JP2001056317A - Eddy cufrrent flaw detection method and apparatus - Google Patents

Eddy cufrrent flaw detection method and apparatus

Info

Publication number
JP2001056317A
JP2001056317A JP11231751A JP23175199A JP2001056317A JP 2001056317 A JP2001056317 A JP 2001056317A JP 11231751 A JP11231751 A JP 11231751A JP 23175199 A JP23175199 A JP 23175199A JP 2001056317 A JP2001056317 A JP 2001056317A
Authority
JP
Japan
Prior art keywords
flaw detection
inspected
distance
flaw
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231751A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Katsuhiro Kojima
勝洋 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11231751A priority Critical patent/JP2001056317A/en
Publication of JP2001056317A publication Critical patent/JP2001056317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect a flaw even if the spaced-apart distance between a flaw detection coil and a material to be inspected changes. SOLUTION: A plurality of the flaw detection coils 16 formed on a printed circuit board 22 in a required pattern are arranged to the surface opposed to a material to be inspected of a probe 14 and successively changed over to scan the surface of the material to be inspected to detect a flaw over a required region. A plurality of distance sensors 28 are arranged on the printed circuit board 22 corresponding to the flaw detection coils 16 to measure the actual spaced-apart distances from the surface of the material to be inspected to the flaw detection coils 16. After the flaw detection signals from the flaw detection coils 16 are corrected on the basis of the distance signals from the distance sensors 28, a flaw is judged on the basis of the correction signals thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、渦流探傷方法お
よび装置に関し、更に詳細には、被検査材の表面と対向
して配設した複数の探傷用コイルを順次切替えることに
より、被検査材の表面を走査して、その表面欠陥を探傷
する渦流探傷方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection method and apparatus, and more particularly, to a method for detecting a material to be inspected by sequentially switching a plurality of flaw detection coils disposed opposite to the surface of the material to be inspected. The present invention relates to an eddy current flaw detection method and apparatus for scanning a surface to detect a surface defect.

【0002】[0002]

【従来の技術】冷間圧延により製造された平板材等の長
尺な被検査材の表面に存在する疵や割れ等の欠陥を検出
する手段として、電子走査型の渦流探傷装置が知られて
いる。この渦流探傷装置では、プローブにおける被検査
材の表面と対向する対向面に、励磁コイルと検知コイル
とを積層して構成した複数の探傷用コイルが、所要のパ
ターンで配置されている。各探傷用コイルでは、励磁コ
イルを介して発生させた磁界によって該被検査材の表面
に渦電流を発生させると共に、この渦電流により検知コ
イルに誘導電流を発生させるよう構成されている。被検
査材の表面に欠陥がある場合には、その深さや大きさに
応じて渦電流に変化が生じ、これに対応して変動する誘
導電流によって探傷信号を出力することで、該欠陥を検
出するよう構成される。そして、前記構成の渦流探傷装
置による探傷に際しては、複数の探傷用コイルを切替え
て各対応部位の探傷を順次行なうことで、被検査材の表
面を走査して所要領域での欠陥の存在を検出するように
なっている。
2. Description of the Related Art An electronic scanning type eddy current flaw detector is known as a means for detecting defects such as flaws and cracks existing on the surface of a long inspection material such as a flat plate manufactured by cold rolling. I have. In this eddy current flaw detection device, a plurality of flaw detection coils configured by laminating an excitation coil and a detection coil are arranged in a required pattern on a surface of the probe facing the surface of the material to be inspected. Each of the flaw detection coils is configured to generate an eddy current on the surface of the material to be inspected by a magnetic field generated through the excitation coil, and to generate an induced current in the detection coil by the eddy current. If there is a defect on the surface of the material to be inspected, the eddy current changes according to the depth and size of the defect, and the defect is detected by outputting a flaw detection signal using the induced current that fluctuates accordingly. It is configured to During the flaw detection by the eddy current flaw detection device having the above-described configuration, the surface of the material to be inspected is scanned to detect the presence of a defect in a required area by sequentially switching the plurality of flaw detection coils and performing flaw detection of each corresponding portion. It is supposed to.

