JP2001054210A - Power-supply system of electric vehicle - Google Patents

Power-supply system of electric vehicle

Info

Publication number
JP2001054210A
JP2001054210A JP11224791A JP22479199A JP2001054210A JP 2001054210 A JP2001054210 A JP 2001054210A JP 11224791 A JP11224791 A JP 11224791A JP 22479199 A JP22479199 A JP 22479199A JP 2001054210 A JP2001054210 A JP 2001054210A
Authority
JP
Japan
Prior art keywords
storage device
power storage
voltage
electric vehicle
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11224791A
Other languages
Japanese (ja)
Other versions
JP3558159B2 (en
Inventor
Shigenori Kinoshita
繁則 木下
Atsushi Yamada
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
UD Trucks Corp
Original Assignee
Fuji Electric Co Ltd
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, UD Trucks Corp filed Critical Fuji Electric Co Ltd
Priority to JP22479199A priority Critical patent/JP3558159B2/en
Publication of JP2001054210A publication Critical patent/JP2001054210A/en
Application granted granted Critical
Publication of JP3558159B2 publication Critical patent/JP3558159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable operation with higher system efficiency by connecting a bidirectional current type voltage variable accumulator between both output terminals of the output of main accumulator and the input terminal of a power converter, for driving a vehicle connected to the terminals of such main accumulator. SOLUTION: A main accumulator 40 is composed of a capacitor battery 10 and a bidirectional current type voltage variable accumulator 11, and its capacitor battery 10 is formed by connecting a plurality of capacity cells 100, in series or by further connecting such capacitor cells 100 in parallel. An inverter 5 is connected as a power converter for driving a vehicle to the output terminal of the output of such a main accumulator 40 or both output terminals thereof, and the bidirectional current type voltage variable accumulator 11 is connected between the position terminal of the inverter 5 and the positive terminal of the capacitor battery 10. As a result, operation of high system efficiency can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主蓄電装置を備え
た電気自動車またはハイブリッド電気自動車の電源シス
テムに関する。
The present invention relates to a power supply system for an electric vehicle or a hybrid electric vehicle provided with a main power storage device.

【0002】[0002]

【従来の技術】図11は、主蓄電装置として電気二重層
キャパシタ電池を使用したハイブリッド電気自動車の公
知の電源システムを示している。従来、蓄電装置として
化学二次電池を使用していたが、化学二次電池は充放電
サイクル寿命が短く、しかも高出力作動時の効率が悪い
ため、最近では電気二重層キャパシタ電池が適用されて
きている。図11において、1はエンジン、2は発電
機、3は整流器、4は主蓄電装置、5は車両駆動電動機
6を駆動する電力変換器であるところのインバータであ
り、これらの要素がパワートレインを構成している。
2. Description of the Related Art FIG. 11 shows a known power supply system of a hybrid electric vehicle using an electric double layer capacitor battery as a main power storage device. Conventionally, a chemical secondary battery has been used as a power storage device. However, recently, an electric double layer capacitor battery has been applied because a chemical secondary battery has a short charge-discharge cycle life and is inefficient at high output operation. ing. In FIG. 11, reference numeral 1 denotes an engine, 2 denotes a generator, 3 denotes a rectifier, 4 denotes a main power storage device, and 5 denotes an inverter which is a power converter for driving a vehicle drive motor 6, and these elements constitute a power train. Make up.

【0003】7は補助蓄電装置8を充電するDC-DC
コンバータ、9は補機である。なお、ここでは電動機6
以降の駆動機構の図示を省略している。主蓄電装置4
は、電気二重層キャパシタセル41,42,43,……
を複数直列接続して構成された電気二重層キャパシタ電
池である。図示していないが、主蓄電装置4の容量を増
大させるため、必要に応じて電気二重層キャパシタセル
41,42,43,……の直列回路を複数、並列接続す
ることも行われる。
[0003] 7 is a DC-DC for charging the auxiliary power storage device 8
The converter 9 is an auxiliary machine. Here, the electric motor 6
Illustration of the following drive mechanism is omitted. Main power storage device 4
Are electric double layer capacitor cells 41, 42, 43,...
Are connected in series to form an electric double layer capacitor battery. Although not shown, in order to increase the capacity of the main power storage device 4, a plurality of series circuits of the electric double layer capacitor cells 41, 42, 43,...

【0004】図11に示したのはシリーズハイブリッド
式の電気自動車であり、エンジン1および発電機2で発
生した電力の一部または全部を使用して主蓄電装置4を
充電する。そして、発電機2および主蓄電装置4の電
力、または主蓄電装置4の電力のみを用いて、インバー
タ5を介し電動機6により車両を駆動する。制動時は、
電動機6から発生した制動電力を、インバータ5を介し
て主蓄電装置4に回生する。発電機を搭載せずに主蓄電
装置の電力のみを用いて車両を駆動する電気自動車の電
気システムは、図11においてエンジン1、発電機2お
よび整流器3が無いシステムと同じ構成であるため、詳
述を省略する。
FIG. 11 shows a series hybrid electric vehicle, in which a main power storage device 4 is charged by using part or all of the electric power generated by an engine 1 and a generator 2. Then, the vehicle is driven by the electric motor 6 via the inverter 5 using only the power of the generator 2 and the main power storage device 4 or the power of the main power storage device 4. When braking,
The braking power generated from the electric motor 6 is regenerated to the main power storage device 4 via the inverter 5. The electric system of the electric vehicle that drives the vehicle using only the power of the main power storage device without a generator is the same as the system without the engine 1, the generator 2, and the rectifier 3 in FIG. The description is omitted.

