JP3606779B2 - Electric vehicle power system - Google Patents

Electric vehicle power system Download PDF

Info

Publication number
JP3606779B2
JP3606779B2 JP36011199A JP36011199A JP3606779B2 JP 3606779 B2 JP3606779 B2 JP 3606779B2 JP 36011199 A JP36011199 A JP 36011199A JP 36011199 A JP36011199 A JP 36011199A JP 3606779 B2 JP3606779 B2 JP 3606779B2
Authority
JP
Japan
Prior art keywords
capacitor
storage device
electric vehicle
power storage
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36011199A
Other languages
Japanese (ja)
Other versions
JP2001177914A (en
Inventor
繁則 木下
慶人 渡邉
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
UD Trucks Corp
Original Assignee
UD Trucks Corp
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp, Fuji Electric Holdings Ltd filed Critical UD Trucks Corp
Priority to JP36011199A priority Critical patent/JP3606779B2/en
Publication of JP2001177914A publication Critical patent/JP2001177914A/en
Application granted granted Critical
Publication of JP3606779B2 publication Critical patent/JP3606779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気二重層キャパシタを主蓄電装置に使用した電気自動車またはハイブリッド電気自動車の電源システムに関する。
【0002】
【従来の技術】
従来、電気自動車またはハイブリッド電気自動車の蓄電装置には化学電池を適用していたが、化学電池は充放電サイクル寿命が短く、且つ高出力作動時の効率が悪いため、電気二重層キャパシタ電池が適用されてきている。
図5は、ハイブリッド電気自動車の主蓄電装置に電気二重層キャパシタを適用した電源システムの基本構成例を示す。図において、1はエンジン、2は発電機、3は整流器、4は主蓄電装置、5は車両駆動電動機6を駆動するインバータである。エンジン1から車両駆動電動機6までがパワートレインである。7は補助蓄電装置8を充電するDC−DCコンバータ、9は補機である。主蓄電装置4は、電気二重層キャパシタセル41,42,43,・・を複数直列接続して構成されている。なお、電動機6以降の駆動機構についての図示は省略してある。
【0003】
図示されたシステムは、シリーズハイブリッド式の電気自動車の電源システムであり、エンジン1と発電機2で発生した電力の一部または全部を主蓄電装置4に充電する。エンジン1と発電機2で発生した電力と主蓄電装置4の電力で、インバータ5を介して電動機6を駆動して車両を走行させる。加速時は、発電機2の電力と主蓄電装置4の電力または主蓄電装置4のみの電力で、インバータ5を介して電動機6を加速駆動する。回生制動時は、電動機6に発生した制動電力がインバータ5を介して、主蓄電装置4に回生される。また、DC−DCコンバータ7はパワートレイン系の主蓄電装置4から補助電源8を充電するチャージャであり、エンジン車のオルタネータに相当する。
【0004】
なお、発電機を搭載しない電気自動車の電源システムは、図5から、エンジン1、発電機2、整流器3を除去したシステム構成となり、共通の構成部分は動作が同一となるので、詳述を省略する。
図6は図5のDC−DCコンバータ7の回路構成を示したものである。図において、70,71は半導体スイッチ、72,73,74,75はダイオード、76は変圧器、77は電流平滑リアクトル、78,79は電圧平滑コンデンサである。この回路方式は2石式フォワード型と呼ばれる公知の回路方式であるのでその動作説明は省略する。
【0005】
前述したように、主蓄電装置4は車両の加速時には放電、制動時には充電の繰り返し作動となり、その回数は数万回にも達する。電気自動車用主蓄電装置はこの充放電サイクル回数に耐えるものでなくてはならない。前述の電気二重層キャパシタによる蓄電装置はこの性能を有しており、電気自動車用として優れた蓄電装置と言える。
図5に示した電気二重層キャパシタ電池も、従来の化学二次電池を多数直列接続した組電池と同じく、電気二重層キャパシタセルを多数直列接続して構成されており、従来の化学二次電池が電気二重層キャパシタに置き換えられたシステムである。
【0006】
さて、電気二重層キャパシタの蓄電エネルギはキャパシタの電圧の2乗に比例する。言い換えれば、直流電源として使用した場合、消費エネルギの増大に応じて電気二重層キャパシタの電圧は低下して行く。エネルギの75%を使用すると、電圧は1/2に低下する。図5に示す電源システムでは、消費電力によってインバータの入力電圧が大きく変化する。特に電気自動車の場合、電圧が低下すると、中高速域の車両性能が大きく低下する。このため、実際は図7に示すように主蓄電装置であるキャパシタ電池4とインバータ5との中間にチョッパ44を挿入して、インバータ5への入力電圧を一定にする方法や、図8に示したように、キャパシタ電池を複数のブロックに分割し、このブロックをスイッチで切り替えて、インバータの入力電圧の変化を小さくする方法が提案されている。
【0007】
すなわち、図8において、10,11,12はキャパシタ電池ブロックであり、各々キャパシタセル100,110,120を必要数直列接続している。13はキャパシタブロックの接続切替スイッチである。図9は図8の切替スイッチ部13の詳細を示す図である。130,131,132は両方向通流型のスイッチで、通常半導体スイッチが用いられる。図10は図9の電源システムの場合のインバータ入力電圧の挙動を示す。動作モードIでは、スイッチ130を閉じて、スイッチ131,132は開とする。すると、キャパシタ電池はキャパシタ電池ブロック10の電圧となる。動作モードIIでは、スイッチ131を閉じて、スイッチ130,132を開にする。すると、キャパシタ電池はキャパシタ電池ブロック10,12の直列となる。動作モードIIIでは、スイッチ132を閉じて、スイッチ130,131を開にする。すると、キャパシタ電池はキャパシタ電池ブロック10,11,12の直列となる。
