. The glass substrate (54) is softened by applying heat thereto, and part of the glass substrate (54) is embedded in the concave sections (52) of the silicon substrate main body (51). The glass substrate (54) is cooled. The part of the glass substrate (54) embedded in the concave sections (52) of the silicon substrate main body (51) is left behind, and the other part is removed. The air pressure is set lower when implementing the step in which the concave sections (52) are enclosed than when implementing the step in which the part of the glass substrate (54) is embedded in the concave sections (52) of the silicon substrate main body (51).

Description

ガラス埋込シリコン基板の製造方法Method for manufacturing glass-embedded silicon substrate
 本発明は、シリコン基板本体の内部にガラスが配置されたガラス埋込シリコン基板の製造方法に関するものである。 The present invention relates to a method for manufacturing a glass-embedded silicon substrate in which glass is disposed inside a silicon substrate body.
 従来から、微細な構造を有するガラス基板を製造する目的で、例えば、特許文献1に記載された技術が知られている。 Conventionally, for example, a technique described in Patent Document 1 is known for the purpose of manufacturing a glass substrate having a fine structure.
 特許文献1に記載されたガラス材料からなるフラット基板の製造方法では、先ず、平坦なシリコン基板の表面に窪みを形成し、平坦なガラス基板にシリコン基板の窪みが形成された面を重ね合わせる。そして、ガラス基板を加熱することによりガラス基板の一部をこの窪みの中に埋め込む。その後、ガラス基板を再固化させ、フラット基板の表裏面を研磨し、シリコンを除去する。
特表2004-523124号公報(特に、第1図参照)
In the method for manufacturing a flat substrate made of a glass material described in Patent Document 1, first, a recess is formed on the surface of a flat silicon substrate, and a surface on which the recess of the silicon substrate is formed is superimposed on the flat glass substrate. And a part of glass substrate is embedded in this hollow by heating a glass substrate. Thereafter, the glass substrate is re-solidified, the front and back surfaces of the flat substrate are polished, and silicon is removed.
Japanese translation of PCT publication No. 2004-523124 (in particular, refer to FIG. 1)
 しかし、平坦なガラス基板にシリコン基板の窪みが形成された面を重ね合わせると、窪みの内部空間は閉空間となる。よって、ガラス基板の一部をこの窪みの中に埋め込む際に、窪みの内部の気体が逃げにくくなるため、ガラスの埋め込み工程に時間がかかり、プロセス時間の短縮の弊害となる。また、再固化されたガラス材料にボイドが発生し易くなり、製造歩留まりを低下させてしまう。 However, if the surface on which the depression of the silicon substrate is formed is superimposed on a flat glass substrate, the inner space of the depression becomes a closed space. Therefore, when a part of the glass substrate is embedded in the recess, the gas inside the recess is difficult to escape, so that the glass embedding process takes time, which is an adverse effect of shortening the process time. In addition, voids are easily generated in the re-solidified glass material, and the production yield is reduced.
 そこで、本発明は、ガラスの埋め込み工程に時間を短縮でき、プロセス時間の短縮が可能なガラス埋込シリコン基板の製造方法を提供することを目的とする。
 また、本発明は、ボイドの発生を抑制するガラス埋込シリコン基板の製造方法を提供することを他の目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a glass-embedded silicon substrate, which can shorten the time for the glass embedding process and can shorten the process time.
Another object of the present invention is to provide a method for manufacturing a glass-embedded silicon substrate that suppresses the generation of voids.
 上記目的を達成する本発明の特徴は、ガラス埋込シリコン基板の製造方法に関する。この製造方法は、第1の工程~第5の工程を少なくとも備える。第1の工程では、シリコン基板本体の主面に凹部を形成する。第2の工程では、前記凹部に対向する位置に肉厚部を有するガラス基板を準備し、シリコン基板本体の主面にガラス基板の第1の主面を重ね合わせて、凹部を密閉する。第3の工程では、ガラス基板に熱を加えて軟化させて、このガラス基板の一部をシリコン基板本体の凹部に埋め込む。第2の工程を実施する時の気圧を、第3の工程を実施する時の気圧よりも低くする。第4の工程では、ガラス基板を冷却する。第5の工程では、ガラス基板のうち、シリコン基板本体の凹部に埋め込まれた部分を残し、他の部分を除去する。 The feature of the present invention that achieves the above object relates to a method for manufacturing a glass-embedded silicon substrate. This manufacturing method includes at least first to fifth steps. In the first step, a recess is formed in the main surface of the silicon substrate body. In the second step, a glass substrate having a thick portion at a position facing the recess is prepared, the first main surface of the glass substrate is superimposed on the main surface of the silicon substrate body, and the recess is sealed. In the third step, the glass substrate is softened by applying heat, and a part of the glass substrate is embedded in the recess of the silicon substrate body. The atmospheric pressure when the second step is performed is set lower than the atmospheric pressure when the third step is performed. In the fourth step, the glass substrate is cooled. In the fifth step, the portion of the glass substrate embedded in the recess of the silicon substrate body is left and the other portion is removed.
 本発明のガラス埋込シリコン基板の製造方法によれば、前記凹部に対向する位置に肉厚部を有するガラス基板を用いているので、迅速にガラスを埋め込むことができる。 According to the method for manufacturing a glass-embedded silicon substrate of the present invention, since a glass substrate having a thick portion at a position facing the concave portion is used, glass can be embedded quickly.
図1(a)は、本発明の第1の実施の形態に係わる半導体装置のうちパッケージ蓋の構成を示す斜視図であり、図1(b)は、本発明の第1の実施の形態に係わる半導体装置のうちパッケージ蓋を除く構成を示す斜視図である。FIG. 1A is a perspective view showing a configuration of a package lid in the semiconductor device according to the first embodiment of the present invention, and FIG. 1B is a diagram illustrating the first embodiment of the present invention. It is a perspective view which shows the structure except a package lid | cover among the semiconductor devices concerning. 図1の加速度センサチップAの概略構成を示す分解斜視図である。It is a disassembled perspective view which shows schematic structure of the acceleration sensor chip | tip A of FIG. 図2の加速度センサチップAの概略構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a schematic configuration of an acceleration sensor chip A in FIG. 2. 図4(a)~図4(e)は、図2及び図3に示した第1の固定基板2の形成に用いられるガラス基板20の一例としてのガラス埋込シリコン基板の製造方法を示す工程断面図である。4 (a) to 4 (e) show a process for producing a glass-embedded silicon substrate as an example of the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS. It is sectional drawing. 図5(a)は、図4(c)に示した第2の工程を実施する為の具体的な加工装置の構成を示す断面図であり、図5(b)は、図4(d)に示した第3の工程を実施する為の具体的な加工装置の構成を示す断面図である。FIG. 5A is a cross-sectional view showing the configuration of a specific processing apparatus for performing the second step shown in FIG. 4C, and FIG. 5B is a cross-sectional view of FIG. It is sectional drawing which shows the structure of the specific processing apparatus for enforcing the 3rd process shown to. 図5(a)及び図5(b)に示した製造装置を用いて行う第2の工程及び第3の工程の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of the 2nd process and 3rd process performed using the manufacturing apparatus shown to Fig.5 (a) and FIG.5 (b). 図7(a)~図7(e)は、第2の実施の形態に係わるガラス埋込シリコン基板の製造方法を示す工程断面図である。7A to 7E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the second embodiment. 図8(a)~図8(e)は、第3の実施の形態に係わるガラス埋込シリコン基板の製造方法を示す工程断面図である。FIGS. 8A to 8E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the third embodiment. 図9(a)~図9(e)は、第4の実施の形態に係わるガラス埋込シリコン基板の製造方法を示す工程断面図である。FIG. 9A to FIG. 9E are process cross-sectional views illustrating a method for manufacturing a glass-embedded silicon substrate according to the fourth embodiment.
 51  シリコン基板本体
 52  凹部
 53  貫通孔
 54  ガラス基板
 210  第1の凸部
 310  第2の凸部
51 Silicon substrate body 52 Concave portion 53 Through hole 54 Glass substrate 210 First convex portion 310 Second convex portion
 以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。 Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.
(第1の実施の形態)
 図1(a)及び図1(b)を参照して、本発明の第1の実施の形態に係わる半導体装置の概略構成を説明する。半導体装置は、MEMSデバイスの一例としての加速度センサチップAと、加速度センサチップAから出力された信号を処理する信号処理回路が形成された制御ICチップBと、加速度センサチップA及び制御ICチップBが収納された表面実装型のパッケージ101とを備える。
(First embodiment)
With reference to FIGS. 1A and 1B, a schematic configuration of a semiconductor device according to the first embodiment of the present invention will be described. The semiconductor device includes an acceleration sensor chip A as an example of a MEMS device, a control IC chip B on which a signal processing circuit that processes a signal output from the acceleration sensor chip A is formed, and an acceleration sensor chip A and a control IC chip B. Are mounted on the surface mounting type package 101.