【0005】前述したように、主蓄電装置4は車両の加
速時および定速走行時には放電、制動時には充電の繰り
返し作動となり、その回数は数万回にも達する。電気自
動車用の主蓄電装置は、この充放電サイクル回数に耐え
るものでなくてはならない。前述した電気二重層キャパ
シタ電池はこの性能を有しており、電気自動車用として
優れた蓄電装置と言うことができる。図11に示した主
蓄電装置4も、従来の化学二次電池を多数直列接続して
なる組電池と同様に、電気二重層キャパシタセル41,
42,43,……を多数直列接続して構成されており、
従来の化学二次電池を電気二重層キャパシタ電池に置き
換えたシステムとなっている。
[0005] As described above, the main power storage device 4 repeatedly operates during discharging and braking when the vehicle is accelerating and running at a constant speed, and the number of times reaches several tens of thousands. The main power storage device for an electric vehicle must be able to withstand this number of charge / discharge cycles. The above-described electric double layer capacitor battery has this performance, and can be said to be an excellent power storage device for electric vehicles. The main power storage device 4 shown in FIG. 11 also has an electric double layer capacitor cell 41, similar to an assembled battery in which a number of conventional chemical secondary batteries are connected in series.
42, 43,... Are connected in series.
This is a system in which a conventional chemical secondary battery is replaced with an electric double layer capacitor battery.

【0006】さて、電気二重層キャパシタセルの蓄電エ
ネルギはキャパシタセルの電圧の2乗に比例する。言い
換えれば、直流電源として使用した場合、放電エネルギ
の増大に応じて電気二重層キャパシタセルの電圧は低下
して行く。エネルギの75%を放電すると、電圧は1/
2に低下する。図11に示す電気システムでは、放電電
力によってインバータの入力電圧が大きく変化する。
[0006] The stored energy of the electric double layer capacitor cell is proportional to the square of the voltage of the capacitor cell. In other words, when used as a DC power supply, the voltage of the electric double layer capacitor cell decreases as the discharge energy increases. When 75% of the energy is discharged, the voltage becomes 1 /
Drops to 2. In the electric system shown in FIG. 11, the input voltage of the inverter greatly changes depending on the discharge power.

【0007】特に電気自動車の場合、電圧が低下する
と、中高速域の車両性能が大きく低下する。このため、
実際には、図12に示すように電気二重層キャパシタセ
ル41,42,43,……からなる主蓄電装置4とイン
バータ5との間にチョッパ44を挿入して、このチョッ
パ44の動作によりインバータ5の入力電圧を一定にす
る方法がとられている。
[0007] Particularly in the case of an electric vehicle, when the voltage is reduced, the vehicle performance in a medium to high speed range is greatly reduced. For this reason,
Actually, as shown in FIG. 12, a chopper 44 is inserted between the main power storage device 4 composed of electric double layer capacitor cells 41, 42, 43,. 5 is used to make the input voltage constant.

【0008】図13は、図12のチョッパ44の回路構
成例を示したもので、電流双方向形(電流2象限)昇降圧
チョッパの回路例である。図11、12と同一構成要素
は同一番号を付してある。図13において、441,4
42はトランジスタからなる半導体スイッチ、443,
444は半導体スイッチ441,442に逆並列接続さ
れたダイオード、445は電流平滑リアクトル、44
6,447はフィルタコンデンサである。
FIG. 13 shows an example of a circuit configuration of the chopper 44 of FIG. 12, and is a circuit example of a current bidirectional (two-quadrant current) step-up / step-down chopper. The same components as those in FIGS. 11 and 12 are denoted by the same reference numerals. In FIG. 13, 441, 4
42 is a semiconductor switch composed of a transistor;
444 is a diode connected in anti-parallel to the semiconductor switches 441 and 442, 445 is a current smoothing reactor,
6,447 is a filter capacitor.

【0009】車両の加速時及び定速走行時は、主蓄電装
置(電気二重層キャパシタ電池)4の電圧はインバータ
5の入力電圧より低下するので、チョッパ44を主蓄電
装置4側から見て昇圧チョッパとして作動させる。この
場合、半導体スイッチ441をスイッチング、半導体ス
イッチ442はオフする。図14は、この場合の昇圧チ
ョッパの等価回路であり、図13における半導体スイッ
チ442およびダイオード443を除去した構成とな
る。
When the vehicle is accelerating and traveling at a constant speed, the voltage of main power storage device (electric double layer capacitor battery) 4 is lower than the input voltage of inverter 5, so that chopper 44 is boosted when viewed from main power storage device 4 side. Operate as a chopper. In this case, the semiconductor switch 441 is switched, and the semiconductor switch 442 is turned off. FIG. 14 is an equivalent circuit of the boost chopper in this case, and has a configuration in which the semiconductor switch 442 and the diode 443 in FIG. 13 are removed.

【0010】次に、回生制動の動作を述べる。回生制動
時は、インバータ5の入力電圧が主蓄電装置4より高い
ので、チョッパ44をインバータ側から見て降圧チョッ
パとして作動させる。この場合、半導体スイッチ442
をスイッチング、441をオフする。図15は、この場
合の降圧チョッパの等価回路であり、図13における半
導体スイッチ441およびダイオード444を除去した
構成となる。
Next, the operation of regenerative braking will be described. At the time of regenerative braking, since the input voltage of the inverter 5 is higher than that of the main power storage device 4, the chopper 44 is operated as a step-down chopper when viewed from the inverter side. In this case, the semiconductor switch 442
And 441 is turned off. FIG. 15 is an equivalent circuit of the step-down chopper in this case, and has a configuration in which the semiconductor switch 441 and the diode 444 in FIG. 13 are removed.