【0008】
【発明が解決しようとする課題】
ところで、前述のように電気二重層キャパシタは化学電池と違い、蓄積エネルギは電圧の2乗に比例する。すなわち、蓄積エネルギの増大に応じて、キャパシタ電圧が上昇する。また、図5〜図9に示した電源システムでは電気二重層キャパシタを従来の化学二次電池の組電池と同じように使用している。即ち、多数のキャパシタセルを直列接続したキャパシタ電池を1つのキャパシタ電池とみなして使用している。多数直列接続された電気二重層キャパシタは、充電した状態での長時間放置または充放電を繰り返すとキャパシタセル電圧にバラツキが発生するので、頻繁に充放電を繰り返す電気自動車に適用すると、この電圧のバラツキによって、一部のキャパシタセルが過電圧になり、キャパシタ電池の故障に至ってしまう。
【0009】
電気自動車にとって、蓄電装置の故障は重大故障であるので、電気二重層キャパシタ電池を電気自動車に適用する場合、キャパシタセルが過電圧にならないことが大きく求められている。次に、直列接続された電気二重層キャパシタセルの電圧挙動について説明する。図5に示した電気二重層キャパシタセルの内部等価回路は図11のように表される。図11は図5のキャパシタセル41について示したものである。電気二重層キャパシタセル41は、等価的にキャパシタエレメント410a,411a,412a,・・・が抵抗410b,411b,412b,・・・を介して並列接続されているとみなせる。また、キャパシタセル毎に自己放電を等価的に表す放電抵抗410c,411c,412c,・・・がキャパシタエレメント410a,411a,412a,・・・に並列に接続されているとみなせる。
【0010】
ここで、電気自動車用主蓄電装置に電気二重層キャパシタ電池を適用する場合、電気二重層キャパシタセルを複数個直列接続して使用するが、各キャパシタセル毎の回路定数は全て同じではないことによる問題が発生する。以下にその内容を説明する。キャパシタ電池を充電した状態で長時間放置すると、各キャパシタセル毎に内部の自己放電抵抗によって自己放電する。この直列接続キャパシタセルの電圧挙動を図12で説明する。説明を簡素化するため、2ケ直列の場合で説明する。
【0011】
図12で、2ケのキャパシタセルC1,C2が均一に電圧V1に充電された状態(合成電圧はV0)の時刻t=T0で、キャパシタ電池を開放状態にして放置する。時刻t=T1までキャパシタセルを自己放電させると、自己放電抵抗値の違いにより、時刻t=T1でのキャパシタセルC1,C2の電圧値は異なってくる。次に、時刻t=T1からキャパシタ合成電圧が規定値V0になるt=T2まで充電する。両キャパシタセルはほぼ同じ電圧ΔV/2上昇する。時刻t=T2でキャパシタセルC1の電圧はキャパシタセルC2よりも大きくなるが、過電圧レベルV2には達しない。
【0012】
時刻t=T2で、再びキャパシタ電池を開放状態にして放置する。両キャパシタセルは自己放電を始める。時刻t=T3のキャパシタセル電圧のバラツキは時刻t=T1の時よりも更に拡大する。時刻t=T3で再び、キャパシタセル合成電圧が規定値V1になる時刻t=T4まで充電する。時刻t=T3の時点でのキャパシタセル電圧のバラツキを受けて、時刻t=T4での電圧のバラツキは時刻t=T2の時の電圧より更に拡大し、キャパシタセルC1の電圧は過電圧レベルV2を越えてしまい、キャパシタセルの故障にまで発展してしまう。図12では、時刻t=T1,T2で開放して自己放電させる場合について示したが、負荷へ電力供給して放電する場合も同じ現象となる。この場合は、自己放電の場合より、放電時間は短くなる。
【0013】
【課題を解決するための手段】
そこでこれらの問題の対策として、従来は、電気二重層キャパシタセルを多数直列接続して電池として使用する場合、直列キャパシタセルの1つでも過電圧にならないよう、各キャパシタセル毎に電圧均等化回路を接続し、キャパシタセルが過電圧になる前に、適当なタイミングでキャパシタセル電圧を均等にする方法がとられている。図13はこの方法について示したものである。図12の場合と同じく、直列数2の場合で示してある。キャパシタセル電圧Vが基準電圧V1に達すると、電圧均等化回路4a,4bを作動させて充電電流I0の一部をibとして電圧均等化回路4a,4bに分流させる。キャパシタセル電圧の上昇に応じて、この分流量を増し、キャパシタセル電圧がV2に達すると、キャパシタセルへの電流icを零にする。
【0014】
このように、キャパシタセル電圧を監視し、規定電圧以上では充電電流をバイパスさせることによって、キャパシタセルの電圧はV2より高くはならない。なお、電圧均等化回路には、V2とI0の積の電力損失が発生するが、V2は2〜3Vであり、I0は数Aにしているので、発生電力は数W程度である。また、図12において、キャパシタセルC1の電圧がV2に達すると、電圧均等化回路が作動して、電圧はV2に保たれる。更に充電を続けるとキャパシタセルC2も同様に電圧均等化回路の動作によってV2になり、キャパシタセルの電圧バラツキはほぼ零となり、直列キャパシタセル全部の充電電圧は同一のV2になる。
【0015】
このように、全キャパシタセルの電圧を同一に揃えた後、正規の負荷電力の放充電を行うと、放充電サイクル及び時間経過に伴いキャパシタ電圧のバラツキは拡大して行く、そこで適当な時間経過後または適当な放充電サイクル経過後に前述の均等充電を行って、キャパシタセル電圧のバラツキをほぼ零に補正する。このような使い方をすることで、本発明では、直列接続されたキャパシタセルが過電圧にさらされることがなくなり、長寿命なキャパシタ電池が実現される。
【0016】
すなわち、本発明は、直列接続された電気二重層キャパシタセルを小電力の外部電源によって充電し、各セルに接続したセル過電圧保護回路によってセル電圧を揃えることで十分な充放電サイクルが得られること、また、電気自動車には補機用の補助蓄電装置を備えていることに着目してなされたものである。
具体的には、補助蓄電装置からDC−DCコンバータを介して、複数のブロックに分割された電気二重層キャパシタ電池毎にキャパシタセル全数を均一電圧に充電(以下これを全揃充電と称する)するようにしたものである。また、補助蓄電装置用のDC−DCコンバータと全揃充電用のDC−DCコンバータとを同一のDC−DCコンバータとしかつ双方向型としたものである。
【0017】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。図1は本発明の第1の実施形態であって請求項1,2に相当する発明であり、自動車の補助蓄電装置を電源にしてキャパシタセルを全揃充電するシステムである。図1において、5はインバータであり、車両駆動電動機6を駆動する。7は補助蓄電装置8を充電するDC−DCコンバータであり、13は電気二重層キャパシタ電池ブロック接続切替え回路である。