 パッケージ101は、図1(b)における上面に位置する一面が開放された箱形の形状を有するプラスチックパッケージ本体102と、パッケージ101の開放された一面を閉塞するパッケージ蓋(リッド)103とを備える。プラスチックパッケージ本体102は、加速度センサチップA及び制御ICチップBに電気的に接続される複数のリード112を備える。各リード112は、プラスチックパッケージ本体102の外側面から導出されたアウタリード112bと、プラスチックパッケージ本体102の内側面から導出されたインナリード112aとを備える。各インナリード112aは、ボンディングワイヤWを通じて、制御ICチップBが備える各パッドに電気的に接続されている。 The package 101 includes a plastic package main body 102 having a box-like shape with one open surface located on the upper surface in FIG. 1B and a package lid (lid) 103 that closes one open surface of the package 101. . The plastic package body 102 includes a plurality of leads 112 that are electrically connected to the acceleration sensor chip A and the control IC chip B. Each lead 112 includes an outer lead 112 b led out from the outer side surface of the plastic package main body 102 and an inner lead 112 a led out from the inner side surface of the plastic package main body 102. Each inner lead 112a is electrically connected to each pad included in the control IC chip B through a bonding wire W.
 加速度センサチップAは、加速度センサチップAの外周形状に基づいて規定した仮想三角形の3つの頂点に対応する3箇所に配置された接着部104により、プラスチックパッケージ本体102の底部に位置する搭載面102aに固着されている。接着部104は、プラスチックパッケージ本体102に連続して一体に突設されている円錐台状の突起部と、この突起部を被覆する接着剤とからなる。接着剤は、例えば、弾性率が1MPa以下のシリコーン樹脂などのシリコーン系樹脂からなる。 The acceleration sensor chip A has a mounting surface 102a located at the bottom of the plastic package main body 102 by the adhesive portions 104 arranged at three locations corresponding to the three vertices of the virtual triangle defined based on the outer peripheral shape of the acceleration sensor chip A. It is fixed to. The adhesive portion 104 includes a frustoconical protrusion that is continuously and integrally provided on the plastic package body 102, and an adhesive that covers the protrusion. The adhesive is made of, for example, a silicone resin such as a silicone resin having an elastic modulus of 1 MPa or less.
 ここで、加速度センサチップAが備える総てのパッドは、プラスチックパッケージ本体102の開放された一面に対向する加速度センサチップAの主面において、この主面の1辺に沿って配置されている。この1辺の両端の2箇所と、当該1辺に平行な辺の1箇所(例えば、中央部)との3箇所とに頂点を有する仮想三角形の各頂点に接着部104が位置
している。これにより、各パッドにボンディングワイヤWを安定してボンディングすることができる。なお、接着部104の位置に関し、上記1辺に平行な辺の1箇所については、中央部に限らず、例えば、両端の一方でもよいが、中央部の方が半導体素子Aをより安定して支持することができるとともに、各パッドにボンディングワイヤWを安定してボンディングすることができる。
Here, all the pads included in the acceleration sensor chip A are arranged along one side of the main surface of the acceleration sensor chip A facing the open surface of the plastic package main body 102. The adhesive portion 104 is located at each vertex of a virtual triangle having vertices at two locations at both ends of the one side and one location (for example, the central portion) parallel to the one side. Thereby, the bonding wire W can be stably bonded to each pad. Regarding the position of the bonding portion 104, one portion of the side parallel to the one side is not limited to the central portion, and may be, for example, one of both ends, but the central portion makes the semiconductor element A more stable. It can be supported and the bonding wire W can be stably bonded to each pad.
 制御ICチップBは、単結晶シリコン等から成る半導体基板上に形成された複数の半導体素子、これらを接続する配線、及び半導体素子や配線を外部環境から保護するパッシベーション膜からなる半導体チップである。そして、制御ICチップBの裏面全体がシリコーン系樹脂によりプラスチックパッケージ本体102の底面に固着されている。制御ICチップB上に形成される信号処理回路は、加速度センサチップAの機能に応じて適宜設計すればよく、加速度センサチップAと協働するものであればよい。例えば、制御ICチップBをASIC(Application Specific IC)として形成することができる。 The control IC chip B is a semiconductor chip composed of a plurality of semiconductor elements formed on a semiconductor substrate made of single crystal silicon or the like, wirings connecting them, and a passivation film that protects the semiconductor elements and wirings from the external environment. The entire back surface of the control IC chip B is fixed to the bottom surface of the plastic package body 102 with a silicone resin. The signal processing circuit formed on the control IC chip B may be appropriately designed according to the function of the acceleration sensor chip A, and may be any one that cooperates with the acceleration sensor chip A. For example, the control IC chip B can be formed as an ASIC (Application Specific IC).
 図1の半導体装置を製造するには、先ず、加速度センサチップA及び制御ICチップBをプラスチックパッケージ本体102に固着するダイボンディング工程を行う。そして、加速度センサチップAと制御ICチップBとの間、制御ICチップBとインナリード112aとの間を、それぞれボンディングワイヤWを介して電気的に接続するワイヤボンディング工程を行う。その後、樹脂被覆部116を形成する樹脂被覆部形成工程を行い、続いて、パッケージ蓋(リッド)103の外周を、プラスチックパッケージ本体102に接合するシーリング工程を行う。これにより、プラスチックパッケージ本体102の内部は気密状態で封止される。なお、パッケージ蓋103の適宜部位には、レーザマーキング技術により、製品名称や製造日時などを示す表記113が形成されている。 In order to manufacture the semiconductor device of FIG. 1, first, a die bonding process for fixing the acceleration sensor chip A and the control IC chip B to the plastic package body 102 is performed. Then, a wire bonding step of electrically connecting the acceleration sensor chip A and the control IC chip B and the control IC chip B and the inner lead 112a via the bonding wires W is performed. Thereafter, a resin coating portion forming step for forming the resin coating portion 116 is performed, and subsequently, a sealing step for bonding the outer periphery of the package lid 103 to the plastic package body 102 is performed. Thereby, the inside of the plastic package main body 102 is sealed in an airtight state. Note that a notation 113 indicating a product name, a manufacturing date and the like is formed in an appropriate part of the package lid 103 by a laser marking technique.
 なお、制御ICチップBが1枚のシリコン基板を用いて形成されているのに対して、加速度センサチップAは、積層された複数の基板を用いて形成されている。よって、加速度センサチップAの厚みが制御ICチップBの厚みに比べて厚くなっているので、プラスチックパッケージ本体102の底部において加速度センサチップAを搭載する搭載面102aを制御ICチップBの搭載部位よりも凹ませてある。したがって、プラスチックパッケージ本体102の底面について、加速度センサチップAを搭載する部位の厚みは他の部位に比べて薄くなっている。 The control IC chip B is formed using a single silicon substrate, whereas the acceleration sensor chip A is formed using a plurality of stacked substrates. Therefore, since the thickness of the acceleration sensor chip A is thicker than the thickness of the control IC chip B, the mounting surface 102a on which the acceleration sensor chip A is mounted at the bottom of the plastic package body 102 is formed from the mounting portion of the control IC chip B. Is also recessed. Therefore, on the bottom surface of the plastic package main body 102, the thickness of the portion where the acceleration sensor chip A is mounted is thinner than other portions.
 更に、本発明の第1の実施の形態では、プラスチックパッケージ本体102の外形を直方体としてあるが、これは一例であり、加速度センサチップAや制御ICチップBの外形、リード112の本数やピッチなどに応じて適宜設定すればよい。 Furthermore, in the first embodiment of the present invention, the outer shape of the plastic package body 102 is a rectangular parallelepiped, but this is only an example, and the outer shape of the acceleration sensor chip A and the control IC chip B, the number of leads 112, the pitch, etc. What is necessary is just to set suitably according to.
 プラスチックパッケージ本体102の材料としては、熱可塑性樹脂の一種であって、酸素および水蒸気の透過率が極めて低い液晶性ポリエステル(LCP)を採用する。しかし、LCPに限らず、例えば、ポリフェニレンサルファイト(PPS)、ポリビスアミドトリアゾール(PBT)などを採用してもよい。 As the material of the plastic package body 102, a liquid crystalline polyester (LCP) which is a kind of thermoplastic resin and has extremely low oxygen and water vapor transmission rates is employed. However, not limited to LCP, for example, polyphenylene sulfite (PPS), polybisamide triazole (PBT), or the like may be employed.
 また、各リード112の材料、つまり、各リード112の基礎となるリードフレームの材料としては、銅合金の中でもばね性の高いりん青銅を採用する。ここでは、リードフレームとして、材質がりん青銅で板厚が0.2mmのリードフレームを用い、厚みが2μm~4μmのNi膜と、厚みが0.2μm~0.3μmのAu膜との積層膜からなるめっき膜を電解めっき法により形成してある。これにより、ワイヤボンディングの接合信頼性と半田付け信頼性とを両立させることができる。また、熱可塑性樹脂成形品のプラスパッケージ本体102は、リード112が同時一体に成形されている。しかし、熱可塑性樹脂であるLCPにより形成されるプラスチックパッケージ本体102とリード112のAu膜とは密着性が低い。したがって、上述のリードフレームのうちプラスチックパッケージ本体102に埋設される部位にパンチ穴を設けることで各リード112が抜け落ちるのを防止する。 Also, as the material of each lead 112, that is, the material of the lead frame that is the basis of each lead 112, phosphor bronze having a high spring property among copper alloys is adopted. Here, a lead frame made of phosphor bronze and a thickness of 0.2 mm is used as the lead frame, and a laminated film of a Ni film having a thickness of 2 μm to 4 μm and an Au film having a thickness of 0.2 μm to 0.3 μm. A plating film made of is formed by an electrolytic plating method. Thereby, it is possible to achieve both the bonding reliability of wire bonding and the soldering reliability. Further, the plus package body 102 of the thermoplastic resin molded product has leads 112 formed integrally at the same time. However, the adhesion between the plastic package body 102 formed by LCP, which is a thermoplastic resin, and the Au film of the lead 112 is low. Therefore, the lead 112 is prevented from falling off by providing a punch hole in a portion of the above-described lead frame embedded in the plastic package body 102.
