JP2001053820A - Digital demodulating device - Google Patents

Digital demodulating device

Info

Publication number
JP2001053820A
JP2001053820A JP11229633A JP22963399A JP2001053820A JP 2001053820 A JP2001053820 A JP 2001053820A JP 11229633 A JP11229633 A JP 11229633A JP 22963399 A JP22963399 A JP 22963399A JP 2001053820 A JP2001053820 A JP 2001053820A
Authority
JP
Japan
Prior art keywords
circuit
signal
demodulation
demodulator
rom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11229633A
Other languages
Japanese (ja)
Other versions
JP4067707B2 (en
Inventor
Hirotatsu Katsuta
宏達 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP22963399A priority Critical patent/JP4067707B2/en
Publication of JP2001053820A publication Critical patent/JP2001053820A/en
Application granted granted Critical
Publication of JP4067707B2 publication Critical patent/JP4067707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a receiver for demodulating a wide band received signal with a ROM with a small capacity which can be loaded on a DSP. SOLUTION: A control circuit 7 detects the maximum value of channel signals outputted from low-pass filters 5a and 5b of a quadrature demodulator 10 from the sum of squares of co-phase components and quadrature components. When the number of quantization bits is converted into an n dynamic range, a DRC circuit 6 obtains a demodulator output signal normalized with the maximum value by a DRC circuit 6. Then, the normalized signal is multiplied by 1/2 of the n-th power of 2, and the figures below a decimal point are omitted so that a signal whose dynamic range is decreased can be obtained, and transmitted to a PM demodulating circuit 8. An ROM loaded on a present DSP copes with the arithmetic table of the PM demodulating circuit at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディジタル通信に
おけるROMに記憶された演算テーブルを用いた復調装
置に関し、特に広帯域受信信号のダイナミックレンジを
変換することによって、必要とするROMの容量を低減
する復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demodulation apparatus using an operation table stored in a ROM in digital communication, and more particularly, to reducing a required ROM capacity by converting a dynamic range of a wideband received signal. The present invention relates to a demodulation device.

【0002】[0002]

【従来の技術】近年、急激なディジタル回路技術の発達
により、アナログ回路で実現していた機能をディジタル
回路で実現する例が増えており、無線通信分野において
も、受信したアナログ信号をディジタル化し、これをデ
ィジタル信号処理技術によってチャネル選択、或いは変
復調する技術が盛んに用いられている。図2(a)は、
従来のディジタル信号処理技術を用いた受信機の復調装
置の一例を示す構成概要図である。同図に示すように、
本復調装置は、ミキサ21a、21bとローカル信号発
生器22と90°位相器23とローパスフィルタ24
a、24bとから成る直交復調器20、A/D変換器2
5a、25b及び復調部8とで構成される。
2. Description of the Related Art In recent years, with the rapid development of digital circuit technology, an example of realizing a function realized by an analog circuit by a digital circuit is increasing. In the field of wireless communication, a received analog signal is digitized. Techniques for channel selection or modulation / demodulation using digital signal processing techniques have been actively used. FIG. 2 (a)
FIG. 11 is a schematic configuration diagram illustrating an example of a demodulator of a receiver using a conventional digital signal processing technique. As shown in the figure,
The present demodulator includes mixers 21a and 21b, a local signal generator 22, a 90 ° phase shifter 23, and a low-pass filter 24.
a, 24b, a quadrature demodulator 20, an A / D converter 2
5a and 25b and the demodulation unit 8.