【0018】
14,15,16はキャパシタ全揃充電用DC−DCコンバ−タであり、補助蓄電装置8の電力を用いて、キャパシタ電池ブロック10,11,12を充電する充電器である。このキャパシタ電池ブロック10,11,12のそれぞれのキャパシタセルの直列接続数は互いに異なるので、DC−DCコンバータ14,15,16の出力(キャパシタ側)電圧も互いに異なる。
【0019】
図2は図1のDC−DCコンバータ14の回路構成例を示したものである。DC−DCコンバータ14は絶縁型チョッパであり、図1と同一構成要素は同一番号を付してある。図2において、140は半導体スイッチ、141,142,143,144,145はダイオード、146は変圧器、147は電流平滑リアクトル、148,149は電圧平滑コンデンサである。出力側(キャパシタ側)の電圧は変圧器146の巻数比を変えることで変える。この図示された絶縁型チョッパの動作は公知であるので、ここでは説明を省略する。また、図1のDC−DCコンバータ15,16もコンバータ14と同様な構成であるので説明を省略する。
【0020】
図3は本発明の第2の実施形態であり、請求項に相当する発明である。すなわち、図1の発明で示したDC−DCコンバータ14,15,16の機能とDC−DCコンバータ7の両方の機能を持ったDC−DCコンバータの回路構成例である。図3において、図1と同一の構成要素は同一番号を付してある。図3において、9は補助蓄電装置8により駆動される補機17,18,19は双方向動作型のDC−DCコンバータであり、キャパシタ電池ブロック10,11,12から補助蓄電装置8への充電機能と補助蓄電装置8からキャパシタ電池ブロック10,11,12への充電機能を備えている。
【0021】
図4は図3のDC−DCコンバータ17の回路構成例である。図4において、図3と同一構成要素には同一番号を付してある。図4において、170,171,172,173は半導体スイッチ、170a,171a,172a,173a,174,175はダイオードであり、170,171,172,173の半導体スイッチにはダイオード170a,171a,172a,173aが図示のように逆並列接続されている。176は変圧器、177は電流平滑リアクトル、178,179は電圧平滑コンデンサである。
【0022】
次に、図4のDC−DCコンバータ17の動作について説明する。補助蓄電装置8をキャパシタ電池ブロック10から充電する場合は、半導体スイッチ170,171はオフし、172と173をスイッチングする。この場合の回路構成は図6に示した従来公知の2石式フォワード型と等価な回路となる。次に、補助蓄電装置8からキャパシタ電池10を充電する場合は、半導体スイッチ172,173をオフし、170,171をスイッチングする。この場合の回路構成は図2と等価な回路となる。但し、半導体スイッチ171は図2のダイオード141と同じ動作をさせる。
【0023】
なお、図3におけるコンバータ18,19の回路構成は、図4のDC−DCコンバータ17と同じであるのでその説明を省略する。
また、図示しないが、キャパシタ電池ブロック10,11,12のそれぞれのキャパシタセルには、図13に示したようなセル過電圧保護回路(電圧均等化回路)が接続されており、充電の際に各セルの電圧が揃えられる。
【0024】
【発明の効果】
以上述べたように、本発明は電気自動車又はハイブリッド電気自動車の主蓄電装置に、電気二重層キャパシタセルを直列接続したキャパシタ電池を複数のブロックに分割し、このブロックを双方向通電型スイッチで直列数を切替えるようにした電源システムにおいて、各電池ブロックのキャパシタセルを車載の補助蓄電装置からDC−DCコンバータを介してキャパシタセル電圧を常に均一に充電して使用するするように構成したことで、次の効果が得られる。
【0025】
(1)直列接続されたキャパシタセルが過電圧になることがないので、電池として安定に作動し、高い信頼性が得られる。
(2)電気自動車の主蓄電装置に電気二重層キャパシタ電池の適用を可能にしたことで電池が長寿命となり、実用的な電気自動車及びハイブリッド自動車が実現できる。
(3)DC−DCコンバータはキャパシタ電池ブロックから補助蓄電装置を充電するようにして主電池から補助蓄電装置の充電を兼用したことで、キャパシタ電池の全揃充電電源には、走行に必要な機器の流用が可能となる。それにより、電源システムが低廉で実用的な電気自動車またはハイブリッド電気自動車が実現できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す電源システムの構成図である。
【図2】図1の要部の詳細な説明図である。
【図3】本発明の第2実施形態を示す電源システムの構成図である。
【図4】図3の要部の詳細な説明図である。
【図5】従来の電源システムを示す図である。
【図6】図5の要部の詳細な説明図である。
【図7】従来の電源システムを示す図である。
【図8】従来の電源システムを示す図である。
【図9】図8の要部の詳細な説明図である。
【図10】図9における動作の説明図である。
【図11】電気二重層キャパシタの等価回路を示す図である。
【図12】電気二重層キャパシタの電圧変化を示す説明図である。
【図13】直列接続電気二重層キャパシタの動作を説明する図である。
【符号の説明】
1 エンジン
2 発電機
3 整流器
4 主蓄電装置(電気二重層キャパシタ電池)
4a,4b 電圧均等化回路
5 インバータ
6 車両駆動電動機
7 補助蓄電装置充電用DC−DCコンバータ
8 補助蓄電装置
9 補機
10〜12 電気二重層キャパシタ電池ブロック
13 電気二重層キャパシタ電池ブロック接続切替え回路
14〜16 キャパシタ電池ブロック充電用DC−DCコンバータ
17〜19 双方向型DC−DCコンバータ
41〜43,100,110,120 電気二重層キャパシタセル
44 チョッパ
70,71,140,170〜173 半導体スイッチ
73〜75,141〜144 ダイオード
170a〜173a,174,175 ダイオード
76,146,176 変圧器
77,147,177 電流平滑リアクトル
78,79,147,148,178,179 電圧平滑コンデンサ
130〜132 双方向通電型スイッチ
410a〜412a キャパシタエレメント
410b〜412b 内部抵抗
410c〜412c 自己放電抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply system for an electric vehicle or a hybrid electric vehicle using an electric double layer capacitor as a main power storage device.