 また、図1の半導体装置は、インナリード112aの露出部位およびその周囲を覆う樹脂被覆部116が設けられている。樹脂被覆部116は、例えば、アミン系エポキシ樹脂などのエポキシ系樹脂などの非透湿性の樹脂からなる。ワイヤボンディング工程の後に、ディスペンサを用いてこの非透湿性の樹脂を塗布し、これを硬化させることで、気密性を向上させている。なお、この非透湿性の樹脂に代えてセラミックスを用いてもよく、セラミックスを用いる場合には、プラズマ溶射などの技術を用いて局所的に吹き付ければよい。 Further, the semiconductor device of FIG. 1 is provided with a resin coating portion 116 that covers the exposed portion of the inner lead 112a and the periphery thereof. The resin coating portion 116 is made of a moisture-impermeable resin such as an epoxy resin such as an amine epoxy resin. After the wire bonding process, this non-moisture permeable resin is applied using a dispenser and cured to improve airtightness. Note that ceramics may be used instead of the moisture-impermeable resin, and when ceramics are used, they may be sprayed locally using a technique such as plasma spraying.
 また、ボンディングワイヤWとしては、Alワイヤに比べて耐腐食性の高いAuワイヤを用いる。また、直径が25μmのAuワイヤを採用するが、これに限らず、例えば、直径が20μm~50μmのAuワイヤから適宜選択すればよい。 Also, as the bonding wire W, an Au wire having higher corrosion resistance than that of an Al wire is used. Further, although an Au wire having a diameter of 25 μm is adopted, the present invention is not limited to this, and for example, an Au wire having a diameter of 20 μm to 50 μm may be appropriately selected.
 図2を参照して、図1の加速度センサチップAの概略構成を説明する。加速度センサチップAは、静電容量型の加速度センサチップであって、SOI(Silicon On Insulator)
基板10を用いて形成されたセンサ本体1と、ガラス基板20を用いて形成された第1の固定基板2と、ガラス基板30を用いて形成された第2の固定基板3とを備えている。第1の固定基板2は、センサ本体1の一表面側(図2における上面側)に固着され、第2の固定基板3は、センサ本体1の他表面側(図2における下面側)に固着される。第1及び第2の固定基板2、3はセンサ本体1と同じ外形寸法に形成されている。
A schematic configuration of the acceleration sensor chip A of FIG. 1 will be described with reference to FIG. The acceleration sensor chip A is a capacitance type acceleration sensor chip, which is an SOI (Silicon On Insulator).
A sensor main body 1 formed using a substrate 10, a first fixed substrate 2 formed using a glass substrate 20, and a second fixed substrate 3 formed using a glass substrate 30 are provided. . The first fixed substrate 2 is fixed to one surface side (upper surface side in FIG. 2) of the sensor body 1, and the second fixed substrate 3 is fixed to the other surface side (lower surface side in FIG. 2) of the sensor body 1. Is done. The first and second fixed substrates 2 and 3 are formed to have the same outer dimensions as the sensor body 1.
 なお、図2は、センサ本体1、第1の固定基板2及び第2の固定基板3のそれぞれの構成を示すべく、センサ本体1、第1の固定基板2及び第2の固定基板3が分離した状態を示している。また、センサ本体1は、SOI基板10に限らず、例えば、絶縁層を備えない通常のシリコン基板を用いて形成してもよい。また、第1及び第2の固定基板2、3は、それぞれ、シリコン基板及びガラス基板のどちらで形成してもかまわない。 2 shows that the sensor main body 1, the first fixed substrate 2 and the second fixed substrate 3 are separated to show the respective configurations of the sensor main body 1, the first fixed substrate 2 and the second fixed substrate 3. Shows the state. The sensor body 1 is not limited to the SOI substrate 10 and may be formed using, for example, a normal silicon substrate that does not include an insulating layer. Further, the first and second fixed substrates 2 and 3 may be formed of either a silicon substrate or a glass substrate, respectively.
 センサ本体1は、2つの平面視矩形状の開口窓12が上記一表面に沿って並設するフレーム部11と、フレーム部11の各開口窓12の内側に配置された2つの平面視矩形状の重り部13と、フレーム部11と重り部13との間を連結する各一対の支持ばね部14とを備える。 The sensor main body 1 includes a frame portion 11 in which two rectangular windows 12 in a plan view are arranged side by side along the one surface, and two rectangular shapes in a plan view arranged inside each open window 12 of the frame portion 11. The weight part 13 and a pair of support spring parts 14 for connecting the frame part 11 and the weight part 13 to each other are provided.
 2つの平面視矩形状の重り部13は、第1及び第2の固定基板2、3からそれぞれ離間して配置されている。第1の固定基板2に対向する各重り部13の主面上に可動電極15A、15Bがそれぞれ配置されている。重り部13の周囲を囲むフレーム部11の外周全体が第1及び第2の固定基板2、3に接合されている。これにより、フレーム部11と第1及び第2の固定基板2、3は、重り部13及び後述する固定子16を収納するチップサイズパッケージを構成している。 The two weight parts 13 having a rectangular shape in a plan view are arranged separately from the first and second fixed substrates 2 and 3, respectively. Movable electrodes 15A and 15B are arranged on the main surface of each weight portion 13 facing the first fixed substrate 2, respectively. The entire outer periphery of the frame portion 11 surrounding the weight portion 13 is joined to the first and second fixed substrates 2 and 3. Thus, the frame portion 11 and the first and second fixed substrates 2 and 3 constitute a chip size package that houses the weight portion 13 and a stator 16 described later.
 一対の支持ばね部14は、フレーム部11の各開口窓12の内側で重り部13の重心を通る直線に沿って重り部13を挟む形で配置されている。各支持ばね部14は、ねじれ変形が可能なトーションばね(トーションバー)であって、フレーム部11及び重り部13に比べて薄肉に形成されており、重り部13は、フレーム部11に対して一対の支持ばね部14の回りで変位可能となっている。 The pair of support spring portions 14 are arranged so as to sandwich the weight portion 13 along a straight line passing through the center of gravity of the weight portion 13 inside each opening window 12 of the frame portion 11. Each support spring portion 14 is a torsion spring (torsion bar) capable of torsional deformation, and is formed to be thinner than the frame portion 11 and the weight portion 13. It can be displaced around the pair of support spring portions 14.
 センサ本体1のフレーム部11には、各開口窓12それぞれに連通する平面視矩形状の窓孔17が2つの開口窓12と同じ方向に並設されている。各窓孔17の内側には、それぞれ2つの固定子16が一対の支持ばね部14の並設方向に沿って配置されている。 In the frame portion 11 of the sensor body 1, a rectangular window hole 17 in plan view that communicates with each opening window 12 is arranged in the same direction as the two opening windows 12. Inside each window hole 17, two stators 16 are arranged along the direction in which the pair of support spring portions 14 are arranged side by side.
 各固定子16と窓孔17の内周面との間、各固定子16と重り部13の外周面との間、及び隣り合う固定子16同士の間には、それぞれ隙間が形成され、互いに分離独立して電気的に絶縁されている。各固定子16は、第1及び第2の固定基板2、3にそれぞれ接合されている。また、センサ本体1の一表面側において、各固定子16には、例えば、Al-Si膜などの金属薄膜からなる円形状の電極パッド18が形成されている。また同様に、フレーム部11において隣り合う窓孔17の間の部位にも、例えば、Al-Si膜などの金属薄膜からなる円形状の電極パッド18が形成されている。 A gap is formed between each stator 16 and the inner peripheral surface of the window hole 17, between each stator 16 and the outer peripheral surface of the weight portion 13, and between adjacent stators 16. Separated and independently electrically insulated. Each stator 16 is joined to the first and second fixed substrates 2 and 3, respectively. In addition, on one surface side of the sensor body 1, each stator 16 is formed with a circular electrode pad 18 made of a metal thin film such as an Al—Si film. Similarly, a circular electrode pad 18 made of, for example, a metal thin film such as an Al—Si film is formed in a portion between adjacent window holes 17 in the frame portion 11.
 各固定子16に形成された各電極パッド18は、後述の各固定電極25に電気的にそれぞれ接続され、フレーム部11に形成された電極パッド18は、可動電極15A及び可動電極15Bに電気的に接続されている。以上説明した複数の電極パッド18は、加速度センサチップAの矩形状の外周形状の1辺に沿って配置されている。 Each electrode pad 18 formed on each stator 16 is electrically connected to each fixed electrode 25 described later, and the electrode pad 18 formed on the frame portion 11 is electrically connected to the movable electrode 15A and the movable electrode 15B. It is connected to the. The plurality of electrode pads 18 described above are arranged along one side of the rectangular outer peripheral shape of the acceleration sensor chip A.