【0011】次に、図16は図12のチョッパ44の動
作を説明する図である。モードIは加速、定速走行時、
モードIIは惰行時、モードIIIは制動時の動作を示す。
加速、定速走行時(モードI)は、主蓄電装置4が放電
するので電圧Vcは低下するが、チョッパ44の昇圧動
作(主蓄電装置4側から見て)により、インバータ5の
入力電圧Viは一定に保たれる。
Next, FIG. 16 is a view for explaining the operation of the chopper 44 of FIG. Mode I is for acceleration, running at constant speed,
Mode II indicates an operation during coasting, and mode III indicates an operation during braking.
During acceleration and constant speed traveling (mode I), the voltage Vc decreases because the main power storage device 4 discharges, but the input voltage Vi of the inverter 5 is increased by the boosting operation of the chopper 44 (as viewed from the main power storage device 4 side). Is kept constant.

【0012】この間、チョッパ44の電流Ic(図13
におけるリアクトル445の電流)は、主蓄電装置4の
低下に伴って増大する。回生制動時(モードIII)に
は、チョッパ44の降圧チョッパ動作(インバータ側か
ら見て)により、チョッパ44の入力電圧を一定に保ち
ながら、回生電力を主蓄電装置4に供給して充電する。
この間、チョッパ44の電流Icは主蓄電装置4の電圧
の上昇に伴って減少する。
During this time, the current Ic of the chopper 44 (FIG. 13)
The current of the reactor 445 at the time of increases in the power storage device 4. During regenerative braking (mode III), regenerative power is supplied to the main power storage device 4 and charged by the step-down chopper operation of the chopper 44 (as viewed from the inverter side) while keeping the input voltage of the chopper 44 constant.
During this time, the current Ic of the chopper 44 decreases as the voltage of the main power storage device 4 increases.

【0013】[0013]

【発明が解決しようとする課題】前述のように、電気二
重層キャパシタは化学二次電池と異なり、蓄積エネルギ
が電圧の2乗に比例する。すなわち,蓄積エネルギの変
化で、キャパシタ電圧が大きく変動する。このため、図
12に示した従来のシステムでは、電気二重層キャパシ
タ電池からなる主蓄電装置4の出力側に電流双方向形チ
ョッパを接続して、あたかも主蓄電装置4の電圧が一定
であるようにしている。このようなチョッパ方式の場
合、図13に示したようにチョッパ44には電流平滑用
リアクトル445が必須である。更に、図16から明ら
かなように、リアクトル445を流れる電流Icは主蓄
電装置4の電圧Vcに反比例するので、主蓄電装置4の
電圧Vcが半減するとリアクトル445の電流Icは2倍
にもなる。
As described above, an electric double layer capacitor differs from a chemical secondary battery in that the stored energy is proportional to the square of the voltage. That is, the capacitor voltage greatly fluctuates due to the change in the stored energy. For this reason, in the conventional system shown in FIG. 12, a current bidirectional chopper is connected to the output side of the main power storage device 4 composed of an electric double layer capacitor battery, so that the voltage of the main power storage device 4 is constant. I have to. In the case of such a chopper system, a current smoothing reactor 445 is indispensable for the chopper 44 as shown in FIG. Further, as is apparent from FIG. 16, current Ic flowing through reactor 445 is inversely proportional to voltage Vc of main power storage device 4. Therefore, if voltage Vc of main power storage device 4 is reduced by half, current Ic of reactor 445 also doubles. .

【0014】チョッパ44の装置容量は、チョッパの入
力側からみると、入力の最大電圧と最大電流の積であ
る。図11の場合、入力電圧の最大は主蓄電装置4の最
大電圧に等しく、入力電流の最大は主蓄電装置4の電圧
を最大電圧の1/2まで使用したときであり、インバー
タの最大電流の2倍になる。この場合、チョッパの装置
容量はインバータ容量の2倍となってしまう。一方、電
気自動車用の場合、車載機器はできるだけ小形・軽量、
高効率であることが強く求められるので、電気自動車の
主蓄電装置として電気二重層キャパシタ電池を使用する
場合、このチョッパの小形・軽量化、高効率化が大きな
課題となっていた。
When viewed from the input side of the chopper, the device capacity of the chopper 44 is the product of the maximum input voltage and the maximum current. In the case of FIG. 11, the maximum of the input voltage is equal to the maximum voltage of the main power storage device 4, and the maximum of the input current is when the voltage of the main power storage device 4 is used up to 1/2 of the maximum voltage. Double. In this case, the device capacity of the chopper is twice as large as the inverter capacity. On the other hand, for electric vehicles, on-board equipment is as small and lightweight as possible,
Since high efficiency is strongly required, when an electric double-layer capacitor battery is used as a main power storage device of an electric vehicle, the downsizing, weight reduction, and high efficiency of the chopper have been major issues.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、主蓄電装置の出力の片
方の出力端子又は両方の出力端子とその端子に接続され
る車両駆動用電力変換器の入力端子間に、電流双方向形
の電圧可変形蓄電装置を接続し、前記車両駆動用電力変
換器の直流電圧を一定値又は規定値に保持する。更に、
前記電圧可変形蓄電装置を電気二重層キャパシタ電池と
電流双方向形昇降圧チョッパとで構成する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has one or both output terminals of an output of a main power storage device and a vehicle drive connected to the output terminals. A bidirectional current variable voltage storage device is connected between the input terminals of the power converter, and the DC voltage of the vehicle drive power converter is held at a constant value or a specified value. Furthermore,
The variable voltage power storage device includes an electric double layer capacitor battery and a current bidirectional buck-boost chopper.