[0002]
[Prior art]
Conventionally, chemical batteries have been applied to power storage devices for electric vehicles or hybrid electric vehicles. However, since chemical batteries have a short charge / discharge cycle life and poor efficiency during high output operation, electric double layer capacitor batteries are used. Has been.
FIG. 5 shows a basic configuration example of a power supply system in which an electric double layer capacitor is applied to a main power storage device of a hybrid electric vehicle. In the figure, 1 is an engine, 2 is a generator, 3 is a rectifier, 4 is a main power storage device, and 5 is an inverter that drives a vehicle drive motor 6. From the engine 1 to the vehicle drive motor 6 is a power train. 7 is a DC-DC converter for charging the auxiliary power storage device 8, and 9 is an auxiliary machine. The main power storage device 4 is configured by connecting a plurality of electric double layer capacitor cells 41, 42, 43,. In addition, illustration about the drive mechanism after the electric motor 6 is abbreviate | omitted.
[0003]
The illustrated system is a power supply system for a series hybrid electric vehicle, and charges part or all of the electric power generated by the engine 1 and the generator 2 to the main power storage device 4. The electric power generated by the engine 1 and the generator 2 and the electric power of the main power storage device 4 are used to drive the electric motor 6 through the inverter 5 to run the vehicle. At the time of acceleration, the electric motor 6 is accelerated and driven through the inverter 5 with the electric power of the generator 2 and the electric power of the main power storage device 4 or only the main power storage device 4. During regenerative braking, braking power generated in the electric motor 6 is regenerated to the main power storage device 4 via the inverter 5. The DC-DC converter 7 is a charger that charges the auxiliary power supply 8 from the main power storage device 4 of the powertrain system, and corresponds to an alternator of the engine vehicle.
[0004]
The power supply system for an electric vehicle not equipped with a generator has a system configuration in which the engine 1, the generator 2, and the rectifier 3 are removed from FIG. To do.
FIG. 6 shows a circuit configuration of the DC-DC converter 7 of FIG. In the figure, 70 and 71 are semiconductor switches, 72, 73, 74 and 75 are diodes, 76 is a transformer, 77 is a current smoothing reactor, and 78 and 79 are voltage smoothing capacitors. Since this circuit system is a known circuit system called a two-stone forward type, its operation description is omitted.
[0005]
As described above, the main power storage device 4 is repeatedly discharged during vehicle acceleration and charged during braking, and the number of times reaches tens of thousands of times. The main power storage device for electric vehicles must be able to withstand this number of charge / discharge cycles. The power storage device using the electric double layer capacitor described above has this performance, and can be said to be an excellent power storage device for an electric vehicle.
The electric double layer capacitor battery shown in FIG. 5 is also configured by connecting a large number of electric double layer capacitor cells in series in the same manner as an assembled battery in which a number of conventional chemical secondary batteries are connected in series. Is a system in which an electric double layer capacitor is replaced.
[0006]
The stored energy of the electric double layer capacitor is proportional to the square of the capacitor voltage. In other words, when used as a DC power supply, the voltage of the electric double layer capacitor decreases as the energy consumption increases. Using 75% of the energy, the voltage drops to ½. In the power supply system shown in FIG. 5, the input voltage of the inverter varies greatly depending on the power consumption. In particular, in the case of an electric vehicle, when the voltage is lowered, the vehicle performance in the middle and high speed range is greatly lowered. Therefore, in practice, as shown in FIG. 7, a method of making the input voltage to the inverter 5 constant by inserting a chopper 44 between the capacitor battery 4 which is the main power storage device and the inverter 5 or shown in FIG. As described above, a method has been proposed in which the capacitor battery is divided into a plurality of blocks, and the blocks are switched by switches to reduce the change in the input voltage of the inverter.
[0007]
That is, in FIG. 8, reference numerals 10, 11, and 12 denote capacitor battery blocks, each of which has a required number of capacitor cells 100, 110, and 120 connected in series. Reference numeral 13 denotes a capacitor block connection selector switch. FIG. 9 is a diagram showing details of the selector switch unit 13 of FIG. Reference numerals 130, 131, and 132 are bidirectional flow-type switches, and normally semiconductor switches are used. FIG. 10 shows the behavior of the inverter input voltage in the case of the power supply system of FIG. In the operation mode I, the switch 130 is closed and the switches 131 and 132 are opened. Then, the capacitor battery becomes the voltage of the capacitor battery block 10. In the operation mode II, the switch 131 is closed and the switches 130 and 132 are opened. Then, the capacitor battery becomes a series of capacitor battery blocks 10 and 12. In the operation mode III, the switch 132 is closed and the switches 130 and 131 are opened. Then, the capacitor battery becomes a series of capacitor battery blocks 10, 11 and 12.