 第1の固定基板2は、第1の固定基板2の第1の主面とこれに対向する第2の主面(センサ本体1に重なり合う面)との間を貫通している複数の配線28と、第2の主面上に形成された複数の固定電極25とを備える。 The first fixed substrate 2 includes a plurality of wirings 28 penetrating between a first main surface of the first fixed substrate 2 and a second main surface (a surface overlapping the sensor main body 1) facing the first main surface. And a plurality of fixed electrodes 25 formed on the second main surface.
 固定電極25Aa及び固定電極25Abは、対を成して可動電極15Aに対向して配置されている。同様に、固定電極25Ba及び固定電極25Bbは、対を成して可動電極15Bに対向して配置されている。各固定電極25は、例えば、Al-Si膜などの金属薄膜からなる。 The fixed electrode 25Aa and the fixed electrode 25Ab are arranged in a pair so as to face the movable electrode 15A. Similarly, the fixed electrode 25Ba and the fixed electrode 25Bb are arranged in a pair so as to face the movable electrode 15B. Each fixed electrode 25 is made of a metal thin film such as an Al—Si film, for example.
 各配線28は、第1の固定基板2の第2の主面において、センサ本体1の電極パッド18にそれぞれ電気的に接続されている。これにより、電極パッド18を介して、各固定電極25の電位及び可動電極15の電位をそれぞれ加速度センサチップAの外部へ取り出すことができる。 Each wiring 28 is electrically connected to the electrode pad 18 of the sensor body 1 on the second main surface of the first fixed substrate 2. As a result, the potential of each fixed electrode 25 and the potential of the movable electrode 15 can be taken out from the acceleration sensor chip A via the electrode pad 18.
 第2の固定基板3の一表面(センサ本体1に重なり合う面)であって、重り部13と対応する位置に、例えば、Al-Si膜などの金属薄膜からなる付着防止膜35が配置されている。付着防止膜35は、変位する重り部13の付着を防止する。 An adhesion preventing film 35 made of a metal thin film such as an Al—Si film is disposed on one surface of the second fixed substrate 3 (a surface overlapping the sensor body 1) and at a position corresponding to the weight portion 13. Yes. The adhesion preventing film 35 prevents adhesion of the weight part 13 that is displaced.
 図3を参照して、図2の加速度センサチップAの断面構成を説明する。図3は、一対の支持ばね部14を通る直線に垂直な切断面における加速度センサチップAの構成を示す。センサ本体1はSOI基板10を用いて形成されている。SOI基板10は、単結晶シリコンからなる支持基板10aと、支持基板10aの上に配置されたシリコン酸化膜からなる絶縁層10bと、絶縁層10bの上に配置されたn形のシリコン層(活性層)10cとを有する。 Referring to FIG. 3, the cross-sectional configuration of the acceleration sensor chip A in FIG. 2 will be described. FIG. 3 shows a configuration of the acceleration sensor chip A on a cut surface perpendicular to a straight line passing through the pair of support spring portions 14. The sensor body 1 is formed using an SOI substrate 10. The SOI substrate 10 includes a support substrate 10a made of single crystal silicon, an insulating layer 10b made of a silicon oxide film arranged on the support substrate 10a, and an n-type silicon layer (active) arranged on the insulating layer 10b. Layer) 10c.
 センサ本体1のうち、フレーム11及び固定子16は、第1の固定基板2及び第2の固定基板3に接合されている。これに対して、重り部13は、第1及び第2の固定基板2、3からそれぞれ離間して配置され、一対の支持ばね部14によりフレーム11に支持されている。 In the sensor body 1, the frame 11 and the stator 16 are joined to the first fixed substrate 2 and the second fixed substrate 3. On the other hand, the weight portion 13 is disposed separately from the first and second fixed substrates 2 and 3, and is supported by the frame 11 by a pair of support spring portions 14.
 重り部13の過度の変位を規制する複数の微小な突起部13cが、重り部13における第1及び第2の固定基板2、3のそれぞれとの対向面から突設されている。重り部13には、矩形状に開口された凹部13a、13bが形成されている。凹部13a、13bは互いに大きさが異なるため、一対の支持ばね部14を通る直線を境にして、重り部13の左右の質量が異なっている。 A plurality of minute protrusions 13 c that restrict excessive displacement of the weight part 13 are provided so as to protrude from the surfaces of the weight part 13 facing the first and second fixed substrates 2 and 3. The weight portion 13 is formed with concave portions 13a and 13b opened in a rectangular shape. Since the sizes of the recesses 13a and 13b are different from each other, the masses on the left and right of the weight portion 13 are different from each other with a straight line passing through the pair of support spring portions 14 as a boundary.
 第1の固定基板2の配線28は、電極パッド18に電気的に接続されている。電極パッド18は、固定子16、連絡用導体部16d、金属配線26を通じて、固定電極25に接続されている。 The wiring 28 of the first fixed substrate 2 is electrically connected to the electrode pad 18. The electrode pad 18 is connected to the fixed electrode 25 through the stator 16, the connecting conductor portion 16 d, and the metal wiring 26.
 上述の加速度センサチップAは、センサ本体1に設けられた可動電極15と第1の固定基板2に設けられた固定電極25との対を4対有し、可動電極15と固定電極25との対ごとに可変容量コンデンサが構成されている。加速度センサチップA、すなわち重り部13に加速度が加わると、支持ばね部14がねじれて、重り部13が変位する。これにより、対をなす固定電極25と可動電極15との対向面積及び間隔が変化し、可変容量コンデンサの静電容量が変化する。よって、加速度センサチップAは、この静電容量の変化から加速度を検出することができる。 The acceleration sensor chip A described above has four pairs of the movable electrode 15 provided on the sensor body 1 and the fixed electrode 25 provided on the first fixed substrate 2. A variable capacitor is configured for each pair. When acceleration is applied to the acceleration sensor chip A, that is, the weight portion 13, the support spring portion 14 is twisted and the weight portion 13 is displaced. As a result, the facing area and interval between the paired fixed electrode 25 and movable electrode 15 change, and the capacitance of the variable capacitor changes. Therefore, the acceleration sensor chip A can detect acceleration from the change in capacitance.
 次に、図4(a)~図4(e)を参照して、図2及び図3に示した第1の固定基板2の形成に用いられるガラス基板20の一例としてのガラス埋込シリコン基板の製造方法について説明する。 Next, referring to FIGS. 4A to 4E, a glass-embedded silicon substrate as an example of the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS. The manufacturing method will be described.
 (イ)先ず、図4(a)に示すように、対向する表面(図4における上面)及び裏面(図4における下面)を有するシリコン基板本体51を用意する。シリコン基板本体51の全体には、p型或いはn型の不純物が添加され、シリコン基板本体51の電気抵抗は十分に小さい。なお、ここでは、シリコン基板本体51の全体に不純物を添加する場合を説明するが、シリコン基板本体51全体に添加されていなくても構わない。少なくとも、図4(e)の配線として残す部分の深さまで不純物が添加されていればよい。そして、図4(b)に示すように、TMAH(水酸化テトラメチルアンモニウム)水溶液をエッチャントとするウェットエッチングや反応性イオンエッチング(RIE)などのドライエッチングによりシリコン基板本体51の表面の所定領域を選択的に除去して、シリコン基板本体51の表面に凹部52を形成する(第1の工程)。 (A) First, as shown in FIG. 4A, a silicon substrate body 51 having a front surface (upper surface in FIG. 4) and a rear surface (lower surface in FIG. 4) is prepared. A p-type or n-type impurity is added to the entire silicon substrate body 51, and the electrical resistance of the silicon substrate body 51 is sufficiently small. Here, a case where an impurity is added to the entire silicon substrate body 51 will be described. However, the impurity may not be added to the entire silicon substrate body 51. It is sufficient that impurities are added at least to the depth of the portion to be left as the wiring in FIG. 4B, a predetermined region on the surface of the silicon substrate body 51 is formed by dry etching such as wet etching or reactive ion etching (RIE) using a TMAH (tetramethylammonium hydroxide) aqueous solution as an etchant. The recess 52 is formed on the surface of the silicon substrate body 51 by selectively removing it (first step).
 (ロ)次に、減圧雰囲気において、図4(c)に示すように、シリコン基板本体51の表面にガラス基板の第1の主面(図4における下面)を重ね合わせて、凹部52を密閉する(第2の工程)。その後、大気圧雰囲気において、ガラス基板54に熱を加えて、ガラス基板54の温度をその軟化温度まで上昇させる。そして、図4(d)に示すように、軟化したガラス基板54の一部をシリコン基板本体51の凹部52に埋め込む(第3の工程)。なお、第2の工程及び第3の工程の詳細な手順は、図5及び図6を参照して後述する。 (B) Next, in a reduced pressure atmosphere, as shown in FIG. 4C, the first main surface (the lower surface in FIG. 4) of the glass substrate is overlaid on the surface of the silicon substrate body 51 to seal the recess 52. (Second step). Thereafter, heat is applied to the glass substrate 54 in an atmospheric pressure atmosphere to raise the temperature of the glass substrate 54 to its softening temperature. And as shown in FIG.4 (d), a part of softened glass substrate 54 is embedded in the recessed part 52 of the silicon substrate main body 51 (3rd process). The detailed procedure of the second step and the third step will be described later with reference to FIGS.