【0003】同図において、受信信号が直交復調器20
のミキサ21a及び21bに入力されると、前記ミキサ
21aにおいては、前記受信信号とローカル信号発生器
22からのローカル信号とが合成され、所望の周波数の
直交復調信号の同相成分が得られる。また、前記ミキサ
21bにおいては、前記受信信号と、90°位相器23
で位相が90°ずれたローカル信号発生器22からのロ
ーカル信号とが合成され、所望の周波数の直交復調信号
の直交成分が得られる。前記ミキサ21a、21bの出
力信号は、それぞれローパスフィルタ24a、24bに
おいて希望するチャネル信号以外の信号が除去されて、
チャネル選択が行われる。前記ローパスフィルタ24
a、24bから出力されたチャネル信号は、それぞれA
/D変換器25a、25bにおいてディジタル信号に変
換され、同相成分E1(t)と直交成分E2(t)として復調部
8に出力される。上記のように選択されたチャネル信号
に対し、正常な受信性能を得るためには復調装置出力と
してS/N=40dBを確保することが必要である。こ
れをA/D変換器の量子化ビット数に換算すると5ビッ
トとなるから、 A/D変換器のダイナミックレンジを
5ビット以上とすればよい。したがって、前記A/D変
換器25a、25bには汎用の8ビットA/D変換器を
使用することができる。
In FIG. 1, a received signal is transmitted to a quadrature demodulator 20.
Are input to the mixers 21a and 21b, the received signal and the local signal from the local signal generator 22 are combined to obtain an in-phase component of a quadrature demodulated signal of a desired frequency. In the mixer 21b, the received signal and the 90 ° phase shifter 23
Are combined with the local signal from the local signal generator 22 whose phase is shifted by 90 ° to obtain an orthogonal component of an orthogonal demodulated signal of a desired frequency. From the output signals of the mixers 21a and 21b, signals other than the desired channel signal are removed by low-pass filters 24a and 24b, respectively.
Channel selection is performed. The low-pass filter 24
The channel signals output from a and 24b are A
The signals are converted into digital signals by the / D converters 25a and 25b, and output to the demodulation unit 8 as the in-phase component E 1 (t) and the quadrature component E 2 (t). For the channel signal selected as described above, it is necessary to secure S / N = 40 dB as the demodulator output in order to obtain normal reception performance. When this is converted into the number of quantization bits of the A / D converter, it becomes 5 bits. Therefore, the dynamic range of the A / D converter may be set to 5 bits or more. Therefore, a general-purpose 8-bit A / D converter can be used for the A / D converters 25a and 25b.

【0004】図2(b)は、選択されたチャネル信号に
適用されている通信システムの変調方式に応じて復調が
可能なように、各種復調回路を有する前記復調部8の一
例を示す機能ブロック図で、PM復調回路8a 、微分
回路8b、AM復調回路8cで構成される。同図におい
て、前記A/D変換器25a、25bから出力された直
交復調信号は、該直交復調信号がPM変調波の場合はP
M復調回路8aにおけるarc tan(逆正接)演算処理に
よって復調信号が得られ、前記直交復調信号がFM変調
波の場合は前記PM復調回路8aの出力信号を更に微分
回路8bにおいて微分演算処理することによって復調信
号が得られる。さらに、前記直交復調信号がAM変調波
の場合は、AM復調回路8cにおける平方根演算処理に
より復調信号が得られる。通常、arc tan(逆正接)、
微分、平方根等の初等関数の演算処理回路は、ROM
(Read Only Memory)による演算テーブルで構成され
る。そして、例えばFM変調波をROMによる演算テー
ブルで復調する場合、 A/D変換器25a、25bの
出力E1(t)及びE2(t)は、それぞれROMによる演算テ
ーブルのアドレスとしてPM復調回路8aに入力され、
その演算結果θ=tan-1(E1(t)/E2(t)) が微分回路8
bに出力される。微分回路8bにおいては、前記PM復
調回路8a出力を微分(Δθ/Δt)することによって
FM復調出力が得られる。前記PM復調回路8aの瞬時
出力をθ1、θ2、θ3・・、Δt=1/fs (fs:サ
ンプリング周波数)とすると、サンプリング周波数は一
定であるので、前記FM復調出力Δθ/Δtの値は、前
記PM復調回路8aの出力(瞬時位相)の1データごと
の差分(θ1−θ2、θ2−θ3・・)をとることによって
得られる。例えば、前記A/D変換器25a、25bか
らの出力信号の量子化ビット数が5であった場合、上述
のarc tan(逆正接)演算用の演算テーブルに必要な前
記ROMの容量は、25×25=1,024ワードあれば
よい。上記のような初等関数の演算処理をDSP(Digit
al Signal Processor)で処理する場合、現状のDSPに
搭載されているROMは、数Mワードの容量を持つので
十分対応することができる。
FIG. 2B is a functional block diagram showing an example of the demodulation section 8 having various demodulation circuits so that demodulation can be performed according to the modulation scheme of the communication system applied to the selected channel signal. In the figure, a PM demodulation circuit 8a, a differentiation circuit 8b, and an AM demodulation circuit 8c are configured. In the figure, the quadrature demodulated signals output from the A / D converters 25a and 25b are P when the quadrature demodulated signal is a PM modulated wave.
A demodulated signal is obtained by arc tan (inverse tangent) arithmetic processing in the M demodulation circuit 8a, and when the quadrature demodulated signal is an FM modulated wave, the output signal of the PM demodulation circuit 8a is further differentiated in a differentiation circuit 8b. As a result, a demodulated signal is obtained. Further, when the quadrature demodulated signal is an AM modulated wave, a demodulated signal is obtained by a square root operation in the AM demodulation circuit 8c. Usually arc tan (inverse tangent),
The arithmetic processing circuit for elementary functions such as differentiation and square root is ROM
(Read Only Memory). For example, when demodulating an FM modulated wave with a calculation table using a ROM, the outputs E 1 (t) and E 2 (t) of the A / D converters 25a and 25b are respectively used as addresses of the calculation table in the ROM as PM demodulation circuits. 8a,
The calculation result θ = tan −1 (E 1 (t) / E 2 (t)) is used as the differentiation circuit 8
b. In the differentiating circuit 8b, an FM demodulated output is obtained by differentiating (Δθ / Δt) the output of the PM demodulating circuit 8a. If the instantaneous output of the PM demodulation circuit 8a is θ 1 , θ 2 , θ 3 ..., Δt = 1 / fs (fs: sampling frequency), the sampling frequency is constant. The value is obtained by taking the difference (θ 1 −θ 2 , θ 2 −θ 3 ...) For each data of the output (instantaneous phase) of the PM demodulation circuit 8a. For example, when the number of quantization bits of the output signals from the A / D converters 25a and 25b is 5, the capacity of the ROM required for the operation table for the arc tan (inverse tangent) operation is 2 5 × 2 5 = 1,024 words. The above elementary function operation processing is performed by DSP (Digit
al Signal Processor), the ROM mounted on the current DSP has a capacity of several M words, which is sufficient for the processing.