[0008]
[Problems to be solved by the invention]
Incidentally, as described above, the electric double layer capacitor is different from the chemical battery in that the stored energy is proportional to the square of the voltage. That is, the capacitor voltage increases as the stored energy increases. Moreover, in the power supply system shown in FIGS. 5-9, the electric double layer capacitor is used similarly to the assembled battery of the conventional chemical secondary battery. That is, a capacitor battery in which a large number of capacitor cells are connected in series is used as one capacitor battery. A large number of electric double layer capacitors connected in series will cause variations in the capacitor cell voltage if they are left for a long time in a charged state or repeatedly charged and discharged, so when applied to an electric vehicle that repeatedly charges and discharges, this voltage Due to the variation, some of the capacitor cells become overvoltage, leading to failure of the capacitor battery.
[0009]
For an electric vehicle, a failure of a power storage device is a serious failure. Therefore, when an electric double layer capacitor battery is applied to an electric vehicle, it is highly required that the capacitor cell does not become overvoltage. Next, the voltage behavior of the electric double layer capacitor cells connected in series will be described. An internal equivalent circuit of the electric double layer capacitor cell shown in FIG. 5 is expressed as shown in FIG. FIG. 11 shows the capacitor cell 41 of FIG. The electric double layer capacitor cell 41 can be regarded as equivalently having capacitor elements 410a, 411a, 412a,... Connected in parallel via resistors 410b, 411b, 412b,. Further, it can be considered that discharge resistors 410c, 411c, 412c,... Equivalently representing self-discharge for each capacitor cell are connected in parallel to the capacitor elements 410a, 411a, 412a,.
[0010]
Here, when an electric double layer capacitor battery is applied to a main power storage device for an electric vehicle, a plurality of electric double layer capacitor cells are connected in series, but the circuit constants for each capacitor cell are not all the same. A problem occurs. The contents will be described below. If the capacitor battery is left in a charged state for a long time, each capacitor cell is self-discharged by an internal self-discharge resistor. The voltage behavior of this series-connected capacitor cell will be described with reference to FIG. In order to simplify the description, a case where two are connected in series will be described.
[0011]
In FIG. 12, at time t = T0 in a state where the two capacitor cells C1 and C2 are uniformly charged to the voltage V1 (the combined voltage is V0), the capacitor battery is left open and left. When the capacitor cell is self-discharged until time t = T1, the voltage values of the capacitor cells C1 and C2 at time t = T1 differ due to the difference in self-discharge resistance value. Next, charging is performed from time t = T1 until t = T2 at which the capacitor combined voltage reaches the specified value V0. Both capacitor cells rise to approximately the same voltage ΔV / 2. At time t = T2, the voltage of the capacitor cell C1 becomes higher than that of the capacitor cell C2, but does not reach the overvoltage level V2.
[0012]
At time t = T2, the capacitor battery is again opened and left. Both capacitor cells begin self-discharge. The variation in the capacitor cell voltage at time t = T3 is further enlarged than that at time t = T1. At time t = T3, charging is performed again until time t = T4 when the capacitor cell composite voltage reaches the specified value V1. In response to the variation in the capacitor cell voltage at the time t = T3, the voltage variation at the time t = T4 further expands compared to the voltage at the time t = T2, and the voltage of the capacitor cell C1 reaches the overvoltage level V2. And it will develop to the failure of the capacitor cell. Although FIG. 12 shows the case of opening and self-discharging at time t = T1, T2, the same phenomenon occurs when power is supplied to the load for discharge. In this case, the discharge time is shorter than in the case of self-discharge.
[0013]
[Means for Solving the Problems]
Therefore, as a countermeasure against these problems, conventionally, when a plurality of electric double layer capacitor cells are connected in series and used as a battery, a voltage equalization circuit is provided for each capacitor cell so that even one of the series capacitor cells does not become an overvoltage. A method is adopted in which the capacitor cell voltages are equalized at an appropriate timing before the capacitor cells are overvoltaged. FIG. 13 shows this method. As in the case of FIG. 12, the case of serial number 2 is shown. When the capacitor cell voltage V reaches the reference voltage V1, the voltage equalization circuits 4a and 4b are operated to divide a part of the charging current I0 as ib to the voltage equalization circuits 4a and 4b. As the capacitor cell voltage increases, the flow rate is increased by this amount. When the capacitor cell voltage reaches V2, the current ic to the capacitor cell is made zero.
[0014]
Thus, by monitoring the capacitor cell voltage and bypassing the charging current above the specified voltage, the voltage of the capacitor cell cannot be higher than V2. In the voltage equalization circuit, a power loss of the product of V2 and I0 occurs, but V2 is 2 to 3 V and I0 is set to several A, so the generated power is about several W. In FIG. 12, when the voltage of the capacitor cell C1 reaches V2, the voltage equalization circuit operates and the voltage is kept at V2. If the charging is further continued, the capacitor cell C2 similarly becomes V2 by the operation of the voltage equalizing circuit, the voltage variation of the capacitor cell becomes almost zero, and the charging voltage of all the series capacitor cells becomes the same V2.
[0015]
In this way, when the regular load power is discharged after all the capacitor cells have the same voltage, the variation in the capacitor voltage increases as the discharge cycle and time elapse. The above-described equal charge is performed later or after an appropriate discharge / charge cycle, and the variation in the capacitor cell voltage is corrected to almost zero. By using such a method, in the present invention, capacitor cells connected in series are not exposed to overvoltage, and a long-life capacitor battery is realized.