 (ハ)ガラス基板54を冷却して、再固化させる(第4の工程)。その後、図4(e)に示すように、ガラス基板54のうち、シリコン基板本体51の凹部52に埋め込まれた部分を残し、他の部分を除去する(第5の工程)。また、シリコン基板本体51のうち、その表面と凹部52の底面を含む平面との間にある部分を残し、その他の部分を除去する。 (C) The glass substrate 54 is cooled and re-solidified (fourth step). Then, as shown in FIG.4 (e), the part embedded in the recessed part 52 of the silicon substrate main body 51 is left among glass substrates 54, and another part is removed (5th process). Further, the silicon substrate body 51 is left with a portion between the surface and the plane including the bottom surface of the recess 52, and the other portions are removed.
 具体的には、ダイヤモンド砥石を用いた研削、化学機械研磨(CMP)等の研磨、或いはRIEなどのドライエッチングやHFによるウェットエッチングなどの方法を用いて、ガラス基板54の第2の主面(図4における上面)を均一に削り取り、ガラス基板54の第2の主面にシリコン基板本体51を露出させる。同様に、研削、研磨、或いはエッチングなどの方法を用いて、シリコン基板本体51の裏面を均一に削り取り、シリコン基板本体51の裏面に凹部52に埋め込まれたガラス基板54を露出させる。ガラスとシリコンの除去はどちらを先に行っても構わない。 Specifically, the second main surface of the glass substrate 54 (such as grinding using a diamond grindstone, polishing such as chemical mechanical polishing (CMP), or dry etching such as RIE or wet etching using HF is used. The upper surface in FIG. 4 is uniformly scraped to expose the silicon substrate body 51 on the second main surface of the glass substrate 54. Similarly, using a method such as grinding, polishing, or etching, the back surface of the silicon substrate body 51 is evenly scraped to expose the glass substrate 54 embedded in the recess 52 on the back surface of the silicon substrate body 51. Either glass or silicon may be removed first.
 以上の工程により製造されたガラス埋込シリコン基板は、図4(e)に示すように、シリコン基板本体51にガラス基板54の一部が埋め込まれたものである。よって、図4(e)のシリコン基板本体51の部分を図2及び図3に示した配線28に当てはめ、図4(e)のガラス基板54の部分を図2及び図3に示したガラス基板20に当てはめる。これにより、図2及び図3に示した第1の固定基板2の形成に用いられるガラス基板20に、図4(e)に示したガラス埋込シリコン基板を適用することができる。 The glass-embedded silicon substrate manufactured by the above steps is obtained by embedding a part of the glass substrate 54 in the silicon substrate body 51 as shown in FIG. 4E is applied to the wiring 28 shown in FIGS. 2 and 3, and the glass substrate 54 shown in FIG. 4E is replaced with the glass substrate shown in FIGS. Apply to 20. As a result, the glass-embedded silicon substrate shown in FIG. 4E can be applied to the glass substrate 20 used for forming the first fixed substrate 2 shown in FIGS.
 図5(a)を参照して、図4(c)に示した第2の工程を実施する為の具体的な製造装置の構成を説明する。図5(a)に示すように、この製造装置は、シリコン基板本体51とガラス基板54を収容可能な大きさの真空チャンバ305と、真空チャンバ305内の気体を排気するロータリーポンプなどの真空ポンプ306とを少なくとも備える。この製造装置は、図示は省略するが、この他、真空チャンバ305内の減圧された雰囲気において、シリコン基板本体51の表面にガラス基板の第1の主面を重ね合わせて、凹部52を密閉する手段を備える。具体的に、この製造装置は、減圧雰囲気において、シリコン基板本体51とガラス基板54を、陽極接合、表面活性化結合、樹脂接着などの方法により接合する手段を備える。これにより、減圧雰囲気において凹部52を密閉することができる。 With reference to FIG. 5A, a specific configuration of the manufacturing apparatus for performing the second step shown in FIG. 4C will be described. As shown in FIG. 5A, this manufacturing apparatus includes a vacuum chamber 305 having a size capable of accommodating the silicon substrate body 51 and the glass substrate 54, and a vacuum pump such as a rotary pump that exhausts the gas in the vacuum chamber 305. 306 at least. Although not shown in the drawing, this manufacturing apparatus additionally seals the recess 52 by superimposing the first main surface of the glass substrate on the surface of the silicon substrate body 51 in a reduced-pressure atmosphere in the vacuum chamber 305. Means. Specifically, the manufacturing apparatus includes means for bonding the silicon substrate body 51 and the glass substrate 54 by a method such as anodic bonding, surface activation bonding, and resin bonding in a reduced pressure atmosphere. Thereby, the recessed part 52 can be sealed in a pressure-reduced atmosphere.
 図5(b)を参照して、図4(d)に示した第3の工程を実施する為の具体的な製造装置の構成を説明する。図5(b)に示すように、この製造装置は、共に平板状のステージ308及び加熱・加圧治具307を備える。加熱・加圧治具307は、ガラス基板54に対して熱を加えるヒータ309等の加熱手段を備え、ガラス基板54に対して熱と力を同時に加えることができる。シリコン基板本体51とガラス基板54は、ステージ308と加熱・加圧治具307との間に重ね合わせて配置される。図5(b)の装置は、大気雰囲気において動作する。 With reference to FIG. 5B, a specific configuration of the manufacturing apparatus for carrying out the third step shown in FIG. 4D will be described. As shown in FIG. 5B, this manufacturing apparatus includes a flat plate stage 308 and a heating / pressurizing jig 307. The heating / pressurizing jig 307 includes heating means such as a heater 309 for applying heat to the glass substrate 54, and can apply heat and force to the glass substrate 54 at the same time. The silicon substrate body 51 and the glass substrate 54 are disposed so as to overlap each other between the stage 308 and the heating / pressurizing jig 307. The apparatus of FIG. 5 (b) operates in an air atmosphere.
 次に、図6を参照して、図5(a)及び図5(b)に示した製造装置を用いて行う第2の工程及び第3の工程の詳細な手順を説明する。 Next, with reference to FIG. 6, the detailed procedure of the 2nd process and the 3rd process performed using the manufacturing apparatus shown to Fig.5 (a) and FIG.5 (b) is demonstrated.
 (い)図5(a)の製造装置の真空チャンバ305の中に、シリコン基板本体51とガラス基板54を搬入し、真空チャンバ305を密閉する。そして、真空ポンプ306を駆動して、真空チャンバ305の中を排気する。この時点において、少なくとも、凹部52を密閉されていない。即ち、シリコン基板本体51の表面にガラス基板の第1の主面が重ね合わされていても構わないが、接合されていない。これにより、真空チャンバ305内を排気する時に、凹部52の内部の気体も排気することができる。 (Ii) The silicon substrate main body 51 and the glass substrate 54 are carried into the vacuum chamber 305 of the manufacturing apparatus of FIG. 5A, and the vacuum chamber 305 is sealed. Then, the vacuum pump 306 is driven to evacuate the vacuum chamber 305. At this point, at least the recess 52 is not sealed. That is, the first main surface of the glass substrate may be superimposed on the surface of the silicon substrate body 51, but it is not joined. Thereby, when exhausting the inside of the vacuum chamber 305, the gas inside the recess 52 can also be exhausted.
 (ろ)そして、凹部52を密閉する。例えば、真空雰囲気において、シリコン基板本体51とガラス基板54を重ねる(S01)。シリコン基板本体51とガラス基板54の重ね合わせ面はそれぞれ、表面を平坦に加工する(表面粗さを小さくする)ことが好ましく、これにより、シリコン基板本体51とガラス基板54との重ね合わせ面での気密性を高くなり、凹部52を密閉することができる。その後、真空ポンプ306を停止し、真空チャンバ305の内部を大気圧に戻し、真空チャンバ305の中から接合されたシリコン基板本体51とガラス基板54を取り出す。凹部52は密閉されているので、凹部52の内部は真空状態に保たれる。 (Ro) Then, the recess 52 is sealed. For example, the silicon substrate body 51 and the glass substrate 54 are stacked in a vacuum atmosphere (S01). Each of the overlapping surfaces of the silicon substrate body 51 and the glass substrate 54 is preferably processed to have a flat surface (reducing the surface roughness), whereby the overlapping surface of the silicon substrate body 51 and the glass substrate 54 is The airtightness of the concave portion 52 can be sealed. Thereafter, the vacuum pump 306 is stopped, the inside of the vacuum chamber 305 is returned to atmospheric pressure, and the bonded silicon substrate body 51 and glass substrate 54 are taken out from the vacuum chamber 305. Since the recess 52 is hermetically sealed, the inside of the recess 52 is kept in a vacuum state.