【0003】[0003]

【発明が解決しようとする課題】前記渦流探傷装置で
は、被検査材とプローブとの離間距離を一定に保持した
状態で、各探傷用コイルから出力される探傷信号に対
し、一定のしきい値を設定し、該しきい値を越える高い
探傷信号が出力された場合に、欠陥があるものと判定す
るよう構成されている。しかしながら、前記被検査材が
反りや歪み等を有している場合は、各探傷用コイルから
被検査材の表面までの離間距離が変化し、これに伴って
探傷信号のレベルも変化するため、一定のしきい値での
欠陥の検出精度が低下する問題がある。すなわち、探傷
用コイルと被検査材との離間距離が大きくなれば、前記
検知コイルでの検出感度が低下するために、欠陥が存在
していても、その探傷信号のレベルがしきい値より低く
なってしまい、その欠陥を見逃してしまうおそれがあ
る。
In the eddy current flaw detection apparatus, a constant threshold value is applied to a flaw detection signal output from each flaw detection coil in a state where the separation distance between the material to be inspected and the probe is kept constant. Is set, and when a high flaw detection signal exceeding the threshold value is output, it is determined that there is a defect. However, when the material to be inspected has a warp, distortion, or the like, the distance from each of the flaw detection coils to the surface of the material to be inspected changes, and accordingly, the level of the flaw detection signal also changes. There is a problem that the accuracy of detecting a defect at a certain threshold value is reduced. That is, if the separation distance between the flaw detection coil and the material to be inspected increases, the detection sensitivity of the detection coil decreases, so that even if a defect exists, the level of the flaw detection signal is lower than the threshold value. And the defect may be overlooked.

【0004】なお、前記しきい値を低く設定すれば、離
間距離が大きくても欠陥の存在を検出することは可能と
なるが、この場合には、離間距離が近い部位において、
検出する必要のない微小な疵やノイズ等を検出してしま
うこととなり、過剰検出となる難点を招く。
If the threshold value is set low, it is possible to detect the presence of a defect even if the separation distance is large. In this case, however, in a portion where the separation distance is short,
A minute flaw, noise, or the like that need not be detected is detected, which causes a problem of excessive detection.

【0005】[0005]

【発明の目的】この発明は、前述した従来の技術に内在
している前記課題に鑑み、これを好適に解決するべく提
案されたものであって、探傷用コイルと被検査材との離
間距離が変化する場合であっても、欠陥を精度良く検出
することができる渦流探傷方法および装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems inherent in the prior art, and has been proposed in order to preferably solve the problem. It is an object of the present invention to provide an eddy current flaw detection method and apparatus capable of detecting a defect with high accuracy even when the value changes.

【0006】[0006]

【課題を解決するための手段】前述した課題を解決し、
所期の目的を好適に達成するため、本発明に係る渦流探
傷方法は、被検査材の表面と対向する複数の探傷用コイ
ルを備え、この複数の探傷用コイルを順次切替えて走査
することで、前記被検査材の表面に存在する欠陥を探傷
する渦流探傷装置において、前記探傷用コイルから被検
査材の表面までの離間距離を、該コイルに対応する距離
センサにより測定し、前記各探傷用コイルから出力され
る探傷信号を、対応する距離センサから出力される距離
信号に基づいて補正した後に、欠陥判定を行なうことを
特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
In order to appropriately achieve the intended purpose, the eddy current flaw detection method according to the present invention includes a plurality of flaw detection coils facing the surface of the material to be inspected, and sequentially switches and scans the plurality of flaw detection coils. In an eddy current flaw detection device for flaw detection existing on the surface of the material to be inspected, a separation distance from the coil for flaw detection to the surface of the material to be inspected is measured by a distance sensor corresponding to the coil. The defect detection is performed after correcting the flaw detection signal output from the coil based on the distance signal output from the corresponding distance sensor.

【0007】前述した所期の目的を好適に達成するた
め、本願の別の発明に係る渦流探傷装置は、被検査材の
表面と対向する複数の探傷用コイルを備え、この複数の
探傷用コイルを順次切替えて走査することで、前記被検
査材の表面に存在する欠陥を探傷する渦流探傷装置にお
いて、前記探傷用コイルと対応して配置され、複数の探
傷用コイルの切替えと同期して切替えられて、対応する
探傷用コイルから被検査材の表面までの距離を測定する
複数の距離センサと、前記各探傷用コイルから出力され
る探傷信号を、対応する距離センサから出力される距離
信号に基づいて補正した後に、欠陥判定を行なう判定手
段とから構成したことを特徴とする。
In order to suitably achieve the above-mentioned desired object, an eddy current flaw detection apparatus according to another invention of the present application includes a plurality of flaw detection coils facing a surface of a material to be inspected. In the eddy current flaw detection device that flaw-detects a defect present on the surface of the material to be inspected by sequentially switching and scanning, the switching is performed in synchronization with the switching of the plurality of flaw detection coils. A plurality of distance sensors that measure the distance from the corresponding flaw detection coil to the surface of the material to be inspected, and the flaw detection signal output from each of the flaw detection coils is converted into a distance signal output from the corresponding distance sensor. And a determination means for performing a defect determination after the correction based on the correction based on the correction.