[0016]
That is, according to the present invention, a sufficient charge / discharge cycle can be obtained by charging serially connected electric double layer capacitor cells with a low-power external power source and aligning the cell voltages with a cell overvoltage protection circuit connected to each cell. In addition, the electric vehicle is made paying attention to an auxiliary power storage device for auxiliary equipment.
Specifically, the total number of capacitor cells is charged to a uniform voltage for each electric double layer capacitor battery divided into a plurality of blocks from the auxiliary power storage device via a DC-DC converter (hereinafter referred to as full charge). It is what I did. Further, the DC-DC converter for the auxiliary power storage device and the DC-DC converter for full charge are the same DC-DC converter and are of a bidirectional type.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, which corresponds to claims 1 and 2 , and is a system that charges all capacitor cells using an auxiliary power storage device of an automobile as a power source. In FIG. 1, reference numeral 5 denotes an inverter that drives the vehicle drive motor 6. Reference numeral 7 denotes a DC-DC converter that charges the auxiliary power storage device 8, and reference numeral 13 denotes an electric double layer capacitor battery block connection switching circuit.
[0018]
Reference numerals 14, 15, and 16 are all-capacitor charging DC-DC converters that charge the capacitor battery blocks 10, 11, and 12 using the power of the auxiliary power storage device 8. Since the number of capacitor cells connected in series in the capacitor battery blocks 10, 11, and 12 are different from each other, the output (capacitor side) voltages of the DC-DC converters 14, 15, and 16 are also different from each other.
[0019]
FIG. 2 shows a circuit configuration example of the DC-DC converter 14 of FIG. The DC-DC converter 14 is an insulated chopper, and the same components as those in FIG. In FIG. 2, 140 is a semiconductor switch, 141, 142, 143, 144, and 145 are diodes, 146 is a transformer, 147 is a current smoothing reactor, and 148 and 149 are voltage smoothing capacitors. The voltage on the output side (capacitor side) is changed by changing the turns ratio of the transformer 146. Since the operation of the illustrated insulated chopper is known, the description thereof is omitted here. Further, since the DC-DC converters 15 and 16 of FIG.
[0020]
FIG. 3 shows a second embodiment of the present invention, which corresponds to the third aspect of the present invention. In other words, this is a circuit configuration example of a DC-DC converter having both the functions of the DC-DC converters 14, 15, 16 shown in the invention of FIG. 1 and the function of the DC-DC converter 7. In FIG. 3, the same components as those in FIG. In FIG. 3, 9 is an auxiliary machine driven by the auxiliary power storage device 8 , 17 , 18 , and 19 are bidirectional operation type DC-DC converters, and the capacitor battery blocks 10, 11, 12 are connected to the auxiliary power storage device 8. A charging function and a charging function from the auxiliary power storage device 8 to the capacitor battery blocks 10, 11, and 12 are provided.
[0021]
FIG. 4 is a circuit configuration example of the DC-DC converter 17 of FIG. In FIG. 4, the same components as those in FIG. In FIG. 4, 170, 171, 172, 173 are semiconductor switches, 170a, 171a, 172a, 173a, 174, 175 are diodes, and the semiconductor switches 170, 171, 172, 173 are diodes 170a, 171a, 172a, 173a is connected in reverse parallel as shown. 176 is a transformer, 177 is a current smoothing reactor, and 178 and 179 are voltage smoothing capacitors.
[0022]
Next, the operation of the DC-DC converter 17 of FIG. 4 will be described. When the auxiliary power storage device 8 is charged from the capacitor battery block 10, the semiconductor switches 170 and 171 are turned off and the switches 172 and 173 are switched. The circuit configuration in this case is equivalent to the conventionally known two-stone forward type shown in FIG. Next, when charging the capacitor battery 10 from the auxiliary power storage device 8, the semiconductor switches 172 and 173 are turned off, and 170 and 171 are switched. The circuit configuration in this case is equivalent to that shown in FIG. However, the semiconductor switch 171 performs the same operation as the diode 141 in FIG.
[0023]
3 is the same as that of the DC-DC converter 17 of FIG. 4 and the description thereof is omitted.
Although not shown, a cell overvoltage protection circuit (voltage equalization circuit) as shown in FIG. 13 is connected to each capacitor cell of the capacitor battery blocks 10, 11 and 12, and each capacitor cell is charged at the time of charging. The cell voltages are aligned.
[0024]
【The invention's effect】
As described above, the present invention divides a capacitor battery in which electric double layer capacitor cells are connected in series into a main power storage device of an electric vehicle or a hybrid electric vehicle into a plurality of blocks, and the blocks are connected in series with a bidirectional energization switch. In the power supply system in which the number is switched, the capacitor cell of each battery block is configured to be used by constantly charging the capacitor cell voltage from the in-vehicle auxiliary power storage device via the DC-DC converter. The following effects can be obtained.
[0025]
(1) Since the capacitor cells connected in series do not become overvoltage, they operate stably as a battery, and high reliability is obtained.
(2) Since the electric double layer capacitor battery can be applied to the main power storage device of the electric vehicle, the battery has a long life, and a practical electric vehicle and hybrid vehicle can be realized.
(3) The DC-DC converter combines the charging of the auxiliary power storage device from the main battery so that the auxiliary power storage device is charged from the capacitor battery block. Can be diverted. Thereby, a low-priced and practical electric vehicle or hybrid electric vehicle can be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power supply system showing a first embodiment of the present invention.
FIG. 2 is a detailed explanatory diagram of a main part of FIG. 1;
FIG. 3 is a configuration diagram of a power supply system showing a second embodiment of the present invention.