【0016】[0016]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、図1は本発明の第1実施形態であ
り、請求項1、2に記載した発明の実施形態に相当す
る。図11と同一の構成要素は同一の番号を付してあ
る。図1において、40は前述の主蓄電装置4に相当す
る主蓄電装置であり、キャパシタ電池10と、電流双方
向形電圧可変蓄電装置11とから構成されている。キャ
パシタ電池10は、キャパシタセル100を複数個直列
に接続したもの、あるいは、これをさらに複数個並列に
接続して構成されている。このキャパシタ電池10の正
極端子とインバータ5の正極端子間に電流双方向形電圧
可変蓄電装置11が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 1 shows a first embodiment of the present invention, which corresponds to the first and second embodiments of the present invention. The same components as those in FIG. 11 are denoted by the same reference numerals. In FIG. 1, reference numeral 40 denotes a main power storage device corresponding to the above-described main power storage device 4 and includes a capacitor battery 10 and a bidirectional current variable voltage power storage device 11. The capacitor battery 10 is configured by connecting a plurality of capacitor cells 100 in series, or by connecting a plurality of these in parallel. A current bidirectional voltage variable power storage device 11 is connected between the positive terminal of the capacitor battery 10 and the positive terminal of the inverter 5.

【0017】図2は本発明の第2実施形態であり、請求
項1、2に記載した発明の実施形態に相当する。図1と
同一の構成要素は同一の番号を付してある。この実施形
態は、1対の電流双方向形電圧可変蓄電装置11a,1
1bをキャパシタ電池10の両端子とインバータ5の両
端子間に接続したものである。
FIG. 2 shows a second embodiment of the present invention, which corresponds to the first and second embodiments of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, a pair of current bidirectional voltage variable power storage devices 11a, 11a
1b is connected between both terminals of the capacitor battery 10 and both terminals of the inverter 5.

【0018】図3は図1の実施形態の電流双方向形電圧
可変蓄電装置を詳細に示したものであり、請求項3、
4、5に記載した発明の実施形態に相当する。図1と同
一の構成要素は同一の番号を付してある。図3におい
て、電流双方向形電圧可変蓄電装置11は、直流−直流
電力変換器であるところの電流双方向形昇降圧チョッパ
110と、電気二重層キャパシタ電池111とから構成
されている。なお、図1に示した電動機6、DC−DC
コンバータ7、補助蓄電装置8は図示を省略してある。
ここで電気二重層キャパシタ電池111は図示しない
が、キャパシタ電池10と同じくキャパシタセルを複数
個直列接続したもの、あるいはこれをさらに並列接続し
たものとする。
FIG. 3 shows in detail the bidirectional current variable voltage storage device of the embodiment of FIG.
This corresponds to the embodiment of the invention described in 4 or 5. The same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 3, the current bidirectional voltage variable power storage device 11 includes a current bidirectional buck-boost chopper 110 which is a DC-DC power converter, and an electric double layer capacitor battery 111. In addition, the electric motor 6 shown in FIG.
The illustration of the converter 7 and the auxiliary power storage device 8 is omitted.
Here, although the electric double layer capacitor battery 111 is not shown, it is assumed that a plurality of capacitor cells are connected in series similarly to the capacitor battery 10, or that these are further connected in parallel.

【0019】図3では、電流双方向形電圧可変蓄電装置
11をキャパシタ電池10の正極端子とインバータ5の
正極端子間の片側に設置したが、図2と同様に、キャパ
シタ電池10の負極端子とインバータ5の負極端子間に
も設置可能である。図4は、図3における電流双方向形
昇降圧チョッパ110の詳細な構成を示した回路図であ
る。図1〜3と同一構成要素は同一番号を付してある。
In FIG. 3, the current bidirectional type variable voltage storage device 11 is installed on one side between the positive terminal of the capacitor battery 10 and the positive terminal of the inverter 5, but as in FIG. It can also be installed between the negative terminals of the inverter 5. FIG. 4 is a circuit diagram showing a detailed configuration of the current bidirectional buck-boost chopper 110 in FIG. The same components as those in FIGS. 1 to 3 are given the same numbers.

【0020】図4において、電流双方向形昇降圧チョッ
パ110は、電圧平滑コンデンサ110eを介して互い
に接続された単相インバータ110a,110bとから
構成されている。単相インバータ110aは、キャパシ
タ電池10とインバータ5からなる電源側と、リアクト
ル110cを介して接続され、単相インバータ110b
は、電気二重層キャパシタ111側とリアクトル110
dを介して接続されている。単相インバータ110a,
110bの制御は公知であり、ここではそれら単相イン
バータ110a,110bの制御が主題ではないのでそ
の詳述は省略する。
Referring to FIG. 4, a current bidirectional buck-boost chopper 110 includes single-phase inverters 110a and 110b connected to each other via a voltage smoothing capacitor 110e. The single-phase inverter 110a is connected to a power supply side composed of the capacitor battery 10 and the inverter 5 via a reactor 110c.
Are the electric double layer capacitor 111 side and the reactor 110
d. Single-phase inverter 110a,
The control of 110b is publicly known, and the control of these single-phase inverters 110a and 110b is not a subject here, so that the detailed description is omitted.