【0005】図3(a)は、従来の広帯域ディジタル無
線機の復調装置の他の一例を示す構成概要図である。同
図に示すように、本広帯域ディジタル無線機の復調装置
は、A/D変換器1と、ミキサ2a、2bとローカル信
号発生器3と90°位相器4とローパスフィルタ5a、
5bとから成るディジタル化された直交復調器10と、
復調部11とで構成される。即ち、この例では直交復調
器10を含む復調装置全体をディジタル化したものであ
る。なお、前記復調部11は、図3(b)に示すように
PM復調回路11aと微分回路11bとAM復調回路1
1cとから成り、図2(b)と同様の機能を有する。図
3(a)において、復調装置の受信入力は所望のチャネ
ル以外の信号も含む広帯域の信号である。この広帯域の
信号を受信してA/D変換する場合、広いダイナミック
レンジを有するA/D変換器が必要となる。現状におい
て、高周波信号をA/D変換するために必要な数〜数1
0MHzの高速のサンプリング速度を有するA/D変換
器として、量子化ビット数が最大で12ビット程度のも
のが入手可能となっているので、前記A/D変換器1に
は、ビット数が12ビットのダイナミックレンジをもつ
ものを用いたとして説明する。
FIG. 3A is a schematic diagram showing another example of the demodulator of a conventional wideband digital radio. As shown in the figure, the demodulator of the present wideband digital radio includes an A / D converter 1, mixers 2a and 2b, a local signal generator 3, a 90 ° phase shifter 4, a low-pass filter 5a,
5b, a digitized quadrature demodulator 10 comprising:
And a demodulation unit 11. That is, in this example, the entire demodulator including the quadrature demodulator 10 is digitized. The demodulation unit 11 includes a PM demodulation circuit 11a, a differentiation circuit 11b, and an AM demodulation circuit 1 as shown in FIG.
1c, and has a function similar to that of FIG. In FIG. 3A, the reception input of the demodulation device is a wideband signal including a signal other than a desired channel. When receiving the wideband signal and performing A / D conversion, an A / D converter having a wide dynamic range is required. At present, the number necessary for A / D conversion of a high-frequency signal to the number 1
As an A / D converter having a high sampling rate of 0 MHz, one having a maximum quantization bit number of about 12 bits is available, so that the A / D converter 1 has a bit number of 12 bits. The description will be made on the assumption that a device having a bit dynamic range is used.