4 is a detailed explanatory diagram of a main part of FIG. 3;
FIG. 5 is a diagram showing a conventional power supply system.
6 is a detailed explanatory diagram of a main part of FIG. 5;
FIG. 7 is a diagram showing a conventional power supply system.
FIG. 8 is a diagram showing a conventional power supply system.
FIG. 9 is a detailed explanatory diagram of a main part of FIG. 8;
10 is an explanatory diagram of the operation in FIG. 9. FIG.
FIG. 11 is a diagram showing an equivalent circuit of an electric double layer capacitor.
FIG. 12 is an explanatory diagram showing a change in voltage of the electric double layer capacitor.
FIG. 13 is a diagram for explaining the operation of a series-connected electric double layer capacitor.
[Explanation of symbols]
1 Engine 2 Generator 3 Rectifier 4 Main power storage device (electric double layer capacitor battery)
4a, 4b Voltage equalization circuit 5 Inverter 6 Vehicle drive motor 7 Auxiliary power storage device charging DC-DC converter 8 Auxiliary power storage device 9 Auxiliary devices 10-12 Electric double layer capacitor battery block 13 Electric double layer capacitor battery block connection switching circuit 14 -16 Capacitor battery block charging DC-DC converter 17-19 Bidirectional DC-DC converters 41-43, 100, 110, 120 Electric double layer capacitor cell 44 Chopper 70, 71, 140, 170-173 Semiconductor switch 73- 75, 141-144 Diodes 170a-173a, 174, 175 Diodes 76, 146, 176 Transformers 77, 147, 177 Current smoothing reactors 78, 79, 147, 148, 178, 179 Voltage smoothing capacitors 130-132 Bidirectional energization type Sui H 410a to 412a Capacitor element 410b to 412b Internal resistance 410c to 412c Self-discharge resistance

Claims (7)

車載エンジン発電機の電力または車載主蓄電装置の電力で車両を駆動する電気自動車であって、電気二重層キャパシタセルを複数個直列または直並列接続したキャパシタ電池ブロックを切替え回路を介して複数個組み合わせてなる主蓄電装置と、車両補機用の補助蓄電装置と、前記主蓄電装置と補助蓄電装置の間に接続されて主蓄電装置の電力で補助蓄電装置を充電するDC−DCコンバータとを備えた電気自動車の電源システムにおいて、
前記キャパシタ電池ブロックのキャパシタセルを監視して全揃充電を開始するタイミングか否かを判別する手段と、
全揃充電開始タイミングと判別された場合に、補助蓄電装置の電力を用いて、充電対象のキャパシタセルの全数または所定数が所定電圧に達するまでキャパシタセルを充電する全揃充電用DC−DCコンバータと、
を備え
前記全揃充電用DC−DCコンバータを各キャパシタ電池ブロックごとに設けたことを特徴とする電気自動車の電源システム。
An electric vehicle that drives a vehicle with electric power from an in-vehicle engine generator or electric power from an in-vehicle main power storage device, and a plurality of capacitor battery blocks in which a plurality of electric double layer capacitor cells are connected in series or in series and parallel are combined through a switching circuit. A main power storage device, an auxiliary power storage device for vehicle auxiliary equipment, and a DC-DC converter connected between the main power storage device and the auxiliary power storage device to charge the auxiliary power storage device with the power of the main power storage device. In the electric vehicle power system,
Means for monitoring the capacitor cells of the capacitor battery block and determining whether or not it is the timing to start full charge;
A full-charging DC-DC converter that charges the capacitor cells using the power of the auxiliary power storage device until the total number or a predetermined number reaches a predetermined voltage when it is determined that the total charging start timing is reached. When,
Equipped with a,
A power supply system for an electric vehicle, characterized in that the DC-DC converter for full charge is provided for each capacitor battery block .
請求項1記載の電気自動車の電源システムにおいて、
補助蓄電装置用のDC−DCコンバータと全揃充電用のDC−DCコンバータとを同一のDC−DCコンバータとし、かつ双方向型としたことを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to claim 1,
A power system for an electric vehicle, characterized in that a DC-DC converter for an auxiliary power storage device and a DC-DC converter for full charge are the same DC-DC converter and are bidirectional .
請求項1または2記載の電気自動車の電源システムにおいて、
全揃充電の開始タイミング判別手段は、キャパシタ電池ブロックの電圧が所定値以下に低下したら開始タイミングであると判別することを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to claim 1 or 2,
An all-electric charging start timing determining means determines the start timing when the voltage of the capacitor battery block falls below a predetermined value .
請求項1または2記載の電気自動車の電源システムにおいて、
全揃充電の開始タイミング判別手段は、キャパシタ電池ブロックの前回の全揃充電終了後の経過時間を計測し、所定時間に達したら開始タイミングであると判別することを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to claim 1 or 2 ,
The complete charging start timing determining means measures an elapsed time after the last complete charging of the capacitor battery block, and determines the start timing when a predetermined time is reached. .
請求項1または2記載の電気自動車の電源システムにおいて、
全揃充電の開始タイミング判別手段は、キャパシタ電池ブロックの前回の全揃充電終了後の充放電サイクル数を計測し、所定回数に達したら開始タイミングであると判別することを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to claim 1 or 2 ,
Start timing determining means for all assortment charging measures the number of charge-discharge cycles of the previous full assortment After charging the capacitor battery blocks, an electric vehicle, characterized in that determined to be in reach Once you start timing a predetermined number of times Power system.
請求項1または2記載の電気自動車の電源システムにおいて、
全揃充電の開始タイミング判別手段は、キャパシタ電池ブロックの前回の全揃充電終了後の経過時間および充放電サイクル数を組み合わせた値にもとづいて判別することを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to claim 1 or 2 ,
An all-electric charging start timing determining means determines based on a value obtained by combining an elapsed time after the last all-complete charging of a capacitor battery block and the number of charge / discharge cycles .