【0008】[0008]

【発明の実施の形態】次に、本発明に係る渦流探傷方法
および装置につき、好適な実施例を挙げて、添付図面を
参照しながら以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an eddy current flaw detection method and apparatus according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

【0009】図1および図2は、実施例に係る渦流探傷
装置の概略構成を示すものであって、該渦流探傷装置1
0は、長尺な平板状の被検査材12のパスラインに近接
して、該被検査材12の表面12aと対向するプローブ
14を備える。このプローブ14における被検査材12
との対向面には、図示のパターンで複数の探傷用コイル
16が配設されている。そして、被検査材12の表面1
2aに対してプローブ14の対向面を、予め設定された
設定離間距離Mに保持したもとで、該被検査材12の探
傷を行なうようになっている。
FIG. 1 and FIG. 2 show a schematic configuration of an eddy current flaw detector according to an embodiment.
Reference numeral 0 denotes a probe provided in the vicinity of the pass line of the long flat plate-shaped inspection object 12 and facing the surface 12a of the inspection object 12. The material to be inspected 12 in the probe 14
A plurality of flaw detection coils 16 are arranged in a pattern shown in the figure on the surface facing the. Then, the surface 1 of the inspected material 12
The inspection target material 12 is subjected to flaw detection while the surface facing the probe 14 with respect to 2a is maintained at a preset separation distance M.

【0010】前記探傷用コイル16は、被検査材12を
磁化して渦電流を発生させる励磁コイル18(図3参照)
と、この渦電流により誘導電流を発生させる検知コイル
20とが、プリント基板22に積層状態でプリントされ
て構成される。ちなみに、検知コイル20は8の字形に
巻回(差動巻き)され、励磁コイル18は四角形状に巻回
されている。
The flaw detection coil 16 is an excitation coil 18 (see FIG. 3) that magnetizes the material 12 to be inspected and generates an eddy current.
And a detection coil 20 for generating an induced current by the eddy current are printed on a printed circuit board 22 in a stacked state. Incidentally, the detection coil 20 is wound in a figure eight shape (differential winding), and the excitation coil 18 is wound in a square shape.

【0011】各探傷用コイル16は、図3に示す探傷用
電子スイッチ24に接続され、各探傷用コイル16への
通電を該スイッチ24で切替えることで、被検査材12
の表面12aを走査して所要の領域に亘って探傷するよ
う構成される。探傷用コイル16では、前述した如く、
通電により前記励磁コイル18を介して発生させた磁界
によって被検査材12の表面12aに渦電流を発生させ
ると共に、この渦電流により検知コイル20に誘導電流
を発生させる。そして、その誘導電流に応じた探傷信号
(図4(a)参照)が出力されて、図3に示す判定手段26
に入力されるようになっている。
Each of the flaw detection coils 16 is connected to a flaw detection electronic switch 24 shown in FIG.
Is configured to scan the surface 12a of the device and detect a flaw over a required area. In the flaw detection coil 16, as described above,
An eddy current is generated on the surface 12a of the material 12 to be inspected by a magnetic field generated through the exciting coil 18 by energization, and an induced current is generated in the detection coil 20 by the eddy current. And the flaw detection signal according to the induced current
(See FIG. 4A) is output, and the determination means 26 shown in FIG.
To be entered.

【0012】なお実施例では、図1に示すように、被検
査材12の給送方向に沿う縦列が10列で、これと交差
する幅方向に沿う横列が2列の合計20個の探傷用コイ
ル16が、プリント基板22に整列して配置される。そ
こで、説明の便宜上、探傷用コイル16を指称する場合
においては、図1において右上から千鳥状に付したch
0,ch1,ch2,ch3・・・ch19の符号をもって区
別することとする。そして、これら複数の探傷用コイル
16が、前記探傷用電子スイッチ24によって、ch0
からch19に順次切替えられるよう設定される。
In the embodiment, as shown in FIG. 1, there are ten flaw detection lines 12 in the feeding direction of the material to be inspected 12 and two rows in the width direction intersecting with the inspection material 12 in total. The coil 16 is arranged in alignment with the printed circuit board 22. Therefore, for convenience of explanation, in the case where the flaw detection coil 16 is pointed out, in FIG.
.., Ch19, ch1, ch2, ch3... Ch19. Then, the plurality of flaw detection coils 16 are moved to ch0 by the flaw detection electronic switch 24.
Is set to be sequentially switched from to ch19.