【0006】同図において、受信信号はA/D変換器1
でディジタル信号に変換され、ディジタル回路で構成さ
れた直交復調器10のミキサ2a、2bに出力される。
前記ミキサ2a、2bに入力した受信信号は、直交復調
器10において、図2(a)に示したアナログの直交復
調器20の各部と同様の動作でディジタル的に処理され
て直交復調され、ローパスフィルタ5a、5bでチャネ
ル選択されて、その出力信号E1(t)、E2(t)が復調部1
1に出力される。前記復調部11は、図2(b)に示す
ように、選択されたチャネルに適用されている通信シス
テムの変調方式に応じて復調が可能なような、 PM復
調回路11a、微分回路11b、AM復調回路11cで
構成される。該復調部11の機能は図2の復調部8と同
様である。
In FIG. 1, a received signal is an A / D converter 1
, And is output to the mixers 2a and 2b of the quadrature demodulator 10 formed of a digital circuit.
The received signals input to the mixers 2a and 2b are digitally processed and quadrature-demodulated by the quadrature demodulator 10 in the same manner as in the analog quadrature demodulator 20 shown in FIG. The channels are selected by the filters 5a and 5b, and the output signals E 1 (t) and E 2 (t) are demodulated by the demodulation unit 1
1 is output. As shown in FIG. 2B, the demodulation unit 11 can perform demodulation according to the modulation scheme of the communication system applied to the selected channel. It is composed of a demodulation circuit 11c. The function of the demodulation unit 11 is the same as that of the demodulation unit 8 in FIG.

【0007】[0007]