【0021】図5は、図1において車両が力行動作する
場合の動作を説明する図であり、図1と同一構成要素は
同一番号を付してある。同図において、Vsはキャパシ
タ電池10の端子電圧、Viはインバータ5の直流入力
電圧、Vcは電流双方向形電圧可変蓄電装置11の端子
電圧を各々示している。図では、キャパシタ電池10が
放電動作をして、キャパシタ電池10の電力でインバー
タ5を介して車両駆動電動機(図示せず)を駆動してい
るため、電流は矢印に示した方向に流れ、放電時間と共
にキャパシタ電圧Vsは低下する。
FIG. 5 is a diagram for explaining the operation when the vehicle performs a power running operation in FIG. 1, and the same components as those in FIG. 1 are denoted by the same reference numerals. In the figure, Vs denotes a terminal voltage of the capacitor battery 10, Vi denotes a DC input voltage of the inverter 5, and Vc denotes a terminal voltage of the current bidirectional voltage variable power storage device 11, respectively. In the figure, since the capacitor battery 10 performs a discharging operation and the vehicle driving motor (not shown) is driven by the power of the capacitor battery 10 via the inverter 5, the current flows in the direction shown by the arrow, and The capacitor voltage Vs decreases with time.

【0022】ここで、インバータ5の入力電圧Viを、
キャパシタ電池10の電圧Vsと電流双方向形電圧可変
蓄電装置11の端子電圧Vcの和として、キャパシタ電
池10の電圧Vsの変動を電流双方向形電圧可変蓄電装
置11の端子電圧Vcが補償するようにすると、インバ
ータ5の入力電圧Viは一定に保たれる。即ち、キャパ
シタ電池10の電圧Vsが設定されたインバータ電圧Vi
より高ければ、電流双方向形電圧可変蓄電装置11の端
子電圧Vcを、キャパシタ電池10の電圧Vsの極性に対
して負にする。この負の部分が、図中の時間T0〜T1ま
でのA部の動作に相当する。
Here, the input voltage Vi of the inverter 5 is
As the sum of the voltage Vs of the capacitor battery 10 and the terminal voltage Vc of the current bidirectional voltage variable power storage device 11, the fluctuation of the voltage Vs of the capacitor battery 10 is compensated by the terminal voltage Vc of the current bidirectional voltage variable power storage device 11. , The input voltage Vi of the inverter 5 is kept constant. That is, the inverter voltage Vi in which the voltage Vs of the capacitor battery 10 is set.
If higher, the terminal voltage Vc of the current bidirectional voltage variable power storage device 11 is made negative with respect to the polarity of the voltage Vs of the capacitor battery 10. This negative portion corresponds to the operation of the portion A from time T0 to T1 in the figure.

【0023】また、反対に電圧Vsが、設定されたイン
バータ電圧Viより低くなれば、端子電圧Vcを正にす
る。この正の部分が、図中の時間T1〜T2までのB部の
動作に相当する。なお、時間T1では、キャパシタ電池
10の電圧Vsがインバータ5の直流入力電圧Viの設定
電圧と等しくなるので、電流双方向形電圧可変蓄電装置
11の電圧Vcは零となる。
On the other hand, when the voltage Vs becomes lower than the set inverter voltage Vi, the terminal voltage Vc is made positive. This positive portion corresponds to the operation of the portion B from time T1 to T2 in the figure. At time T1, since voltage Vs of capacitor battery 10 becomes equal to the set voltage of DC input voltage Vi of inverter 5, voltage Vc of current bidirectional voltage variable power storage device 11 becomes zero.

【0024】図6は、図1において、回生制動する場合
の動作を説明する図であり、図5と同一構成要素は同一
番号を付してある。図では、電流方向が図5の場合と反
対となる。この場合も、図5の場合と同様に、インバー
タ5の直流入力電圧Viを一定に保つため、キャパシタ
電池10の電圧Vsに応じて、電流双方向形電圧可変蓄
電装置11の端子電圧Vcが変化する。
FIG. 6 is a diagram for explaining the operation when regenerative braking is performed in FIG. 1, and the same components as those in FIG. 5 are denoted by the same reference numerals. In the figure, the current direction is opposite to that in FIG. In this case as well, the terminal voltage Vc of the bidirectional current variable voltage storage device 11 changes according to the voltage Vs of the capacitor battery 10 in order to keep the DC input voltage Vi of the inverter 5 constant, as in the case of FIG. I do.

【0025】図7は、図5の場合の動作に加えて、電圧
可変蓄電装置11内の電気二重層キャパシタ電池111
も含めた動作説明図である。以下、同図により説明す
る。図7において各電圧Vs,Vc,Viは図5と同じで
ある。Vcsは電気二重層キャパシタ電池111の電圧で
ある。先ず、力行開始時の時間T0では、電圧Vcsは零
である。次いで、時間T11,T12はVcsとVcとが一致
する。すなわち、モード1の時間T0〜T11の区間で
は、Vc>Vcsであるのでチョッパ110は、キャパシ
タ電池10・インバータ5側から見て、充電・降圧動作
となる。
FIG. 7 shows, in addition to the operation in FIG. 5, the electric double layer capacitor battery 111 in the voltage variable power storage device 11.
FIG. 4 is an operation explanatory diagram including the above. Hereinafter, description will be made with reference to FIG. 7, the voltages Vs, Vc and Vi are the same as those in FIG. Vcs is the voltage of the electric double layer capacitor battery 111. First, at time T0 at the start of powering, the voltage Vcs is zero. Next, at times T11 and T12, Vcs and Vc match. That is, since Vc> Vcs in the section from time T0 to T11 in mode 1, the chopper 110 performs a charge / step-down operation when viewed from the capacitor battery 10 and the inverter 5 side.