請求項1〜のいずれかに記載の電気自動車の電源システムにおいて、
前記キャパシタ電池ブロックの各キャパシタセルにそれぞれ電圧均等化回路を接続したことを特徴とする電気自動車の電源システム。
In the electric vehicle power supply system according to any one of claims 1 to 6 ,
A power system for an electric vehicle, wherein a voltage equalization circuit is connected to each capacitor cell of the capacitor battery block .
JP36011199A 1999-12-20 1999-12-20 Electric vehicle power system Expired - Lifetime JP3606779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36011199A JP3606779B2 (en) 1999-12-20 1999-12-20 Electric vehicle power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36011199A JP3606779B2 (en) 1999-12-20 1999-12-20 Electric vehicle power system

Publications (2)

Publication Number Publication Date
JP2001177914A JP2001177914A (en) 2001-06-29
JP3606779B2 true JP3606779B2 (en) 2005-01-05

Family

ID=18467956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36011199A Expired - Lifetime JP3606779B2 (en) 1999-12-20 1999-12-20 Electric vehicle power system

Country Status (1)

Country Link
JP (1) JP3606779B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754964A1 (en) * 1997-12-11 1999-06-17 Bayerische Motoren Werke Ag Device for supplying energy to a motor vehicle
FR2892069B1 (en) * 2005-10-17 2014-07-18 Pvi RECHARGING STATION AND ASSOCIATED ELECTRIC VEHICLE
JP4710547B2 (en) * 2005-10-27 2011-06-29 パナソニック株式会社 Vehicle power supply
CN100386944C (en) * 2006-05-26 2008-05-07 清华大学 Vehicle-mounted charging device for fuel cell automobile super capacitance
JP4179351B2 (en) * 2006-07-07 2008-11-12 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, method for controlling power supply system, and computer-readable recording medium recording a program for causing computer to execute control of power supply system
JP4466620B2 (en) * 2006-07-10 2010-05-26 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP5035978B2 (en) * 2007-08-24 2012-09-26 株式会社日本自動車部品総合研究所 DCDC converter device for vehicle
JP4995005B2 (en) * 2007-08-24 2012-08-08 株式会社日本自動車部品総合研究所 DCDC converter device for vehicle
JP4696212B2 (en) * 2008-03-04 2011-06-08 独立行政法人 宇宙航空研究開発機構 Capacitor power system
JP2010063267A (en) * 2008-09-03 2010-03-18 Denso Corp Power supply device
JP5543195B2 (en) * 2009-12-28 2014-07-09 有限会社オーエイチケー研究所 Battery charger
US8947048B2 (en) * 2011-07-29 2015-02-03 Infineon Technologies Ag Power supply system with charge balancing
JP2013099092A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
US9991821B2 (en) 2012-08-17 2018-06-05 Advanced Charging Technologies, LLC Transformerless multiple output capable power supply system
KR20150045480A (en) * 2012-08-17 2015-04-28 어드벤스트 차징 테크놀로지스, 엘엘씨 Power device
US9520799B2 (en) 2012-08-17 2016-12-13 Advanced Charging Technologies, LLC Power device
CN103660970A (en) * 2014-01-08 2014-03-26 洛阳市睿仕行智能科技发展有限公司 Intelligent automatic charging and extended range management method of electric car
US20180076644A1 (en) * 2016-09-14 2018-03-15 Kilowatt Labs, Inc. Supercapacitor based energy storage device
DE102017009007A1 (en) * 2017-09-26 2019-03-28 Borgward Trademark Holdings Gmbh Method for balancing a drive battery, associated device and vehicle
CN108608876A (en) * 2018-04-09 2018-10-02 江苏理工学院 Extended-range mixed power electric car composite power source Energy Management System control strategy
CN113147402B (en) * 2021-06-18 2022-11-29 东风汽车集团股份有限公司 Pure electric vehicle DCDC control method capable of adjusting voltage in real time

Also Published As

Publication number Publication date
JP2001177914A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP3606779B2 (en) Electric vehicle power system
Park et al. A modularized charge equalizer for an HEV lithium-ion battery string
Kim et al. A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery strings in electric vehicles
US7568537B2 (en) Vehicle propulsion system
Kim et al. A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV
US7800346B2 (en) Device and method for equalizing charges of series-connected energy stores
Park et al. Two-stage cell balancing scheme for hybrid electric vehicle Lithium-ion battery strings
US5710504A (en) Switched capacitor system for automatic battery equalization
US8039987B2 (en) Power source device and vehicle with power source device
CN102792548B (en) Charge equalization system for batteries
JP5702406B2 (en) Charge equalization system for batteries combined with unit storage batteries
CN102823104B (en) For the charge balancing system of battery
JP6873951B2 (en) Dynamic balancing method for high voltage batteries
EP2372865A2 (en) Power supply device capable of equalizing electrical properties of batteries
JP3552087B2 (en) Electric vehicle power system
CN103477530A (en) Charge balancing system for batteries
KR20130073915A (en) Balancing system for power battery and corresponding load balancing method
JP2008526182A (en) Charge redistribution circuit
Kim et al. Individual charge equalization converter with parallel primary winding of transformer for series connected lithium-ion battery strings in an HEV
JP7458326B2 (en) Battery monitoring control circuit
Abronzini et al. Optimal modular bms for high performances nmc battery pack
Ji et al. Modularized charge equalizer using multiwinding transformers for Lithium-ion battery system
JP3827935B2 (en) Vehicle power supply
Ketzer et al. Evaluating circuit topologies for battery charge equalization
Park et al. Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle li-ion battery system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Ref document number: 3606779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term