【0013】前記プリント基板22には、その幅方向に
所定間隔で複数の距離センサ28が配設されている。各
距離センサ28は、プリント基板22にプリントされた
コイルであって、該コイルを通電励磁することで被検査
材12を励磁し、その磁気変動によって被検査材12の
表面12aから各探傷用コイル16までの実際の離間距
離Nを測定するよう構成される。そして、各距離センサ
28から出力された測定信号が、前記判定手段26に入
力されるようになっている。実施例では、2つの探傷用
コイル16,16が被検査材12の給送方向に沿って配
置される各縦列に対応して、10個の距離センサ28が
配設されており、説明の便宜上、図1において右側から
付したNo.0,No.1,No.2,No.3・・・No.9の
符号をもって区別する。
The printed board 22 is provided with a plurality of distance sensors 28 at predetermined intervals in the width direction. Each of the distance sensors 28 is a coil printed on the printed circuit board 22, and energizes the coil to excite the inspection target material 12. It is configured to measure an actual separation distance N of up to 16. Then, a measurement signal output from each distance sensor 28 is input to the determination means 26. In the embodiment, ten distance sensors 28 are provided in correspondence with each column in which the two flaw detection coils 16 and 16 are arranged along the feeding direction of the inspection target material 12, and for convenience of explanation, , No. 0, No. 1, No. 2, No. 3,... No. 9 attached from the right side in FIG.

【0014】前記全ての距離センサ28は、図3に示す
距離用電子スイッチ30に接続されて、各距離センサ2
8への通電が、前記各縦列の探傷用コイル16,16の
切替えと同期して該スイッチ30により順次切替えられ
るよう構成される。すなわち、前記ch0およびch1
の探傷用コイル16,16、ch2およびch3の探傷
用コイル16,16・・・ch18およびch19の探傷用
コイル16,16での探傷が行なわれる際には、これに
対応してNo.0の距離センサ28、No.1の距離セン
サ28・・・No.9の距離センサ28により、夫々に対応
する探傷用コイル16から被検査材12の表面12aま
での実際の離間距離Nを測定するよう設定される。
All the distance sensors 28 are connected to a distance electronic switch 30 shown in FIG.
8 is configured to be sequentially switched by the switch 30 in synchronization with the switching of the flaw detection coils 16 in each column. That is, the ch0 and ch1
When the flaw detection is performed by the flaw detection coils 16, 16, ch2 and ch3, and the flaw detection coils 16, 16 of ch18 and ch19, the No. 0 The distance sensor 28 of No. 1, the distance sensor 28 of No. 1... The distance sensor 28 of No. 9 measures the actual separation distance N from the corresponding coil 16 for flaw detection to the surface 12 a of the inspection object 12. Is set.

【0015】前記探傷用コイル16および距離センサ2
8からの出力信号が入力される前記判定手段26は、探
傷用コイル16から得られた実際の探傷信号を、距離セ
ンサ28から得られた距離信号に基づいて補正する。す
なわち、探傷信号を距離信号に基づいて補正した補正信
号は、前記設定離間距離Mに対する実際の離間距離Nの
差分に応じて探傷信号が増減されたものであって、これ
によって被検査材12の表面12aに対して全ての探傷
用コイル16が同一の設定離間距離Mで探傷したものと
見做し得るようになっている。そして、得られた補正信
号を、探傷信号のレベルに対して欠陥Fを判定するため
に予め設定されたしきい値Kと比較し、補正信号がしき
い値Kを越える場合に欠陥Fの存在を検出する欠陥判定
を行なうよう構成されている(図4(c)参照)。
The flaw detection coil 16 and the distance sensor 2
The determination means 26 to which the output signal from the detector 8 is input corrects the actual flaw detection signal obtained from the flaw detection coil 16 based on the distance signal obtained from the distance sensor 28. That is, the correction signal obtained by correcting the flaw detection signal based on the distance signal is obtained by increasing or decreasing the flaw detection signal in accordance with the difference between the set separation distance M and the actual separation distance N. All of the flaw detection coils 16 can be regarded as flaw-detected at the same set separation distance M with respect to the surface 12a. Then, the obtained correction signal is compared with a preset threshold value K for determining the defect F with respect to the level of the flaw detection signal, and when the correction signal exceeds the threshold value K, the presence of the defect F is determined. (See FIG. 4 (c)).

【0016】[0016]

【実施例の作用】次に、前述した実施例に係る渦流探傷
装置の作用につき、渦流探傷方法との関係で説明する。
前述したように、前記被検査材12の探傷に際し、前記
プローブ14の探傷用コイル16が配設される対向面
を、被検査材12の表面12aに対して一定の離間距離
だけ離して対向させる。また、この設定された設定離間
距離Mを前提とする探傷信号のレベルに対して欠陥Fを
判定するためのしきい値Kを設定する。なお、被検査材
12には幅方向に反りがあり、前記プローブ14の対向
面から最も離間する幅方向の略中央の表面12aに欠陥
Fが存在しているものとする(図2参照)。
Next, the operation of the eddy current flaw detector according to the above-described embodiment will be described in relation to the eddy current flaw detection method.
As described above, at the time of flaw detection of the inspection material 12, the opposing surface of the probe 14 on which the flaw detection coil 16 is disposed is opposed to the surface 12a of the inspection material 12 by a predetermined separation distance. . Further, a threshold value K for determining the defect F is set for the level of the flaw detection signal based on the set separation distance M. It is assumed that the inspection target material 12 has a warp in the width direction, and the defect F exists on the substantially central surface 12a in the width direction which is the most distant from the opposing surface of the probe 14 (see FIG. 2).