【0026】モード2の時間T11〜T1の区間では、Vc
s>Vcとなるのでチョッパ110は、同様に、充電・昇
圧動作となる。T1では、Vs=Viとなるので、Vc=0
となる。モード3の時間T1〜T12の区間では、Vcの電
圧極性は反転し、その値は時間の経過とともに増加す
る。この間のチョッパ110の動作は放電・昇圧動作と
なる。モード4のT12〜T2の区間では、Vc>Vcsであ
るので、チョッパは放電・降圧動作となる。
In the interval from time T11 to T1 of mode 2, Vc
Since s> Vc, the chopper 110 similarly performs a charging / boosting operation. At T1, since Vs = Vi, Vc = 0
Becomes In the section from time T1 to T12 in mode 3, the voltage polarity of Vc is inverted, and its value increases with the passage of time. The operation of the chopper 110 during this time is a discharging / boosting operation. In the section from T12 to T2 in mode 4, since Vc> Vcs, the chopper performs a discharge / step-down operation.

【0027】図8は図1に示したキャパシタ電池10が
内蔵の切替スイッチによって、キャパシタ電池セルの直
並列接続を切替える蓄電装置の場合のその回路構成と動
作を説明する図である。図5と同一構成要素は同一番号
を付してある。図では、力行動作の場合について示して
ある。図において、10aは複数のキャパシタ電池ブロ
ックで構成される電気二重層キャパシタ電池である。1
0bはキャパシタ電池ブロックの回路を切替える切替ス
イッチ回路である。ここではこのキャパシタ電池10a
とスイッチ回路10bの構成の説明は省略する。
FIG. 8 is a diagram for explaining the circuit configuration and operation of the capacitor battery 10 shown in FIG. 1 in the case of a power storage device in which the parallel connection of the capacitor battery cells is switched by a built-in switch. The same components as those in FIG. 5 are denoted by the same reference numerals. In the figure, the case of the power running operation is shown. In the figure, 10a is an electric double layer capacitor battery composed of a plurality of capacitor battery blocks. 1
Reference numeral 0b is a changeover switch circuit that switches the circuit of the capacitor battery block. Here, this capacitor battery 10a
The description of the configuration of the switch circuit 10b is omitted.

【0028】図8において、モード1は図7に示した動
作T0からT2までの動作と同じであるので説明を省略す
る。モード1の終了時(T1)に、キャパシタ電池10a
の電圧Vsが動作下限値まで低下すると、切替スイッチ
回路10bを作動させて、キャパシタ電池ブロックの回
路を切替え、電圧Vsを初期値まで戻す。以後、モード
2としてモード1と同一の動作を繰り返す。
In FIG. 8, the mode 1 is the same as the operation from the operation T0 to T2 shown in FIG. At the end of mode 1 (T1), the capacitor battery 10a
When the voltage Vs decreases to the operation lower limit, the changeover switch circuit 10b is operated to switch the circuit of the capacitor battery block, and the voltage Vs is returned to the initial value. Thereafter, the same operation as mode 1 is repeated as mode 2.

【0029】ここでT2に達して、再び電圧Vsが動作下
限値まで低下すると、再度、切替スイッチ回路10bを
作動させてキャパシタ電池ブロックの回路を切替え、電
圧Vsを初期値まで戻し、モード3としてモード1と同
一の動作をする。なお、図8は、力行モードについて説
明したが、回生制動時の場合は、図8の逆方向の動作と
なり、電圧Vsが動作上限値に達するごとにキャパシタ
電池ブロックの回路を切替えていく動作となる。
Here, when the voltage Vs reaches T2 and the voltage Vs drops again to the lower limit of operation, the changeover switch circuit 10b is operated again to switch the circuit of the capacitor battery block, and the voltage Vs is returned to the initial value. The same operation as in mode 1 is performed. Although FIG. 8 illustrates the powering mode, in the case of regenerative braking, the operation is performed in the reverse direction of FIG. Become.

【0030】図9は、本発明の第3実施形態を示すもの
で、請求項6に記載した発明の実施形態に相当する。図
9の回路構成は、図1に示した主蓄電装置40を並列接
続した回路構成である。図1と同一の回路構成要素は同
一番号を付してある。40a,40bは図1の主蓄電装
置40に相当する主蓄電装置である。
FIG. 9 shows a third embodiment of the present invention, and corresponds to the sixth embodiment of the present invention. 9 is a circuit configuration in which main power storage devices 40 shown in FIG. 1 are connected in parallel. The same circuit components as those in FIG. 1 are given the same numbers. Reference numerals 40a and 40b are main power storage devices corresponding to the main power storage device 40 in FIG.

【0031】図10は、車載エンジン発電機を動力源と
したハイブリッド電気自動車に、本発明を適用した場合
の回路構成を示したものである。図10では、図1の構
成に、エンジン1、発電機2および整流器3を増設した
ものであり、各部の構成および動作については、図1お
よび図11の説明と共通するので、それらの説明は省略
する。
FIG. 10 shows a circuit configuration in a case where the present invention is applied to a hybrid electric vehicle using a vehicle-mounted engine generator as a power source. In FIG. 10, an engine 1, a generator 2 and a rectifier 3 are added to the configuration of FIG. 1, and the configuration and operation of each part are common to the description of FIG. 1 and FIG. Omitted.

【0032】[0032]

【発明の効果】以上述べたように本発明によれば、電気
二重層キャパシタセルを直列接続したキャパシタ電池の
出力に、電気二重層キャパシタ電池と電流双方形昇降圧
チョッパとで構成した電圧可変形蓄電装置を接続して、
電気自動車又はハイブリッド電気自動車の電源システム
としたことで、次の効果が得られる。 (1)電気二重層キャパシタ電池を使用した小形・軽量
で長寿命な電気自動車の主蓄電装置の実現が可能とな
り、実用的な電気自動車及びハイブリッド自動車が実現
できる。
As described above, according to the present invention, the output of a capacitor battery in which electric double layer capacitor cells are connected in series is supplied to the output of a voltage variable type comprising an electric double layer capacitor battery and a current dual type step-up / step-down chopper. Connect the power storage device,
The following effects can be obtained by using the power supply system of an electric vehicle or a hybrid electric vehicle. (1) It is possible to realize a small, lightweight, long-life main power storage device of an electric vehicle using an electric double layer capacitor battery, and a practical electric vehicle and a hybrid vehicle can be realized.