 (は)シリコン基板本体51とガラス基板54を、図5(b)の製造装置のステージ308と加熱・加圧治具307との間に配置する。S03段階に進み、ヒータ309のスイッチを入れて、ガラス基板54を加熱する。なお、ガラス基板54の温度をその軟化温度まで上昇させた後、ヒータ309のスイッチを、ガラス基板54の温度をモニターしながら制御して軟化温度を維持する。例えば、テンパックスガラスの場合、820℃付近まで加熱すればよい。 (H) The silicon substrate body 51 and the glass substrate 54 are disposed between the stage 308 and the heating / pressurizing jig 307 of the manufacturing apparatus in FIG. In step S03, the heater 309 is turned on to heat the glass substrate 54. In addition, after raising the temperature of the glass substrate 54 to the softening temperature, the switch of the heater 309 is controlled while monitoring the temperature of the glass substrate 54 to maintain the softening temperature. For example, in the case of Tempax glass, it may be heated to around 820 ° C.
 (に)S05段階において、加熱・加圧治具307を用いて、ガラス基板54とシリコン基板本体51をプレスする。この時、凹部52の内部の気圧が外部の気圧に比べて低いので、この圧力差によりガラスは凹部52の内部に吸引される。また、S03段階の加熱処理、そして、S05段階のプレス処理によって、軟化したガラス基板54の一部は、シリコン基板本体51の凹部52に埋め込まれる(第3の工程)。 (Ii) In step S05, the glass substrate 54 and the silicon substrate body 51 are pressed using a heating / pressurizing jig 307. At this time, since the pressure inside the recess 52 is lower than the outside pressure, the glass is sucked into the recess 52 by this pressure difference. Further, a part of the glass substrate 54 softened by the heat treatment in step S03 and the press treatment in step S05 is embedded in the recess 52 of the silicon substrate body 51 (third step).
 (ほ)S07段階において、凹部52の中が軟化したガラス基板54によって充填された場合、プレスを停止し、S09段階に進み、ヒータ309のスイッチを切り、所定の冷却手段を用いて、ガラス基板54を冷却する。 (E) In step S07, when the concave portion 52 is filled with the softened glass substrate 54, the press is stopped, the process proceeds to step S09, the heater 309 is turned off, and a predetermined cooling means is used. Cool 54.
 このように、図5(a)及び図5(b)に示した製造装置を用いて、第2の工程及び第3の工程を実施する。図4における第2の工程は、図6におけるS01段階に相当し、図4における第3の工程は、図6におけるS03~S07段階に相当する。 Thus, the second step and the third step are performed using the manufacturing apparatus shown in FIGS. 5 (a) and 5 (b). The second step in FIG. 4 corresponds to step S01 in FIG. 6, and the third step in FIG. 4 corresponds to steps S03 to S07 in FIG.
 なお、軟化したガラス基板54の一部をシリコン基板本体51の凹部52に埋め込むために、凹部52の内部と外部との圧力差、及びガラスの自重による力で十分である場合、図6のS05段階のプレス処理を行わなくてもよい。例えば、ガラス基板54の温度を高くすることにより、ガラス基板54の粘性が低下する。この場合、プレス処理を省略しても、凹部52の内外の圧力差及びガラスの自重により凹部52に軟化したガラス基板54の一部を埋め込むことができる。なお、ガラス基板54とシリコン基板本体51の配置を入れ替えた場合、ガラスの自重の代りに、シリコン基板本体51の自重となる。 Note that in order to embed a part of the softened glass substrate 54 in the recess 52 of the silicon substrate body 51, when the pressure difference between the inside and the outside of the recess 52 and the force due to the weight of the glass are sufficient, S05 in FIG. It is not necessary to perform the step press process. For example, by increasing the temperature of the glass substrate 54, the viscosity of the glass substrate 54 decreases. In this case, even if the pressing process is omitted, it is possible to embed a part of the glass substrate 54 softened in the recess 52 due to the pressure difference inside and outside the recess 52 and the weight of the glass. In addition, when arrangement | positioning of the glass substrate 54 and the silicon substrate main body 51 is replaced, it becomes the dead weight of the silicon substrate main body 51 instead of the dead weight of glass.
 以上説明したように、本発明の第1の実施の形態によれば、以下の作用効果が得られる。 As described above, according to the first embodiment of the present invention, the following operational effects can be obtained.
 凹部52を密閉する第2の工程を実施する時の気圧を、凹部52にガラスを埋め込む第3の工程を実施する時の気圧よりも低くする。これにより、ガラスを凹部52に埋め込む際に、凹部52の内部の気圧が外部の気圧に比べて低くなるので、この圧力差によりガラスは凹部52の内部に吸引される。よって、迅速にガラスを埋め込むことができ、且つボイドを抑制することができる。 The atmospheric pressure when performing the second step of sealing the concave portion 52 is set lower than the atmospheric pressure when performing the third step of embedding glass in the concave portion 52. As a result, when the glass is embedded in the recess 52, the pressure inside the recess 52 becomes lower than the outside pressure, so that the glass is sucked into the recess 52 due to this pressure difference. Therefore, the glass can be embedded quickly and voids can be suppressed.
 例えば図5(a)に示した製造装置を用いることにより、第2の工程を真空中において実施し、例えば図5(b)に示した製造装置を用いることにより、第3の工程を大気圧中で実施する。ガラスを凹部52に埋め込む際に、外部の気圧は大気圧であるが、凹部52の内部の気圧は真空に保たれるので、この圧力差によりガラスは凹部52の内部に吸引される。よって、迅速にガラスを埋め込むことができ、且つボイドを抑制することができる。 For example, by using the manufacturing apparatus shown in FIG. 5A, the second process is performed in a vacuum, and for example, by using the manufacturing apparatus shown in FIG. 5B, the third process is performed at atmospheric pressure. Conduct in. When the glass is embedded in the recess 52, the external atmospheric pressure is atmospheric pressure, but the internal pressure of the recess 52 is kept in vacuum, so that the glass is sucked into the recess 52 by this pressure difference. Therefore, the glass can be embedded quickly and voids can be suppressed.
 以上の実施形態では、前記第2の工程において、第1主面及び第1主面に対向する第2主面が平坦なガラス基板を用いた例により説明したが、本発明はこれに限定されるものではなく、シリコン基板の凹部に対向する位置に肉厚部を有するガラス基板を準備し、凹部に肉厚部を対向させて凹部を密閉するようにしてもよい。
 このようにすると、より効果的に凹部にガラスを埋め込むことができる。
 この肉厚部は、後述の実施形態に示すように、第1主面又は第2主面に形成された凸部により構成することができるし、第1主面及び第2主面の両主面に凸部を形成することにより構成してもよい。
In the above embodiment, in the second step, the first main surface and the second main surface opposite to the first main surface are described as examples using a flat glass substrate. However, the present invention is not limited to this. Instead of this, a glass substrate having a thick portion at a position facing the concave portion of the silicon substrate may be prepared, and the thick portion may be opposed to the concave portion to seal the concave portion.
If it does in this way, glass can be embedded more effectively in a crevice.
As shown in the embodiments described later, this thick portion can be constituted by a convex portion formed on the first main surface or the second main surface, or both main surfaces of the first main surface and the second main surface. You may comprise by forming a convex part in a surface.
(第2の実施の形態)
 図7(c)に示すように、第2の工程を実施する時に、凹部202に入り込む第1の凸部210が、ガラス基板204の第1の主面、すなわちシリコン基板本体201に重なり合う面に形成されていても構わない。これにより、ガラス基板204の一部を凹部202に埋め込む際に、凹部202の内部にガラスが既に存在するため、凹部202にボイドがより発生しにくくなり、より速くガラスを埋め込むことができる。
(Second Embodiment)
As shown in FIG. 7C, when the second step is performed, the first convex portion 210 that enters the concave portion 202 is formed on the first main surface of the glass substrate 204, that is, the surface overlapping the silicon substrate body 201. It may be formed. Accordingly, when a part of the glass substrate 204 is embedded in the recess 202, glass already exists in the recess 202, so that voids are less likely to occur in the recess 202, and the glass can be embedded faster.
 図7を参照して、本発明の第2の実施の形態に係わるガラス埋込シリコン基板の製造方法を説明する。 Referring to FIG. 7, a method for manufacturing a glass-embedded silicon substrate according to the second embodiment of the present invention will be described.
 (イ)図7(a)及び図7(b)に示す工程は、図4(a)及び図4(b)に示した工程と同じであり、説明を省略する。 (A) The steps shown in FIGS. 7A and 7B are the same as the steps shown in FIGS. 4A and 4B, and description thereof is omitted.
 (ロ)次に、減圧雰囲気において、図7(c)に示すように、シリコン基板本体201の表面にガラス基板204の第1の主面(図7における下面)を重ね合わせて、凹部202を密閉する(第2の工程)。なお、ガラス基板204の第1の主面、すなわちシリコン基板本体201に重なり合う面には、予め、ブラスト加工やレーザー加工などにより、第1の凸部210が形成されている。第2の工程において、第1の凸部210は、凹部202の中に入り込む。 (B) Next, in a reduced-pressure atmosphere, as shown in FIG. 7C, the first main surface (the lower surface in FIG. 7) of the glass substrate 204 is overlaid on the surface of the silicon substrate body 201 to form the recess 202. Seal (second step). In addition, the 1st convex part 210 is formed in the 1st main surface of the glass substrate 204, ie, the surface which overlaps with the silicon substrate main body 201, by blast processing, laser processing, etc. previously. In the second step, the first convex portion 210 enters the concave portion 202.