【0017】この状態で、パスラインに沿って給送され
る被検査材12がプローブ14の配設位置を通過する際
に、前記各探傷用コイル16が、前記ch0からch1
9まで順次切替えられて、対応する部位の探傷を行な
う。すなわち、被検査材12の各探傷用コイル16に対
応する部位は、前記励磁コイル18から発生した磁界が
該被検査材12の表面12aに発生し、この磁界による
渦電流により検知コイル20に誘導電流が発生する。そ
して、各探傷用コイル16からはその誘導電流に応じた
探傷信号が出力され、これが図3に示す判定手段26に
入力される。
In this state, when the inspection material 12 fed along the pass line passes through the position where the probe 14 is provided, each of the flaw detection coils 16 is moved from the ch0 to the ch1.
9 are sequentially switched to perform flaw detection of a corresponding portion. That is, in the portion of the inspection material 12 corresponding to each of the flaw detection coils 16, a magnetic field generated from the excitation coil 18 is generated on the surface 12 a of the inspection material 12, and is induced to the detection coil 20 by an eddy current caused by the magnetic field. An electric current is generated. Then, each of the flaw detection coils 16 outputs a flaw detection signal corresponding to the induced current, and this is input to the determination means 26 shown in FIG.

【0018】前記各探傷用コイル16により探傷された
実際の探傷信号は、例えば図4(a)に示すように現われ
る。この場合に、被検査材12の幅方向中央には欠陥F
が存在しているから、該部位に対応する探傷用コイル1
6から出力された探傷信号のレベルは、他の探傷信号よ
り高くなっている。しかるに、前述したように被検査材
12は、欠陥Fが存在する部位が探傷用コイル16から
離れる反りを有しているために、その探傷信号は、前記
予め設定した設定離間距離Mを前提とする前記しきい値
Kを越えるに至らず、この状態では欠陥Fが存在してい
ないものとして判定される。
An actual flaw detection signal detected by each flaw detection coil 16 appears as shown in FIG. 4A, for example. In this case, the defect F
Exists, the flaw detection coil 1 corresponding to the site
The level of the flaw detection signal output from 6 is higher than other flaw detection signals. However, as described above, since the inspection material 12 has a warp in which the portion where the defect F exists is separated from the flaw detection coil 16, the flaw detection signal is based on the preset set separation distance M. In this state, it is determined that the defect F does not exist.

【0019】そこで実施例では、前記探傷用コイル16
の各縦列に対応して配置されている前記距離センサ28
が、対応する探傷用コイル16,16の切替えと同期し
て切替えられて、当該探傷用コイル16,16で探傷さ
れる被検査材12の表面12aと該コイル16,16と
の実際の離間距離Nを測定する。そして、各距離センサ
28から出力された距離信号(図4(b)参照)が、前記判
定手段26に入力される。
Accordingly, in the embodiment, the flaw detection coil 16 is used.
The distance sensors 28 corresponding to the respective columns
Are switched in synchronization with the switching of the corresponding flaw detection coils 16, 16, and the actual separation distance between the surface 12 a of the inspection object 12 to be flawed by the flaw detection coils 16, 16 and the coils 16, 16. Measure N. Then, a distance signal (see FIG. 4B) output from each distance sensor 28 is input to the determination means 26.

【0020】前記判定手段26では、距離センサ28か
らの距離信号に基づき、前記各探傷用コイル16からの
探傷信号を補正し、得られた補正信号を基に欠陥判定が
行なわれる。すなわち、前記設定離間距離Mに対する実
際の離間距離Nの差分に応じて信号が増減され、これに
より図4(c)に示す如く、実際に欠陥Fが存在する部位
の補正信号は、しきい値Kを越えるレベルとなり、該欠
陥Fを検出することができる。このように、実際の探傷
信号を距離変動に応じて補正することで、被検査材12
が反りや歪等を有している場合であっても、その表面欠
陥Fの検出精度を向上することができ、被検査材12の
品質精度も向上し得る。しかも、しきい値Kを過剰に低
く設定する必要はないので、検出する必要のない微小な
疵やノイズ等を検出してしまうことはない。
The determining means 26 corrects the flaw detection signal from each of the flaw detecting coils 16 based on the distance signal from the distance sensor 28, and makes a defect determination based on the obtained correction signal. That is, the signal is increased or decreased according to the difference between the set separation distance M and the actual separation distance N. As a result, as shown in FIG. The level exceeds K, and the defect F can be detected. As described above, by correcting the actual flaw detection signal in accordance with the distance variation, the material to be inspected 12
However, even if the object has warpage or distortion, the detection accuracy of the surface defect F can be improved, and the quality accuracy of the inspection target material 12 can be improved. Moreover, since it is not necessary to set the threshold value K excessively low, there is no possibility of detecting minute flaws, noises, and the like that need not be detected.