【発明が解決しようとする課題】前記復調部11におい
て、例えばFM変調された受信信号を復調する場合、量
子化ビット数12ビットの前記A/D変換器1でディジ
タル化された直交復調器出力の同相成分E1(t)及び直交
成分E2(t)は、PM復調回路11aでarc tan(逆正
接)演算処理が行われる。前記のarc tan(逆正接)演
算処理をROMの演算テーブルで処理するとき、このR
OMに必要な処理容量は、212×212=16,777,216ワー
ド=約16Mワードとなる。しかしながら、上記の演算
処理をDSP(Digital Signal Processor)に搭載されて
いるROMで行おうとしても、前述のように、現状のD
SP搭載のROMの容量は精々数Mワードであるから、
到底、上記の膨大な容量を必要とする演算テーブルをD
SPのROMに搭載することは不可能である。そのた
め、従来の広帯域ディジタル受信機においては、DSP
のほかに演算テーブル専用のROMを復調回路として設
けなければならなかった。また、専用のROMを用いな
いでDSPで上記演算を行うためには、arc tan(逆正
接)の演算の場合、例えばマクローリン展開による近似
計算等、複雑な演算処理が必要となる。即ち、復調装置
に専用ROMを設けると、回路の共通化による機器生産
性の向上が阻害されてコストアップが生じ、また、専用
ROMを設けずに近似計算によって対処したとしても、
多大の時間を要して高速な演算処理ができなくなるとい
う問題があった。本発明は、上記課題を解決するために
なされたものであって、DSPに搭載可能な小容量のR
OMで広帯域受信信号を復調できる受信機を提供するこ
とを目的とする。
When the demodulation section 11 demodulates, for example, an FM-modulated reception signal, the output of the quadrature demodulator digitized by the A / D converter 1 having 12 quantization bits is used. The in-phase component E 1 (t) and the quadrature component E 2 (t) are subjected to arc tan (inverse tangent) arithmetic processing in the PM demodulation circuit 11a. When the arc tan (inverse tangent) operation is performed using the operation table of the ROM, the R
The processing capacity required for OM is 2 12 × 2 12 = 16,777,216 words = about 16 M words. However, even if the above-described arithmetic processing is performed by a ROM mounted on a DSP (Digital Signal Processor), as described above, the current D
Since the capacity of the ROM with SP is at most several M words,
At the very least, the above-mentioned computation table that requires a huge amount of
It is impossible to mount it on the ROM of the SP. Therefore, in the conventional wideband digital receiver, the DSP
In addition, a dedicated ROM for the operation table must be provided as a demodulation circuit. In addition, in order to perform the above-described operation using a DSP without using a dedicated ROM, in the case of the operation of arc tan (inverse tangent), a complicated operation such as an approximate calculation by Macrolein expansion is required. That is, if a dedicated ROM is provided in the demodulation device, the increase in equipment productivity due to the use of a common circuit is hindered, resulting in an increase in cost.
There is a problem that it takes a lot of time to perform high-speed arithmetic processing. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a small capacity R that can be mounted on a DSP.
It is an object of the present invention to provide a receiver capable of demodulating a wideband received signal by OM.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明においては、 A/D変換された広帯域受信
信号を直交復調手段にて直交復調した後にチャネル選択
された信号を、ROMに記憶された初等関数演算テーブ
ルを用いた復調回路によって復調する復調装置におい
て、前記復調回路の前段において、前記チャネル選択さ
れた信号の全振幅の最大値が所定の量子幅のダイナミッ
クレンジのフルレンジとなるように前記信号を量子化
し、該量子化した信号を前記復調回路に入力するように
構成したことを特徴とする。
In order to solve the above-mentioned problems, according to the present invention, a signal whose channel is selected after quadrature demodulation of an A / D-converted wideband reception signal by quadrature demodulation means is stored in a ROM. In the demodulation device that demodulates by the demodulation circuit using the elementary function operation table, the maximum value of the total amplitude of the channel-selected signal is a full range of the dynamic range of a predetermined quantum width at a stage preceding the demodulation circuit. The signal is quantized, and the quantized signal is input to the demodulation circuit.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に示した実施
の形態に基づいて説明する。図1は、本発明に係わる広
帯域ディジタル受信機の復調装置の構成概要図である。
同図に示すように、本広帯域ディジタル無線機の復調装
置は、量子化ビット数が12のA/D変換器1と、ミキ
サ2a、2bとローカル信号発生器3と90°位相器4
とローパスフィルタ5a、5bとから成るディジタル化
された直交復調器10と、信号レベルの量子化によるダ
イナミックレンジを所定の幅に調整するDRC(Dynamic
Range Control)回路6と、前記DRC回路6の動作を
制御する制御回路7と、PM復調回路8aと微分回路8
bとAM復調回路8cとから成る復調部8とで構成され
る。前記A/D変換器1及び直交復調器10の機能及び
動作は、図3(a)のA/D変換器1及び直交復調器1
0の機能及び動作と同じであるので、以降の説明は、本
発明の特徴的な構成であるDRC回路6と制御回路7及
び復調部8の動作を中心にして説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in the drawings. FIG. 1 is a schematic configuration diagram of a demodulation device of a wideband digital receiver according to the present invention.
As shown in FIG. 1, the demodulator of the present wideband digital radio includes an A / D converter 1 having 12 quantization bits, mixers 2a and 2b, a local signal generator 3, and a 90 ° phase shifter 4.
And a low-pass filter 5a, 5b, and a digitized quadrature demodulator 10, and a DRC (Dynamic Demodulator) for adjusting a dynamic range by quantization of a signal level to a predetermined width.
Range Control) circuit 6, a control circuit 7 for controlling the operation of the DRC circuit 6, a PM demodulation circuit 8a and a differentiation circuit 8
b and a demodulation unit 8 composed of an AM demodulation circuit 8c. The functions and operations of the A / D converter 1 and the quadrature demodulator 10 are the same as those of the A / D converter 1 and the quadrature demodulator 1 shown in FIG.
Since the functions and operations are the same as those of the first embodiment, the following description will focus on the operations of the DRC circuit 6, the control circuit 7, and the demodulation unit 8, which are characteristic configurations of the present invention.

【0010】図1において、広帯域受信入力は、A/D
変換器1でディジタル信号に変換され、ミキサ2a、2
bで周波数変換される。さらに、前記ミキサ2a、2b
の出力信号からローパスフィルタ5a、5bにおいて所
望のチャネルが選択され、このチャネル信号が前記DR
C回路6に入力される。前記DRC回路6にチャネル信
号が入力すると、制御回路7はその入力信号の全振幅の
最大値を検知し、この最大値が所定の量子化幅のダイナ
ミックレンジのフルレンジとなるとなるよう前記DRC
回路6に制御信号を送出する。この制御信号を受けて前
記DRC回路6は、入力信号を所定の量子化ビット数で
再量子化してダイナミックレンジを変換し、復調部8に
出力する。従来例で説明したように、復調装置出力のS
/N=40dBを得るためのダイナミックレンジは、量
子化ビット数にして5ビットで十分であるから、本実施
例においては、前記DRC回路6に入力した12ビット
で量子化されているチャネル信号は、その全振幅の最大
値が量子化ビット数5ビットで量子化したダイナミック
レンジのフルレンジとなるように制御して再量子化し、
その再量子化した信号を復調部8に出力する。
In FIG. 1, the wideband reception input is A / D
The signal is converted into a digital signal by the converter 1, and
The frequency is converted by b. Further, the mixers 2a, 2b
A desired channel is selected in the low-pass filters 5a and 5b from the output signal of
It is input to the C circuit 6. When a channel signal is input to the DRC circuit 6, the control circuit 7 detects the maximum value of the total amplitude of the input signal, and controls the DRC circuit so that the maximum value becomes the full range of the dynamic range of a predetermined quantization width.
A control signal is sent to the circuit 6. Upon receiving this control signal, the DRC circuit 6 re-quantizes the input signal with a predetermined number of quantization bits to convert the dynamic range, and outputs it to the demodulation unit 8. As described in the conventional example, S
Since the dynamic range for obtaining / N = 40 dB is sufficient if the number of quantization bits is 5 bits, in this embodiment, the channel signal quantized by 12 bits input to the DRC circuit 6 is And requantization by controlling the maximum value of the total amplitude to be the full range of the dynamic range quantized with the quantization bit number of 5 bits,
The requantized signal is output to the demodulation unit 8.