 (ハ)図7(d)に示すように、軟化したガラス基板204の一部(第1の凸部210を含む)をシリコン基板本体201の凹部202に埋め込む(第3の工程)。第2の工程及び第3の工程の詳細な手順は、図6を参照して説明したとおりである。 (C) As shown in FIG. 7D, a part of the softened glass substrate 204 (including the first convex portion 210) is embedded in the concave portion 202 of the silicon substrate body 201 (third step). Detailed procedures of the second step and the third step are as described with reference to FIG.
 (ニ)ガラス基板204を冷却して、再固化させる(第4の工程)。その後に行う図7(e)に示す工程は、図4(e)示した工程と同じであり説明を省略する。 (D) The glass substrate 204 is cooled and re-solidified (fourth step). The subsequent process shown in FIG. 7E is the same as the process shown in FIG.
 以上説明したように、第2の工程を実施する時に、凹部202に入り込む第1の凸部210が、ガラス基板204の第1の主面に形成されている。これにより、ガラス基板204の一部を凹部202に埋め込む際に、凹部202の内部にガラスが既に存在するため、凹部202にボイドがより発生しにくくなり、より速くガラスを埋め込むことができる。 As described above, the first convex portion 210 that enters the concave portion 202 when the second step is performed is formed on the first main surface of the glass substrate 204. Accordingly, when a part of the glass substrate 204 is embedded in the recess 202, glass already exists in the recess 202, so that voids are less likely to occur in the recess 202, and the glass can be embedded faster.
(第3の実施の形態)
 図8(c)に示すように、第3の工程を実施する時に、第2の凸部310が、ガラス基板304の第2の主面、すなわちシリコン基板本体301に重なり合う面に対向する面に形成されていても構わない。
(Third embodiment)
As shown in FIG. 8C, when the third step is performed, the second convex portion 310 is formed on the second main surface of the glass substrate 304, that is, the surface facing the surface overlapping the silicon substrate body 301. It may be formed.
 図8を参照して、本発明の第3の実施の形態に係わるガラス埋込シリコン基板の製造方法を説明する。 Referring to FIG. 8, a method for manufacturing a glass-embedded silicon substrate according to the third embodiment of the present invention will be described.
 (イ)図8(a)及び図8(b)に示す工程は、図4(a)及び図4(b)に示した工程と同じであり、説明を省略する。 (A) The steps shown in FIGS. 8A and 8B are the same as the steps shown in FIGS. 4A and 4B, and a description thereof will be omitted.
 (ロ)次に、減圧雰囲気において、図8(c)に示すように、シリコン基板本体301の表面にガラス基板304の第1の主面(図8における下面)を重ね合わせて、凹部302を密閉する(第2の工程)。なお、ガラス基板304の第2の主面、すなわちシリコン基板本体301に重なり合う面に対向する面には、予め、ブラスト加工やレーザー加工などにより、第2の凸部310が形成されている。第2の凸部310は、ガラス基板304の第1の主面の法線方向から見て、凹部302と同じ位置に形成されている。 (B) Next, in a reduced pressure atmosphere, as shown in FIG. 8C, the first main surface (the lower surface in FIG. 8) of the glass substrate 304 is overlaid on the surface of the silicon substrate body 301 to form the recess 302. Seal (second step). A second convex portion 310 is formed in advance on the second main surface of the glass substrate 304, that is, the surface facing the surface overlapping the silicon substrate body 301 by blasting or laser processing. The second convex portion 310 is formed at the same position as the concave portion 302 when viewed from the normal direction of the first main surface of the glass substrate 304.
 (ハ)図8(d)に示すように、軟化したガラス基板304の一部をシリコン基板本体301の凹部302に埋め込む(第3の工程)。第2の工程及び第3の工程の詳細な手順は、図6を参照して説明したとおりである。なお、加熱・加圧治具307がガラス基板304を押す力は、第2の凸部310に集中する為、第2の凸部310の下に位置する凹部302にガラスが押し込まれる。 (C) As shown in FIG. 8D, a part of the softened glass substrate 304 is embedded in the recess 302 of the silicon substrate body 301 (third step). Detailed procedures of the second step and the third step are as described with reference to FIG. The force with which the heating / pressurizing jig 307 pushes the glass substrate 304 is concentrated on the second convex portion 310, so that the glass is pushed into the concave portion 302 located below the second convex portion 310.
 (ニ)ガラス基板304を冷却して、再固化させる(第4の工程)。その後に行う図8(e)に示す工程は、図4(e)示した工程と同じであり説明を省略する。 (D) The glass substrate 304 is cooled and re-solidified (fourth step). The subsequent process shown in FIG. 8E is the same as the process shown in FIG.
 以上説明したように、ガラス基板304の一部を凹部302に埋め込む際に、ガラス基板304の第1の主面の法線方向から見て、凹部302と同じ位置に第2の凸部310が存在する。これにより、加熱・加圧治具307がガラス基板304を押す力は、第2の凸部310に集中するため、凹部302にボイドがより発生しにくくなり、より速くガラスを埋め込むことができる。 As described above, when part of the glass substrate 304 is embedded in the recess 302, the second protrusion 310 is located at the same position as the recess 302 when viewed from the normal direction of the first main surface of the glass substrate 304. Exists. Accordingly, the force by which the heating / pressurizing jig 307 pushes the glass substrate 304 is concentrated on the second convex portion 310, so that voids are less likely to be generated in the concave portion 302, and the glass can be embedded more quickly.
(第4の実施の形態)
 図9(b)に示すように、シリコン基板本体401の凹部402の少なくとも一部に、順方向のテーパ形状を設けてもよい。これにより、より効率よくガラスを埋め込むことができる。
(Fourth embodiment)
As shown in FIG. 9B, a forward tapered shape may be provided in at least a part of the recess 402 of the silicon substrate body 401. Thereby, glass can be embedded more efficiently.
 図9を参照して、本発明の第4の実施の形態に係わるガラス埋込シリコン基板の製造方法を説明する。 Referring to FIG. 9, a method for manufacturing a glass-embedded silicon substrate according to the fourth embodiment of the present invention will be described.
 (イ)図9(a)に示す工程は、図4(a)に示した工程と同じであり、説明を省略する。図9(b)に示すように、例えば、結晶異方性を有するウェットエッチングによりシリコン基板本体401の表面の所定領域を選択的に除去して、シリコン基板本体401の表面に凹部402を形成する(第1の工程)。シリコン基板本体401の凹部402は順方向のテーパ形状を備える。すなわち、シリコン基板本体401の主面に平行な凹部402の断面積は、凹部402の底面からシリコン基板本体401の主面に向かって大きくなっている。 (A) The process shown in FIG. 9A is the same as the process shown in FIG. As shown in FIG. 9B, for example, a predetermined region on the surface of the silicon substrate body 401 is selectively removed by wet etching having crystal anisotropy to form a recess 402 on the surface of the silicon substrate body 401. (First step). The concave portion 402 of the silicon substrate body 401 has a forward tapered shape. That is, the cross-sectional area of the recess 402 parallel to the main surface of the silicon substrate body 401 increases from the bottom surface of the recess 402 toward the main surface of the silicon substrate body 401.
 (ロ)その後に行う図9(c)~図9(e)に示す工程は、図4(c)~図4(e)に示した工程と同じであり説明を省略する。 (B) The subsequent steps shown in FIGS. 9C to 9E are the same as the steps shown in FIGS. 4C to 4E, and the description thereof is omitted.
 以上説明したように、凹部402に順方向のテーパ形状を設けることができるので、より効率よくガラスを埋め込むことができる。よって、凹部402にボイドがより発生しにくくなり、より速くガラスを埋め込むことができる。 As described above, since the concave portion 402 can be provided with a forward tapered shape, glass can be embedded more efficiently. Therefore, voids are less likely to occur in the recess 402, and the glass can be embedded more quickly.
 なお、凹部402に設ける順方向のテーパ形状は、凹部402の少なくとも一部に形成されていればよい。少なくとも一部に形成されていれば、ボイド抑制及び高い処理速度という効果が得られる。 Note that the forward tapered shape provided in the recess 402 may be formed in at least a part of the recess 402. If it is formed at least partially, the effects of void suppression and high processing speed can be obtained.
 上記のように、本発明は、4つの実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 As described above, the present invention has been described by using the four embodiments. However, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 ガラスを凹部52に埋め込む際に、凹部52の内部と外部に圧力差を設けるために、減圧雰囲気において凹部52を密閉し(第2の工程)、大気圧雰囲気において凹部52にガラスを埋め込んだ(第3の工程)。しかし、本発明は、これに限定されない。例えば、大気圧雰囲気において凹部52を密閉し、加圧雰囲気において凹部52にガラスを埋め込んでもよい。これによっても、ガラスを凹部52に埋め込む際に、凹部52の内部の気圧を外部に気圧よりも小さくすることができる。 In order to provide a pressure difference between the inside and the outside of the recess 52 when the glass is embedded in the recess 52, the recess 52 is sealed in a reduced pressure atmosphere (second step), and the glass is embedded in the recess 52 in an atmospheric pressure atmosphere ( (3rd process). However, the present invention is not limited to this. For example, the recess 52 may be sealed in an atmospheric pressure atmosphere, and glass may be embedded in the recess 52 in a pressurized atmosphere. Also by this, when the glass is embedded in the recess 52, the pressure inside the recess 52 can be made smaller than the pressure outside.