【0021】実施例では、距離センサとして磁気変動を
検出する型式のものを採用した場合で説明したが、該セ
ンサの型式はこれに限定されるものでなく、レーザ等を
利用した光学的なセンサが使用可能である。また探傷用
コイルや距離センサの配設パターンや配設数は、実施例
に限定されるものでなく、探傷の対象となる被検査材の
仕様等に応じて適宜に変更可能である。更に、実施例で
は2つの探傷用コイルに対応して1つの距離センサを配
置したが、1つの探傷用コイルに対応して1つの距離セ
ンサを配置したり、3つ以上の探傷用コイルに対応して
1つの距離センサを配置する構成を採用し得る。
In the embodiment, the case where the type of detecting the magnetic fluctuation is adopted as the distance sensor has been described. However, the type of the sensor is not limited to this, and an optical sensor using a laser or the like is used. Can be used. Further, the arrangement pattern and the number of arrangements of the flaw detection coil and the distance sensor are not limited to those of the embodiment, and can be appropriately changed according to the specifications of the inspection target material to be flaw-detected. Further, in the embodiment, one distance sensor is arranged corresponding to two flaw detection coils. However, one distance sensor is arranged corresponding to one flaw detection coil, or three or more flaw detection coils are supported. Then, a configuration in which one distance sensor is disposed can be adopted.

【0022】なお、実施例では平板状の被検査材におけ
る上面側を探傷する場合で説明したが、被検査材の側面
(コバ面)等にも歪や変形等が存在していることがあり、
この側面の探傷に際しても距離センサを併用した欠陥判
定を採用することができる。
Although the embodiment has been described with respect to the case where the flaw detection is performed on the upper surface side of the plate-like inspection material,
There may be distortion or deformation in (edge) etc.
Defect detection using a distance sensor can also be employed for flaw detection on this side surface.

【0023】[0023]

【発明の効果】以上説明した如く、本発明に係る渦流探
傷方法および装置によれば、探傷用コイルにより実際に
探傷した探傷信号を、該コイルと被検査材との離間距離
の変化に応じて補正することで、常に精度の良い探傷が
達成される。すなわち、被検査材が反りや歪等を有して
いても、その表面欠陥を精度よく検出することができ、
品質精度を向上し得る。
As described above, according to the eddy current flaw detection method and apparatus according to the present invention, the flaw detection signal actually detected by the flaw detection coil is changed according to the change in the separation distance between the coil and the material to be inspected. By performing the correction, highly accurate flaw detection is always achieved. In other words, even if the material to be inspected has warpage or distortion, the surface defect can be accurately detected,
Quality accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施例に係る渦流探傷装置の要
部を示す説明図である。
FIG. 1 is an explanatory view showing a main part of an eddy current flaw detector according to a preferred embodiment of the present invention.

【図2】実施例に係る渦流探傷装置のプローブと被検査
材との関係を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing a relationship between a probe and a material to be inspected in the eddy current flaw detector according to the embodiment.

【図3】実施例に係る渦流探傷装置の制御ブロック図で
ある。
FIG. 3 is a control block diagram of the eddy current testing device according to the embodiment.

【図4】実施例に係る探傷用コイルからの探傷信号、距
離センサからの距離信号および探傷信号を距離信号によ
り補正した補正信号のグラフ図である。
FIG. 4 is a graph showing a flaw detection signal from a flaw detection coil, a distance signal from a distance sensor, and a correction signal obtained by correcting a flaw detection signal according to the embodiment with a distance signal.