【0011】ここで、前述の再量子化の手順について説
明する。例えば、前記直交復調器10出力の同相成分を
1=A cosθ、直交成分をe2=A sinθとする。前記D
RC回路6において、入力したチャネル信号の最大振幅
値Amの時の同相成分と直交成分の二乗和 (Am cosθ)2
+( Am sinθ) 2=Am2の平方根から最大振幅Amを求
め、該Amで直交記復調器10出力信号e1、e2を除算
して、Amで正規化された復調器出力信号en1、en2
を得る。次に、正規化された信号en1、en2に25
1/2、即ち16を乗算し、更に小数点以下を切り捨て
ることによって、12ビットのダイナミックレンジの信
号e1、e2は、量子化ビット数が5のダイナミックレン
ジをもつ信号E1、E2に変換される。
Here, the procedure of the requantization will be described. For example, the in-phase component of the output of the quadrature demodulator 10 is e 1 = A cos θ, and the quadrature component is e 2 = A sin θ. Said D
In the RC circuit 6, the sum of squares of the in-phase component and the quadrature component when the input channel signal has the maximum amplitude value Am (Am cos θ) 2
The maximum amplitude Am is obtained from the square root of + (Am sin θ) 2 = Am 2 , the output signals e 1 and e 2 of the quadrature demodulator 10 are divided by Am, and the demodulator output signal en 1 normalized by Am. , En 2
Get. Next, by multiplying the normalized signals en 1 and en 2 by 5 of 2 5 , that is, 16 and further rounding down the decimal point, the signals e 1 and e 2 having a 12-bit dynamic range are converted into quantum signals. Are converted into signals E 1 and E 2 having a dynamic range of 5 bits.