【0033】(2)電圧可変形蓄電装置により、インバ
ータ入力電圧を可変にして、システム効率の高い運転を
可能にすることで、燃費向上が図れる。 なお、前記実施形態では、本発明をシリーズハイブリッ
ド電気自動車に適用した場合を説明したが、本発明は、
主蓄電装置のみを動力源とする電気自動車やパラレルハ
イブリッド電気自動車、主蓄電装置以外に燃料電池を備
えた電気自動車等、種々の電気自動車の電源システムに
も適用可能である。
(2) The variable voltage type power storage device allows the inverter input voltage to be variable to enable operation with high system efficiency, thereby improving fuel efficiency. In the above embodiment, the case where the present invention is applied to a series hybrid electric vehicle has been described.
The present invention can be applied to a power supply system of various electric vehicles such as an electric vehicle using only the main power storage device as a power source, a parallel hybrid electric vehicle, and an electric vehicle equipped with a fuel cell in addition to the main power storage device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す電気自動車の電
源システムの構成図である。
FIG. 1 is a configuration diagram of a power supply system of an electric vehicle according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す電気自動車の電
源システムの構成図である。
FIG. 2 is a configuration diagram of a power supply system of an electric vehicle according to a second embodiment of the present invention.

【図3】本発明の第1の実施形態の電源システムの詳細
構成図である。
FIG. 3 is a detailed configuration diagram of a power supply system according to the first embodiment of the present invention.

【図4】図3の電流双方向形電圧可変蓄電装置の回路構
成図である。
4 is a circuit configuration diagram of the current bidirectional voltage variable power storage device of FIG. 3;

【図5】図1の動作の説明図である。FIG. 5 is an explanatory diagram of the operation of FIG. 1;

【図6】図1の動作の説明図である。FIG. 6 is an explanatory diagram of the operation of FIG. 1;

【図7】図3の動作の説明図である。FIG. 7 is an explanatory diagram of the operation of FIG. 3;

【図8】図3の他の動作の説明図である。FIG. 8 is an explanatory diagram of another operation of FIG. 3;

【図9】本発明の第3の実施形態を示す図である。FIG. 9 is a diagram showing a third embodiment of the present invention.

【図10】図1の実施形態をハイブリッド電気自動車に
適用した場合の構成例である。
FIG. 10 is a configuration example when the embodiment of FIG. 1 is applied to a hybrid electric vehicle.

【図11】従来例の電気システムを示す図である。FIG. 11 is a diagram showing an electric system of a conventional example.

【図12】他の従来例の電気システムを示す図である。FIG. 12 is a diagram showing another conventional electric system.

【図13】図12の詳細な説明図である。FIG. 13 is a detailed explanatory diagram of FIG. 12;

【図14】図12の動作説明図である。FIG. 14 is an operation explanatory diagram of FIG. 12;

【図15】図12の動作説明図である。FIG. 15 is an operation explanatory diagram of FIG. 12;