【符号の説明】[Explanation of symbols]

12 被検査材 12a 表面 16 探傷用コイル 26 判定手段 28 距離センサ 12 Inspection material 12a Surface 16 Flaw detection coil 26 Judgment means 28 Distance sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査材(12)の表面(12a)と対向する複
数の探傷用コイル(16)を備え、この複数の探傷用コイル
(16)を順次切替えて走査することで、前記被検査材(12)
の表面(12a)に存在する欠陥を探傷する渦流探傷装置に
おいて、 前記探傷用コイル(16)から被検査材(12)の表面(12a)ま
での離間距離を、該コイル(16)に対応する距離センサ(2
8)により測定し、 前記各探傷用コイル(16)から出力される探傷信号を、対
応する距離センサ(28)から出力される距離信号に基づい
て補正した後に、欠陥判定を行なうことを特徴とする渦
流探傷方法。
1. A flaw detection coil (16) facing a surface (12a) of a material to be inspected (12).
By sequentially switching and scanning (16), the material to be inspected (12)
In the eddy current flaw detection device for detecting a defect existing on the surface (12a) of the test object, the separation distance from the flaw detection coil (16) to the surface (12a) of the inspection object (12) corresponds to the coil (16). Distance sensor (2
8), the flaw detection signal output from each of the flaw detection coils (16) is corrected based on the distance signal output from the corresponding distance sensor (28), and then defect determination is performed. Eddy current flaw detection method.
【請求項2】 被検査材(12)の表面(12a)と対向する複
数の探傷用コイル(16)を備え、この複数の探傷用コイル
(16)を順次切替えて走査することで、前記被検査材(12)
の表面(12a)に存在する欠陥を探傷する渦流探傷装置に
おいて、 前記探傷用コイル(16)と対応して配置され、複数の探傷
用コイル(16)の切替えと同期して切替えられて、対応す
る探傷用コイル(16)から被検査材(12)の表面(12a)まで
の距離を測定する複数の距離センサ(28)と、 前記各探傷用コイル(16)から出力される探傷信号を、対
応する距離センサ(28)から出力される距離信号に基づい
て補正した後に、欠陥判定を行なう判定手段(26)とから
構成したことを特徴とする渦流探傷装置。
2. A plurality of flaw detection coils (16) facing a surface (12a) of a material to be inspected (12), wherein the plurality of flaw detection coils are provided.
By sequentially switching and scanning (16), the material to be inspected (12)
In the eddy current flaw detector for detecting a defect existing on the surface (12a) of the flaw detection coil (16), it is disposed in correspondence with the flaw detection coil (16), and is switched in synchronization with the switching of the plurality of flaw detection coils (16). A plurality of distance sensors (28) for measuring the distance from the flaw detection coil (16) to the surface (12a) of the material to be inspected (12), and a flaw detection signal output from each of the flaw detection coils (16), An eddy current flaw detection device comprising: a determination unit (26) for performing a defect determination after correcting based on a distance signal output from a corresponding distance sensor (28).
JP11231751A 1999-08-18 1999-08-18 Eddy cufrrent flaw detection method and apparatus Pending JP2001056317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231751A JP2001056317A (en) 1999-08-18 1999-08-18 Eddy cufrrent flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231751A JP2001056317A (en) 1999-08-18 1999-08-18 Eddy cufrrent flaw detection method and apparatus

Publications (1)

Publication Number Publication Date
JP2001056317A true JP2001056317A (en) 2001-02-27

Family

ID=16928474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231751A Pending JP2001056317A (en) 1999-08-18 1999-08-18 Eddy cufrrent flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP2001056317A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351890A (en) * 2004-05-27 2005-12-22 General Electric Co <Ge> Omnidirectional eddy current probe and inspection system
JP2006189364A (en) * 2005-01-07 2006-07-20 Olympus Corp Eddy current flaw detection multi-coil type probe, and manufacturing method therefor
JP2006194815A (en) * 2005-01-17 2006-07-27 Olympus Corp Eddy current flaw detection multi-coil probe and its manufacuring method
JP2007057400A (en) * 2005-08-25 2007-03-08 Jfe Steel Kk Eddy current test method and device of metal band
JP2010281762A (en) * 2009-06-08 2010-12-16 Chugoku Electric Power Co Inc:The Nondestructive inspection device and nondestructive inspection method
WO2010146939A1 (en) * 2009-06-17 2010-12-23 本田技研工業株式会社 Nondestructive testing device
JP2012137473A (en) * 2010-12-07 2012-07-19 Kobe Steel Ltd Roughness measuring device
JP2012163338A (en) * 2011-02-03 2012-08-30 Suzuki Motor Corp Eddy current flaw detector and eddy current flaw detection method
WO2012165296A1 (en) 2011-05-30 2012-12-06 Jfeスチール株式会社 Magnetic property measurement method and magnetic property measurement device
GB2557719A (en) * 2016-10-17 2018-06-27 Boeing Co Three-dimensional gap measurement systems and methods
US10352684B2 (en) 2016-10-17 2019-07-16 The Boeing Company Three-dimensional gap measurement systems and methods
EP4080204A4 (en) * 2019-12-20 2022-12-28 Posco Device and method for testing surface material of steel plate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351890A (en) * 2004-05-27 2005-12-22 General Electric Co <Ge> Omnidirectional eddy current probe and inspection system
JP2006189364A (en) * 2005-01-07 2006-07-20 Olympus Corp Eddy current flaw detection multi-coil type probe, and manufacturing method therefor
JP4608322B2 (en) * 2005-01-07 2011-01-12 オリンパス株式会社 Eddy current flaw detection multi-coil probe manufacturing method
JP2006194815A (en) * 2005-01-17 2006-07-27 Olympus Corp Eddy current flaw detection multi-coil probe and its manufacuring method
JP2007057400A (en) * 2005-08-25 2007-03-08 Jfe Steel Kk Eddy current test method and device of metal band
JP4622742B2 (en) * 2005-08-25 2011-02-02 Jfeスチール株式会社 Method and apparatus for detecting eddy current in metal strip
JP2010281762A (en) * 2009-06-08 2010-12-16 Chugoku Electric Power Co Inc:The Nondestructive inspection device and nondestructive inspection method
JPWO2010146939A1 (en) * 2009-06-17 2012-12-06 本田技研工業株式会社 Nondestructive inspection equipment
WO2010146939A1 (en) * 2009-06-17 2010-12-23 本田技研工業株式会社 Nondestructive testing device
JP2012137473A (en) * 2010-12-07 2012-07-19 Kobe Steel Ltd Roughness measuring device
JP2012163338A (en) * 2011-02-03 2012-08-30 Suzuki Motor Corp Eddy current flaw detector and eddy current flaw detection method
WO2012165296A1 (en) 2011-05-30 2012-12-06 Jfeスチール株式会社 Magnetic property measurement method and magnetic property measurement device
EP2717042A1 (en) * 2011-05-30 2014-04-09 JFE Steel Corporation Magnetic property measurement method and magnetic property measurement device
EP2717042A4 (en) * 2011-05-30 2014-11-19 Jfe Steel Corp Magnetic property measurement method and magnetic property measurement device
GB2557719A (en) * 2016-10-17 2018-06-27 Boeing Co Three-dimensional gap measurement systems and methods
US10240909B2 (en) 2016-10-17 2019-03-26 The Boeing Company Three-dimensional gap measurement systems and methods
US10352684B2 (en) 2016-10-17 2019-07-16 The Boeing Company Three-dimensional gap measurement systems and methods
GB2557719B (en) * 2016-10-17 2021-02-03 Boeing Co Three-dimensional gap measurement systems and methods
EP4080204A4 (en) * 2019-12-20 2022-12-28 Posco Device and method for testing surface material of steel plate

Similar Documents

Publication Publication Date Title
JP6472334B2 (en) Eddy current inspection device
US8125219B2 (en) Method for determining and evaluating eddy-current displays, in particular cracks, in a test object made from an electrically conductive material
US6252393B1 (en) System and method for normalizing and calibrating a sensor array
JP2001056317A (en) Eddy cufrrent flaw detection method and apparatus
JP2009282027A6 (en) A method for judging and evaluating the eddy current display of cracks in test objects made of conductive materials.
US9164061B2 (en) Arrangement for crack detection in metallic materials in a metal making process
CN101281169B (en) Method and algorithms for inspection of longitudinal defects in an eddy current inspection system
KR101175384B1 (en) Circuit pattern inspection device, method thereof and computer readable recording medium storing program therein
JP5191446B2 (en) Eddy current flaw detection method and apparatus
US10132906B2 (en) Multi-element sensor array calibration method
JP5364643B2 (en) Eddy current flaw detection method and contrast specimen used therefor
US20180217099A1 (en) Virtual channels for eddy current array probes
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
JP4742757B2 (en) Magnetic flux leakage inspection device
JPH10288605A (en) Magnetic testing device and method
JP4652336B2 (en) Method and system for detecting surface defects in continuously cast crude metal products
JP7359220B2 (en) Sensitivity calibration method, inspection equipment, and magnetic sensor group
JPH0295252A (en) Sensitivity calibration method for magnetic flaw detection device
KR102164105B1 (en) Apparatus and method for sensing high hardness position of steel plate shrface
JPS586458A (en) Hot eddy current flaw detecting method of steel material
JPS6027852A (en) Eddy-current flaw detector
JPH08220073A (en) Device for evaluating defect-dimension of eddy current flaw-detecting device
KR100775888B1 (en) A nondestructive inspection device and method for composite structure
JP2005106597A (en) Ultrasonic flaw detection method and apparatus
JP5534123B1 (en) Defect inspection method and defect inspection apparatus