【0012】前記復調部8は、 PM復調回路8aと微
分回路8bとAM復調回路8cとから成り、それぞれの
回路はROMによる演算テーブルで構成されている。そ
して、上述のように、量子化ビット数が5のダイナミッ
クレンジのチャネル信号E1(t) 、E2(t) が、例えば、
FM変調波の場合は、前記DRC回路6の出力E1(t)
及びE2(t) は、それぞれ前記PM復調回路8aに演算
テーブルのアドレスとして入力し、その演算結果θ=ta
n-1(E1(t)/E2(t)) を微分回路8bに出力する。微分
回路8bにおいては、前記PM復調回路8a出力を微分
(Δθ/Δt)することによってFM復調出力が得られ
る。上記PM復調回路8aのarctan(逆正接)の演算に
必要なROMの容量は、25×25=1,024ワードあ
ればよく、現状のDSPに搭載されているROMで十分
対応することができる。
The demodulation unit 8 comprises a PM demodulation circuit 8a, a differentiating circuit 8b and an AM demodulation circuit 8c, each of which is constituted by an operation table by ROM. Then, as described above, the channel signals E 1 (t) and E 2 (t) of the dynamic range with the quantization bit number of 5, for example,
In the case of the FM modulation wave, the output E 1 (t) of the DRC circuit 6
And E 2 (t) are input to the PM demodulation circuit 8a as addresses of an operation table, and the operation result θ = ta
n -1 (E 1 (t) / E 2 (t)) is output to the differentiation circuit 8b. In the differentiating circuit 8b, an FM demodulated output is obtained by differentiating (Δθ / Δt) the output of the PM demodulating circuit 8a. The capacity of the ROM necessary for calculating the arctan (inverse tangent) of the PM demodulation circuit 8a only needs to be 25 × 25 = 1,024 words, and the ROM mounted on the current DSP is sufficient. it can.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
DRC回路によってディジタル無線機復調装置に入力す
る広帯域受信信号のダイナミックレンジを大幅に低減す
るようにしたので、復調装置を構成する初等関数演算テ
ーブルは、小容量のROMで構成することができる。こ
のため、広帯域ディジタル無線機に使用されている一般
的なDSPに搭載された小容量のROMで復調部を構成
することができ、したがって、専用のROMを用意する
必要や複雑な近似計算を行う必要がなく、信号処理時間
が高速で、回路規模が小型、低コストの無線機を提供す
るうえで大きな効果を上げることができる。
As described above, according to the present invention,
Since the dynamic range of the broadband reception signal input to the digital radio demodulator is greatly reduced by the DRC circuit, the elementary function operation table constituting the demodulator can be constituted by a small-capacity ROM. For this reason, the demodulation unit can be constituted by a small-capacity ROM mounted on a general DSP used in a wideband digital radio, and therefore, it is necessary to prepare a dedicated ROM and perform complicated approximation calculations. There is no need for this, and a great effect can be obtained in providing a wireless device with a short signal processing time, a small circuit size, and low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明に係わる広帯域ディジタル受
信機の復調装置の実施の一形態例を示す構成概要図、
(b)は、各種通信システムの変調方式に応じて復調が
可能な図1(a)の復調部9の一例を示す機能ブロック
図。
FIG. 1A is a schematic configuration diagram showing an embodiment of a demodulation device of a wideband digital receiver according to the present invention;
FIG. 2B is a functional block diagram illustrating an example of a demodulation unit 9 in FIG. 1A capable of demodulation according to a modulation scheme of various communication systems.

【図2】(a)は、従来のディジタル信号処理技術を用
いた受信機の復調装置の一例を示した構成概要図、
(b)は、各種通信システムの変調方式に応じて復調が
可能な図1(a)の復調部9の一例を示す機能ブロック
図。
FIG. 2A is a schematic configuration diagram illustrating an example of a demodulator of a receiver using a conventional digital signal processing technique;
FIG. 2B is a functional block diagram illustrating an example of a demodulation unit 9 in FIG. 1A capable of demodulation according to a modulation scheme of various communication systems.

【図3】(a)は、従来の広帯域ディジタル受信機の復
調装置の一例を示した構成概要図、(b)は、各種通信
システムの変調方式に応じて復調が可能な図3(a)の
復調部11の一例を示す機能ブロック図。
FIG. 3 (a) is a schematic configuration diagram showing an example of a demodulation device of a conventional wideband digital receiver, and FIG. 3 (b) is a diagram capable of demodulation according to the modulation method of various communication systems. FIG. 2 is a functional block diagram showing an example of a demodulation unit 11 of FIG.

【符号の説明】[Explanation of symbols]

1・・A/D変換器、2a、2b・・ミキサ、3・・ロ
ーカル信号発生器、4・・90°位相器、5a、5b・
・ローパスフィルタ、6・・DRC回路、7・・制御回
路、8・・復調部、8a・・PM復調回路、8b・・微分
回路、8c・・AM復調回路、10・・直交復調器、1
1・・復調部、11a・・PM復調回路、11b・・微分
回路、 11c・・AM復調回路、20・・直交復調
器、21a、21b・・ミキサ、22・・ローカル信号
発生器、23・・90°位相器、24a、24b・・ロ
ーパスフィルタ、25a、25b・・A/D変換器
1 A / D converter, 2a, 2b mixer, 3 local signal generator, 4 phase shifter, 5a, 5b
Low-pass filter, 6 DRC circuit, 7 control circuit, 8 demodulation unit, 8a PM demodulation circuit, 8b differential circuit, 8c AM demodulation circuit, 10 quadrature demodulator, 1
1 demodulator, 11a PM demodulator circuit, 11b differentiator circuit, 11c AM demodulator circuit, 20 quadrature demodulator, 21a, 21b mixer, 22 local signal generator, 23 · 90 ° phase shifter, 24a, 24b · · · low-pass filter, 25a, 25b · · · A / D converter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04L 27/22 H04L 27/22 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04L 27/22 H04L 27/22 F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】A/D変換された広帯域受信信号を直交復
調手段にて直交復調した後にチャネル選択された信号
を、ROMに記憶された初等関数演算テーブルを用いた
復調回路によって復調する復調装置において、前記復調
回路の前段において、前記チャネル選択された信号の全
振幅の最大値が所定の量子幅のダイナミックレンジのフ
ルレンジとなるように前記信号を量子化し、該量子化し
た信号を前記復調回路に入力するように構成したことを
特徴とするディジタル復調装置。
1. A demodulator for demodulating a signal selected by a channel after quadrature demodulation of an A / D converted wideband received signal by quadrature demodulation means by a demodulation circuit using an elementary function operation table stored in a ROM. In the preceding stage of the demodulation circuit, the signal is quantized so that the maximum value of the total amplitude of the channel-selected signal becomes a full range of a dynamic range having a predetermined quantum width, and the quantized signal is subjected to the demodulation circuit. A digital demodulation device characterized in that the digital demodulation device is configured to input to the digital demodulation device.
JP22963399A 1999-08-16 1999-08-16 Digital demodulator Expired - Lifetime JP4067707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22963399A JP4067707B2 (en) 1999-08-16 1999-08-16 Digital demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22963399A JP4067707B2 (en) 1999-08-16 1999-08-16 Digital demodulator

Publications (2)

Publication Number Publication Date
JP2001053820A true JP2001053820A (en) 2001-02-23
JP4067707B2 JP4067707B2 (en) 2008-03-26

Family

ID=16895262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22963399A Expired - Lifetime JP4067707B2 (en) 1999-08-16 1999-08-16 Digital demodulator

Country Status (1)

Country Link
JP (1) JP4067707B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110269A (en) * 2005-10-12 2007-04-26 Nec Corp Fm modulation apparatus and method thereof, and communication apparatus using the same
JP2014217041A (en) * 2013-04-24 2014-11-17 アナログ デバイシズ テクノロジーAnalog Devices Technology Method of and apparatus for demodulating amplitude modulated signal
WO2016051438A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Signal-generating circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110269A (en) * 2005-10-12 2007-04-26 Nec Corp Fm modulation apparatus and method thereof, and communication apparatus using the same
JP2014217041A (en) * 2013-04-24 2014-11-17 アナログ デバイシズ テクノロジーAnalog Devices Technology Method of and apparatus for demodulating amplitude modulated signal
WO2016051438A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Signal-generating circuit
US10585169B2 (en) 2014-10-03 2020-03-10 Mitsubishi Electric Corporation Signal generating circuit

Also Published As

Publication number Publication date
JP4067707B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
AU700691B2 (en) Dual-mode digital FM communication system
US4731796A (en) Multi-mode radio transceiver
US5490172A (en) Reducing peak-to-average variance of a composite transmitted signal via out-of-band artifact signaling
EP1522151B1 (en) System and method for a direct conversion multi-carrier processor
JP3545606B2 (en) Receiver
JP4355443B2 (en) Double digital low IF composite receiver
JP2003509909A (en) Phase interpolation receiver for angle modulated RF signals
JP2003509908A (en) Communication system and receiver used therefor
CA2502790A1 (en) Method of removing dc offset for a zif-based gsm radio receiver with digital frequency offset correction
JP4067707B2 (en) Digital demodulator
US6577851B1 (en) Impulse noise blanker
US6728321B2 (en) Receiving device for angle-modulated signals
US7573948B2 (en) Radio transmitter incorporating digital modulator and circuitry to accommodate baseband processor with analog interface
JP3285920B2 (en) Car radio with A / D conversion circuit device for intermediate frequency signal
JPH08181554A (en) Digital radio communication equipment provided with automatic gain control circuit
JP2003298674A (en) Multirate receiver
AU8307691A (en) Dual mode automatic gain control
JP3275179B2 (en) Demodulation of quadrature signals using quantization
WO1997005721A1 (en) Reducing peak-to-average variance of a composite transmitted signal via out-of-band artifact signaling
JP3893197B2 (en) Digital modulation circuit
JP2002064576A (en) Semiconductor device and portable terminal
JPS63215140A (en) Carrier recovery circuit
JPH09121123A (en) Demodulator in common use for digital/analog fm
JPH08163191A (en) Quadrature modulator and its control method
JP2000004266A (en) Digital demodulation circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4067707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

EXPY Cancellation because of completion of term