 また、シリコン基板本体の主面に凹部を形成する工程では、単結晶シリコンから成るシリコン基板本体の一部を加工して、単結晶シリコンから成る凹部を形成していた。しかし、これに限定されることない。例えば、シリコン基板本体の主面に凹部を形成する工程は、単結晶シリコンから成るシリコン基板本体の主面に、多結晶シリコンから成るシリコン膜を堆積し、シリコン膜の一部を除去して凹部を形成してもよい。 Also, in the step of forming the recess on the main surface of the silicon substrate body, a part of the silicon substrate body made of single crystal silicon is processed to form the recess made of single crystal silicon. However, it is not limited to this. For example, the step of forming a recess in the main surface of the silicon substrate body is performed by depositing a silicon film made of polycrystalline silicon on the main surface of the silicon substrate body made of single crystal silicon, and removing a portion of the silicon film to form the recess May be formed.
 さらに、第2の実施の形態のシリコン基板201の凹部202の少なくとも一部及び第3の実施の形態のシリコン基板301の凹部302の少なくとも一部を、第4の実施の形態と同様、順方向のテーパ形状としてもよく、これにより、より効率よくガラスを埋め込むことができる。 Further, as in the fourth embodiment, at least a part of the recess 202 of the silicon substrate 201 of the second embodiment and at least a part of the recess 302 of the silicon substrate 301 of the third embodiment are forward-oriented. It is good also as a taper shape of this, Thereby, glass can be embedded more efficiently.
 このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。 Thus, it should be understood that the present invention includes various embodiments not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

Claims (5)

  1.  シリコン基板本体の主面に凹部を形成する第1の工程と、
     前記凹部に対向する位置に肉厚部を有するガラス基板を準備し、シリコン基板本体の主面にガラス基板の第1の主面を重ね合わせて、凹部を密閉する第2の工程と、
     前記ガラス基板に熱を加えて軟化させて、当該ガラス基板の一部を前記シリコン基板本体の凹部に埋め込む第3の工程と、
     前記ガラス基板を冷却する第4の工程と、
     前記ガラス基板のうち、前記シリコン基板本体の凹部に埋め込まれた部分を残し、他の部分を除去する第5の工程と、を備え、
     前記第2の工程を実施する時の気圧を、前記第3の工程を実施する時の気圧よりも低くする
     ことを特徴とするガラス埋込シリコン基板の製造方法。
    A first step of forming a recess in the main surface of the silicon substrate body;
    A second step of preparing a glass substrate having a thick portion at a position facing the recess, overlaying the first main surface of the glass substrate on the main surface of the silicon substrate body, and sealing the recess;
    A third step of softening the glass substrate by applying heat to embed a part of the glass substrate in a recess of the silicon substrate body;
    A fourth step of cooling the glass substrate;
    A fifth step of leaving the portion embedded in the concave portion of the silicon substrate body, and removing the other portion of the glass substrate, and
    A method for producing a glass-embedded silicon substrate, wherein the atmospheric pressure when the second step is performed is lower than the atmospheric pressure when the third step is performed.
  2.  前記第2の工程を真空中において実施し、前記第3の工程を大気圧中で実施することを特徴とする請求項1に記載のガラス埋込シリコン基板の製造方法。 The method for producing a glass-embedded silicon substrate according to claim 1, wherein the second step is performed in a vacuum and the third step is performed in an atmospheric pressure.
  3.  前記肉厚部は、前記凹部に入り込む第1の凸部が、前記ガラス基板の第1の主面に形成されてなることを特徴とする請求項1又は2に記載のガラス埋込シリコン基板の製造方法。 3. The glass-embedded silicon substrate according to claim 1, wherein the thick portion is formed with a first convex portion entering the concave portion on a first main surface of the glass substrate. Production method.
  4.  前記肉厚部は、第2の凸部が前記ガラス基板の第2の主面に形成されてなることを特徴とする請求項1又は2に記載のガラス埋込シリコン基板の製造方法。 3. The method for manufacturing a glass-embedded silicon substrate according to claim 1, wherein the thick portion is formed by forming a second convex portion on a second main surface of the glass substrate.
  5.  シリコン基板本体の主面に平行な前記凹部の断面積の少なくとも一部は、当該凹部の底面から当該シリコン基板本体の主面に向かって大きくなっていることを特徴とする請求項1~4のいずれか一項に記載のガラス埋込シリコン基板の製造方法。 The at least part of the cross-sectional area of the recess parallel to the main surface of the silicon substrate body is increased from the bottom surface of the recess toward the main surface of the silicon substrate body. The manufacturing method of the glass embedded silicon substrate as described in any one of Claims.
PCT/JP2011/057400 2010-03-26 2011-03-25 Manufacturing method for glass-embedded silicon substrate WO2011118786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507096A JPWO2011118786A1 (en) 2010-03-26 2011-03-25 Method for manufacturing glass-embedded silicon substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-071474 2010-03-26
JP2010071474 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118786A1 true WO2011118786A1 (en) 2011-09-29

Family

ID=44673325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057400 WO2011118786A1 (en) 2010-03-26 2011-03-25 Manufacturing method for glass-embedded silicon substrate

Country Status (3)

Country Link
JP (1) JPWO2011118786A1 (en)
TW (1) TW201204668A (en)
WO (1) WO2011118786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102252A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Substrate with though electrode and method for producing same
US9429589B2 (en) 2012-03-02 2016-08-30 Seiko Epson Corporation Physical quantity sensor and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649221A (en) * 2015-01-19 2015-05-27 北京大学 Method for processing complex silica glass composite structure wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523124A (en) * 2001-03-14 2004-07-29 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method of structuring a flat substrate made of glass-based material
JP2007064920A (en) * 2005-09-02 2007-03-15 Alps Electric Co Ltd Electrostatic capacity type mechanical quantity sensor
JP2008518790A (en) * 2004-11-04 2008-06-05 マイクロチップス・インコーポレーテッド Cold pressure sealing method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514180A (en) * 2006-12-21 2010-04-30 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー Encapsulation module, method for its generation and use thereof
DE102007002725A1 (en) * 2007-01-18 2008-07-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Housing for micromechanical and micro-optical components used in mobile applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523124A (en) * 2001-03-14 2004-07-29 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method of structuring a flat substrate made of glass-based material
JP2008518790A (en) * 2004-11-04 2008-06-05 マイクロチップス・インコーポレーテッド Cold pressure sealing method and apparatus
JP2007064920A (en) * 2005-09-02 2007-03-15 Alps Electric Co Ltd Electrostatic capacity type mechanical quantity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102252A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Substrate with though electrode and method for producing same
US9429589B2 (en) 2012-03-02 2016-08-30 Seiko Epson Corporation Physical quantity sensor and electronic apparatus

Also Published As

Publication number Publication date
TW201204668A (en) 2012-02-01
JPWO2011118786A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP2008132587A (en) Method of manufacturing wafer-level vacuum packaged device
JP5040021B2 (en) Hermetic package and method for manufacturing hermetic package
JP4539155B2 (en) Manufacturing method of sensor system
JP2006247833A (en) Mems element package and its manufacturing method
WO2011118786A1 (en) Manufacturing method for glass-embedded silicon substrate
WO2012102291A1 (en) Glass-embedded silicon substrate and method for manufacturing same
JP4548799B2 (en) Semiconductor sensor device
TWI640161B (en) Electronic device and method of manufacturing electronic device
JP5684233B2 (en) Silicon wiring embedded glass substrate and manufacturing method thereof
JP5006429B2 (en) Semiconductor sensor device and manufacturing method thereof
JP4825111B2 (en) Method for manufacturing piezoelectric thin film device
WO2011118787A1 (en) Manufacturing method for glass-embedded silicon substrate
WO2011118788A1 (en) Method for manufacturing silicon substrate having glass embedded therein
JP5769482B2 (en) Manufacturing method of glass sealed package and optical device
KR100636823B1 (en) Mems devices package and method for manufacturing thereof
WO2012102252A1 (en) Substrate with though electrode and method for producing same
JP2013036829A (en) Silicone embedded glass substrate and manufacturing method therefor, silicone embedded glass multilayer substrate and manufacturing method therefor, and electrostatic acceleration sensor
JP2011204950A (en) Metal embedded glass substrate and method of manufacturing the same, and mems device
JP2010177280A (en) Method of manufacturing semiconductor sensor, and semiconductor sensor
JP5789788B2 (en) Silicon wiring embedded glass substrate and manufacturing method thereof
JP5293579B2 (en) Electronic component package, electronic component device, and method of manufacturing electronic component package
JP2006126212A (en) Sensor device
JP2013116831A (en) Method for producing silicon-glass composite
JP2018046046A (en) Hollow package and method of manufacturing the same
JP2006162628A (en) Sensor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759590

Country of ref document: EP

Kind code of ref document: A1