【図16】図12の動作説明図である。FIG. 16 is a diagram illustrating the operation of FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 2 発電機 3 整流器 4 主蓄電装置 5 インバータ 6 車両駆動電動機 7 DC−DCコンバータ 8 補助蓄電装置 10,10a,111 電気二重層キャパシタ電池 10b 切替スイッチ回路 11,11a,11b 電流双方向形電圧可変蓄電装置 40,40a,40b 主蓄電装置 100 電気二重層キャパシタセル 110 電流双方向形昇降圧チョッパ 110a,110b 単相インバータ 110c,110d リアクトル 110e 電圧平滑コンデンサ REFERENCE SIGNS LIST 1 engine 2 generator 3 rectifier 4 main power storage device 5 inverter 6 vehicle drive motor 7 DC-DC converter 8 auxiliary power storage device 10, 10a, 111 electric double layer capacitor battery 10b changeover switch circuit 11, 11a, 11b current bidirectional voltage Variable power storage devices 40, 40a, 40b Main power storage device 100 Electric double layer capacitor cell 110 Current bidirectional buck-boost chopper 110a, 110b Single-phase inverter 110c, 110d Reactor 110e Voltage smoothing capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 淳 埼玉県上尾市大字一丁目1番地 日産ディ ーゼル工業株式会社内 Fターム(参考) 5H115 PA12 PA15 PC06 PG04 PI13 PI16 PI22 PI29 PO02 PO06 PO17 PU08 PU24 PU25 PU26 PV02 PV03 PV07 PV09 PV23 QE01 QE03 QE09 QE10 QI04 SE04 SE06 TI05 TO13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Jun Yamada 1-1-1, Oaza, Ageo-shi, Saitama F-term in Nissan Diesel Industry Co., Ltd. 5H115 PA12 PA15 PC06 PG04 PI13 PI16 PI22 PI29 PO02 PO06 PO17 PU08 PU24 PU25 PU26 PV02 PV03 PV07 PV09 PV23 QE01 QE03 QE09 QE10 QI04 SE04 SE06 TI05 TO13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車載エンジン発電機及び車載主蓄電装置
の電力、または、前記車載主蓄電装置の電力により電力
変換器を介して車両駆動用電動機を駆動する電気自動車
の電源システムにおいて、 前記主蓄電装置の片方又は両方の極の出力端子と、前記
電力変換器の直流端子との間に、電圧可変形蓄電装置を
接続したことを特徴とする電気自動車の電源システム。
1. A power supply system for an electric vehicle that drives a vehicle drive motor via a power converter using electric power of a vehicle-mounted engine generator and a vehicle-mounted main power storage device or power of the vehicle-mounted main power storage device. A power supply system for an electric vehicle, wherein a voltage variable power storage device is connected between an output terminal of one or both poles of the device and a DC terminal of the power converter.
【請求項2】 請求項1記載の電気自動車の電源システ
ムにおいて、 前記主蓄電装置を電気二重層キャパシタ電池により構成
したことを特徴とする電気自動車の電源システム。
2. The power supply system for an electric vehicle according to claim 1, wherein said main power storage device is constituted by an electric double layer capacitor battery.
【請求項3】 請求項1または2記載の電気自動車の電
源システムにおいて、 前記電圧可変形蓄電装置を第2の蓄電装置と直流―直流
電力変換器とで構成したことを特徴とする電気自動車の
電源システム。
3. The power supply system for an electric vehicle according to claim 1, wherein said variable voltage power storage device comprises a second power storage device and a DC-DC power converter. Power system.
【請求項4】 請求項3記載の電気自動車の電源システ
ムにおいて、 前記第2の蓄電装置を電気二重層キャパシタ電池により
構成したことを特徴とする電気自動車の電源システム。
4. The power supply system for an electric vehicle according to claim 3, wherein the second power storage device is constituted by an electric double layer capacitor battery.
【請求項5】 請求項3または4に記載の電気自動車の
電源システムにおいて、 前記直流―直流電力変換器を電流双方向形昇降圧チョッ
パにより構成したことを特徴とする電気自動車の電源シ
ステム。
5. The power supply system for an electric vehicle according to claim 3, wherein the DC-DC power converter is constituted by a current bidirectional buck-boost chopper.
【請求項6】 請求項1〜5のいずれか1項に記載の電
気自動車の電源システムにおいて、 前記主蓄電装置と電圧可変形蓄電装置との組み合わせを
複数組備えてそれらを互いに並列接続したことを特徴と
する電気自動車の電源システム。
6. The power supply system for an electric vehicle according to claim 1, wherein a plurality of combinations of the main power storage device and the variable voltage power storage device are provided and connected in parallel with each other. A power supply system for an electric vehicle.
JP22479199A 1999-08-09 1999-08-09 Electric vehicle power system Expired - Fee Related JP3558159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22479199A JP3558159B2 (en) 1999-08-09 1999-08-09 Electric vehicle power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22479199A JP3558159B2 (en) 1999-08-09 1999-08-09 Electric vehicle power system

Publications (2)

Publication Number Publication Date
JP2001054210A true JP2001054210A (en) 2001-02-23
JP3558159B2 JP3558159B2 (en) 2004-08-25

Family

ID=16819267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22479199A Expired - Fee Related JP3558159B2 (en) 1999-08-09 1999-08-09 Electric vehicle power system

Country Status (1)

Country Link
JP (1) JP3558159B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006269A (en) * 2001-07-12 2003-01-23 현대자동차주식회사 Method for controlling energy storage system with super capacitor
JP2008278615A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Controller of power converter
JP2009512416A (en) * 2005-10-17 2009-03-19 ピーブイアイ Charging station and associated electric vehicle
CN108608876A (en) * 2018-04-09 2018-10-02 江苏理工学院 Extended-range mixed power electric car composite power source Energy Management System control strategy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006269A (en) * 2001-07-12 2003-01-23 현대자동차주식회사 Method for controlling energy storage system with super capacitor
JP2009512416A (en) * 2005-10-17 2009-03-19 ピーブイアイ Charging station and associated electric vehicle
JP2008278615A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Controller of power converter
JP4546988B2 (en) * 2007-04-27 2010-09-22 株式会社日立製作所 Control device for power converter
US7965056B2 (en) 2007-04-27 2011-06-21 Hitachi, Ltd. Control apparatus of power conversion system
CN108608876A (en) * 2018-04-09 2018-10-02 江苏理工学院 Extended-range mixed power electric car composite power source Energy Management System control strategy

Also Published As

Publication number Publication date
JP3558159B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP3552087B2 (en) Electric vehicle power system
US7804196B2 (en) Multiple input/output power converter and fuel cell vehicle with same
JP3219039B2 (en) Electric vehicle electric system
CN100403635C (en) Power unit for automobile
JP3606779B2 (en) Electric vehicle power system
CN101505134A (en) Alternating current motor drive circuit and electric vehicle drive circuit
JP2013085413A (en) Electric vehicle
KR100458103B1 (en) Power source system for driving vehicle
JPH11146566A (en) Power supply device and electric vehicle on which the power supply device is mounted
JP5931366B2 (en) Power converter
JP3827935B2 (en) Vehicle power supply
JP2001054210A (en) Power-supply system of electric vehicle
Park et al. Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle li-ion battery system
JP3558546B2 (en) Electric vehicle power system
JP3482980B2 (en) Power supply
JP2004236384A (en) Power supply system for fuel cell vehicle
JP5076918B2 (en) Power storage device
JP2000023306A (en) Power supply system of electric vehicle
CN110722999A (en) Vehicle-mounted charger, electric vehicle with same and power factor correction device
JP2012023803A (en) Dc-dc converter for driving motor
JP5310184B2 (en) Bidirectional buck-boost chopper circuit
Alam et al. Practical aspects of direct bypass of boost converter in traction inverter applications
JP3579733B2 (en) Power supply for motor drive
JPH0993809A (en) Power supply
JP2022172903A (en) Multiport converter and converter system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Ref document number: 3558159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees