JP2001053124A - Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same - Google Patents

Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same

Info

Publication number
JP2001053124A
JP2001053124A JP11223649A JP22364999A JP2001053124A JP 2001053124 A JP2001053124 A JP 2001053124A JP 11223649 A JP11223649 A JP 11223649A JP 22364999 A JP22364999 A JP 22364999A JP 2001053124 A JP2001053124 A JP 2001053124A
Authority
JP
Japan
Prior art keywords
receiver
steam
lid
instrument
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223649A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nagamine
義展 長峯
Fumio Tokutake
文夫 徳岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP11223649A priority Critical patent/JP2001053124A/en
Publication of JP2001053124A publication Critical patent/JP2001053124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an analysis sample gathering unit for semiconductor vapor generator, capable of capturing high-temperature vapor as a condensation agent in composition as is, without using trapping agents such as pure water, etc., and provide an analysis processing method using the same. SOLUTION: This analysis sample gathering unit for a semiconductor vapor generator for analyzing a trace amount of impurity included in vapor generated by the device is connected to an external burning vapor generator for a semiconductor manufacture process. The analysis sample gathering unit comprises a receiver 1 for condensing and storing gathering vapor, a lid body 2 to which a vapor introduction pipe 4 is attached for detachably engaging with the receiver 1, and a coolant bath 3 for cooling the receiver 1 mounting the lid body 2 from the outside, and the vapor introduction pipe 4 extends downwardly of the interior of the receiver when mounting the lid body, and the end part is stationed in proximity to the bottom face of the receiver.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用水蒸気生
成装置の分析試料採取器具及び該器具を用いた分析処理
方法に関し、より詳細には、半導体製造プロセスの酸化
膜形成工程等に使用する高純度水蒸気生成のための外部
燃焼式水蒸気生成装置に接続され、該装置から生成され
る水蒸気中の微量不純物を分析するための分析試料の採
取器具及び該器具を用いた分析処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical sample collecting instrument for a semiconductor steam generating apparatus and an analytical processing method using the instrument, and more particularly, to an analytical sample collecting apparatus used in an oxide film forming step of a semiconductor manufacturing process. The present invention relates to an instrument for collecting an analysis sample for analyzing trace impurities in steam generated from the external combustion type steam generator for generating pure steam, and an analytical processing method using the instrument.

【0002】[0002]

【従来の技術】半導体製造プロセスの酸化膜形成工程に
おいて、酸化膜形成方法の一つとして、半導体ウエハを
高温水蒸気と接触させる方法がある。この酸化膜形成に
使われるガス状の水蒸気は、半導体ウエハを汚染するア
ルカリ金属等の不純物をできる限り低減した高純度なも
のが望まれ、一般に、高純度の水素ガスと酸素ガスとを
接触させ、水素ガスを燃焼させて製造されている。この
水素ガスの燃焼方式として、加熱炉内に半導体ウエハを
セットし、直接、水素ガスを導入して燃焼させ水蒸気を
発生させる所謂内部燃焼方式と、ウエハ酸化炉とは別に
外部に燃焼装置を設けて水素ガスを燃焼させ、得られた
水蒸気ガスを炉内に導入する所謂外部燃焼方式とがあ
る。今日、半導体製造工程の酸化条件を安定化させ易い
点から、外部燃焼方式が広く採用されている。
2. Description of the Related Art In an oxide film forming step in a semiconductor manufacturing process, as one of oxide film forming methods, there is a method of bringing a semiconductor wafer into contact with high-temperature steam. The gaseous water vapor used for forming the oxide film is desirably of a high purity in which impurities such as alkali metals contaminating the semiconductor wafer are reduced as much as possible. In general, high-purity hydrogen gas and oxygen gas are brought into contact with each other. It is manufactured by burning hydrogen gas. As a method of burning hydrogen gas, a so-called internal combustion method in which a semiconductor wafer is set in a heating furnace, and hydrogen gas is directly introduced and burned to generate steam, and a burning device is provided outside the wafer oxidation furnace outside. There is a so-called external combustion method in which hydrogen gas is combusted by a gas and the obtained steam gas is introduced into a furnace. Today, the external combustion method is widely used because it is easy to stabilize oxidation conditions in a semiconductor manufacturing process.

【0003】この外部燃焼方式水素ガス生成装置は、水
素ガス供給管、酸素ガス供給管、生成した水蒸気をウエ
ハ熱処理炉等に供給する水蒸気供給配管等が接続された
燃焼室を備え、構成材料としては主に石英ガラスが用い
られ、生成した水蒸気の汚染を極力防止するよう配慮さ
れている。しかしこの方法では、燃焼の際に発生する生
成熱によって石英ガラスバーナーの先端部がエッチング
され、パーティクルが発生する等の問題があった。この
対策として、例えば、該部分に放熱機構や冷却手段を設
ける等の改善策が講じられているが、現在に至るもいま
だ完全には解決されていない。このため水蒸気中に存在
する不純物、特に半導体プロセスに有害な重金属等の汚
染物質を絶えず監視する必要があり、従来から、この生
成した水蒸気を頻繁にサンプリングして不純物含有量を
分析評価することが行われてきた。
This external combustion type hydrogen gas generator includes a combustion chamber to which a hydrogen gas supply pipe, an oxygen gas supply pipe, a steam supply pipe for supplying generated steam to a wafer heat treatment furnace and the like are connected, and the constituent materials are as follows. Is mainly made of quartz glass and is designed to minimize contamination of the generated water vapor. However, in this method, there is a problem that the tip of the quartz glass burner is etched by generated heat generated at the time of combustion, and particles are generated. As a countermeasure, for example, improvement measures such as providing a heat radiating mechanism and a cooling means in the portion have been taken, but they have not been completely solved to date. For this reason, it is necessary to constantly monitor impurities present in water vapor, particularly contaminants such as heavy metals harmful to the semiconductor process.Conventionally, the generated water vapor is frequently sampled to analyze and evaluate the impurity content. Has been done.

【0004】[0004]

【発明が解決しようとする課題】従来、この高温水蒸気
中の不純物分析のための水蒸気試料採取方法として、例
えば、図3に示したような分析試料採取器具を用い、フ
ッ素樹脂製の捕集容器31中に予め純水等の捕集液32
を入れておき、この捕集容器31中に水素ガス燃焼装置
Aで生成された該水蒸気を導入管34から導入し、純水
32でトラップして捕集する方法が一般的に用いられて
きた。なお、図3中、符号36は、導入水蒸気に同伴す
るアルゴン(Ar)ガスを排出する排気管である。しか
し、この方法では、純水中に存在する不純物も合算され
て分析計測されてしまうという問題点があった。また、
純水中には最初から溶存しているシリカが存在し、その
ため上記従来のサンプリング方法では、水蒸気中に含ま
れるシリカ分のみを定量評価することができなかった。
特に、水蒸気中に含まれているシリカ量を知ることは、
例えば石英ガラスバーナーがどの程度エッチングされて
いるかを知る目安となるため重要である。
Conventionally, as a water vapor sampling method for analyzing impurities in high-temperature steam, for example, an analytical sample collecting instrument as shown in FIG. A collection liquid 32 such as pure water
In general, a method of introducing the steam generated by the hydrogen gas combustion device A into the collection vessel 31 through the introduction pipe 34 and trapping the same with the pure water 32 to collect the water vapor has been used. . In FIG. 3, reference numeral 36 denotes an exhaust pipe for discharging argon (Ar) gas accompanying the introduced steam. However, this method has a problem in that impurities present in pure water are added up and analyzed and measured. Also,
Pure water contains silica that is dissolved from the beginning, and therefore, the above-described conventional sampling method cannot quantitatively evaluate only the silica content in the water vapor.
In particular, knowing the amount of silica contained in steam is
For example, it is important because it is a measure of how much the quartz glass burner is etched.

【0005】また、従来のサンプリング方法では、純水
等をトラッピング液として使用しているため、一旦捕集
容器31に捕集した液を、フッ素樹脂製のビーカー等、
別容器に移し替えてから濃縮して分析するという工程を
踏まなければならなかった。そのため、従来から、純水
等をトラッピング液(捕集液)として使用せず、水蒸気
のみを凝縮液として捕集し、該捕集液を、移し替えるこ
となく、濃縮できる分析用の水蒸気分析試料採取器具
(サンプラー)の出現が強く望まれていた。
In the conventional sampling method, since pure water or the like is used as a trapping liquid, the liquid once collected in the collection container 31 is used as a trapping liquid such as a fluororesin beaker.
It had to be transferred to another container and then concentrated and analyzed. For this reason, conventionally, a water vapor analysis sample for analysis that can collect only water vapor as a condensed liquid without using pure water or the like as a trapping liquid (collecting liquid) and concentrate the collected liquid without transferring the same. The emergence of a sampling instrument (sampler) has been strongly desired.

【0006】前記水蒸気が、比較的低温、即ち、百度か
ら百数十度程度の常圧飽和蒸気に近い性状のものである
場合には、例えば、特開平10ー300648号公報に
開示されているようなバイオクリーンルーム内のPFS
(パイロゲン・フリー・スチーム)用スチームサンプラ
ー、即ち、氷水を冷媒とした冷却容器内にコイル状のテ
フロンチューブを配設し、該チューブ内にスチームを導
入して凝縮させるタイプのスチームサンプラーを使用す
ることもできる。
[0006] In the case where the steam has a relatively low temperature, that is, a property close to normal pressure saturated steam at a temperature of one hundred degrees to one hundred and several tens degrees, it is disclosed in, for example, JP-A-10-300648. PFS in bio-clean room like
A steam sampler for (pyrogen-free steam), that is, a steam sampler of a type in which a coiled Teflon tube is disposed in a cooling vessel using ice water as a refrigerant, and steam is introduced into the tube and condensed. You can also.

【0007】しかしながら、本発明で対象とする半導体
製造プロセスの酸化膜形成工程用の水蒸気のように、少
なくとも500℃以上の温度を有する高温の水蒸気であ
って、高純度のものを、金属不純物汚染なしにサンプリ
ングする場合は、上記のようなPFS用スチームサンプ
ラーをそのまま使用することはできない。即ち、上記サ
ンプラーのように、外径7mm程度、厚さ1mm程度、
長さ数mにもおよぶ水蒸気冷却用蛇管の構成材として、
テフロンを使用した場合は、テフロン材の耐熱性や強度
が不足して使用に耐えられない。またこれに替えて、ス
テンレス等金属を使用した場合は金属汚染の問題が生ず
る。更に、石英ガラス等を用いた場合は脆性によるチュ
ーブ破損の問題が存在する等、いずれの場合も実用化に
適したものではなかった。
However, high-temperature steam having a temperature of at least 500.degree. C. and having high purity, such as steam for forming an oxide film in a semiconductor manufacturing process, which is a target of the present invention, is used for removing metal impurity contamination. In the case of sampling without the above, the above-mentioned steam sampler for PFS cannot be used as it is. That is, like the above sampler, the outer diameter is about 7 mm, the thickness is about 1 mm,
As a component material of a steam cooling coil that extends several meters in length,
When Teflon is used, the heat resistance and strength of the Teflon material are insufficient and cannot be used. When a metal such as stainless steel is used instead, a problem of metal contamination occurs. Furthermore, when quartz glass or the like was used, there was a problem of tube breakage due to brittleness, and in any case, it was not suitable for practical use.

【0008】このような事情から、上記純水等をトラッ
ピング液(捕集液)として使用せず、生成された高温の
水蒸気のみをそのままの組成で凝縮液として捕集するサ
ンプラーは強く望まれていたにもかかわらず、現在に至
るまで実用的に有効なものは出現していなかった。
Under such circumstances, there is a strong demand for a sampler that does not use the pure water or the like as a trapping liquid (collecting liquid) but collects only the generated high-temperature steam as a condensate with the same composition. Nevertheless, to date no practically effective has emerged.

【0009】本発明者等は、従来の上記課題を解決すべ
く鋭意研究した結果、下記に詳述する特定構成のサンプ
リング容器を用いることにより上記問題点が解決される
ことを知得し本発明を完成するに至った。本発明は、純
水等のトラッピング液を使用することなく高温の水蒸気
をそのままの組成で凝縮液として捕集できる半導体用水
蒸気発生装置の分析試料採取器具を提供することを目的
とするものである。また、本発明は、上記分析試料採取
器具を用いた試料採取を含む分析処理方法を提供するこ
とを目的とするものである。
The present inventors have made intensive studies to solve the above-mentioned conventional problems, and as a result, have found that the above-mentioned problems can be solved by using a sampling container having a specific configuration described in detail below. Was completed. SUMMARY OF THE INVENTION An object of the present invention is to provide an analytical sample collection instrument for a semiconductor steam generator that can collect high-temperature steam as a condensate with the same composition without using a trapping solution such as pure water. . Another object of the present invention is to provide an analytical processing method including sampling using the above-mentioned analytical sample collecting instrument.

【0010】[0010]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた本発明にかかる分析試料採取器具は、
半導体製造プロセス用の外部燃焼式水蒸気生成装置に接
続され、該装置で生成する水蒸気に含まれる微量不純物
を分析するための半導体用水蒸気生成装置の分析試料採
取器具において、前記分析試料採取器具が、採取すべき
水蒸気を凝縮し貯留するための受器と、水蒸気導入管が
取付けられ、前記受器に取外し可能に嵌合する蓋体と、
該蓋体を装着した受器を外部から冷却する冷媒浴槽とか
らなり、前記水蒸気導入管が、蓋体装着時に受器内部下
方に延び、その端部が該受器の底面に近接して配置され
ることを特徴としている。
Means for Solving the Problems An analytical sample collecting instrument according to the present invention which has been made to solve the above technical problem, comprises:
Connected to an external combustion type steam generator for a semiconductor manufacturing process, an analytical sample collecting instrument of a semiconductor steam generating apparatus for analyzing trace impurities contained in steam generated by the apparatus, wherein the analytical sample collecting instrument is A receiver for condensing and storing the water vapor to be collected, a water vapor introduction tube is attached, and a lid detachably fitted to the receiver,
A cooling water bath for cooling a receiver equipped with the lid from the outside, wherein the water vapor introduction pipe extends downward inside the receiver when the lid is attached, and an end thereof is arranged close to the bottom surface of the receiver. It is characterized by being done.

【0011】ここで、前記水蒸気導入管端部の水蒸気導
入口が、受器の底面に対し略垂直に配置されていること
を特徴としている。また、前記受器に蓋体を装着した状
態における水蒸気導入管の端部と受器底面との間隙が、
0乃至5mmの範囲にあることが望ましい。更に、前記
蓋体には、導入される水蒸気に同伴する非凝縮性ガスを
排出する排気管が付設されていることが望ましい。ま
た、前記受器、水蒸気導入管、排気管、及び蓋体の少な
くとも水蒸気と接触する面が、フッ素樹脂からなること
が望ましく、前記蓋体の内側天井部が凹曲面形状に形成
されていることが望ましい。また、前記冷媒浴槽中に充
填される冷媒が氷水、または液体窒素とエタノールの混
合物からなることが望ましい。
Here, the steam introduction port at the end of the steam introduction pipe is arranged substantially perpendicular to the bottom surface of the receiver. Further, the gap between the end of the steam introduction pipe and the bottom of the receiver in a state where the lid is attached to the receiver,
It is desirable to be in the range of 0 to 5 mm. Further, it is preferable that the lid is provided with an exhaust pipe for discharging non-condensable gas accompanying the introduced steam. Preferably, at least the surfaces of the receiver, the steam introduction pipe, the exhaust pipe, and the lid that come into contact with the steam are made of a fluororesin, and the inner ceiling portion of the lid is formed in a concave curved shape. Is desirable. Further, it is desirable that the refrigerant filled in the refrigerant bath is made of ice water or a mixture of liquid nitrogen and ethanol.

【0012】上記した本発明にかかる分析試料採取器具
は、水蒸気を凝縮貯留する受器と、水蒸気導入管を備え
た受器の蓋体と、冷媒浴槽とからなり、水蒸気導入管端
部が、蓋体を装着した時、受器底面に近接して位置して
いる点、及び蓋と受器が取り外し自在に形成されている
点が構成上の特徴である。これにより、水蒸気は、端部
が受器底面に近接して配置された水蒸気導入管から導入
され、冷媒により充分に冷却された該底面を這うように
受器内に広がり、側壁面に達するまでその大部分が冷却
凝縮される。そして、凝縮液が該受器底面上に逐次貯留
蓄積され、その液面が水蒸気導入管の水蒸気導入口の高
さに達すると、該貯留液が引続き導入される水蒸気のト
ラッピング液として機能するようになる。
The above-mentioned analytical sample collecting instrument according to the present invention comprises a receiver for condensing and storing water vapor, a lid of a receiver provided with a water vapor introduction pipe, and a refrigerant bath. When the lid is attached, the configuration is characterized in that it is located close to the bottom surface of the receiver, and that the lid and the receiver are detachably formed. Thereby, the water vapor is introduced from the water vapor introduction pipe whose end is disposed close to the bottom surface of the receiver, spreads in the receiver so as to crawl along the bottom surface sufficiently cooled by the refrigerant, and reaches the side wall surface. Most of it is cooled and condensed. Then, the condensed liquid is sequentially stored and accumulated on the bottom surface of the receiver, and when the liquid level reaches the height of the water vapor inlet of the water vapor introducing pipe, the stored liquid functions as a trapping liquid for the subsequently introduced water vapor. become.

【0013】また、本発明にかかる分析試料採取器具で
は、水蒸気導入管の水蒸気導入口が、横向に、即ち底面
と並行方向に水蒸気ガスが導入されるように設けられ、
かつ受器底面との間の隙間が小さいため、少量の凝縮液
が受器底面に蓄積されただけでも導入口が凝縮液で覆わ
れる。その結果、極初期の短時間を除いて凝縮液による
トッラッピング作用を有効に利用して効率的な凝縮液捕
集を行うことができる。なお、蒸気導入口が下方に向け
られている場合は、受器底面との間隔があまり狭いと水
蒸気を導入する際の抵抗が大きくなり好ましくない。そ
のため、前記した間隔をある程度大きく取る必要があ
り、凝縮液によるトッラッピング効果が奏されるまでに
より多くの時間を必要とする。
[0013] In the analytical sample collecting instrument according to the present invention, the water vapor inlet of the water vapor introducing pipe is provided so that the vapor gas is introduced laterally, that is, in a direction parallel to the bottom surface.
In addition, since the gap between the container and the bottom of the receiver is small, the inlet is covered with the condensate even if only a small amount of the condensate is accumulated on the bottom of the receiver. As a result, efficient trapping of the condensed liquid can be performed by effectively utilizing the trapping action of the condensed liquid except for a very short time at the very beginning. When the steam inlet is directed downward, if the distance between the steam inlet and the bottom of the receiver is too small, the resistance at the time of introducing steam becomes large, which is not preferable. For this reason, it is necessary to increase the interval to some extent, and it takes more time until the trapping effect by the condensed liquid is exhibited.

【0014】更に、本発明にかかる分析試料採取器具
は、蓋と受器が取り外し自在に形成されているため、採
取凝縮液を該受器から他に移し替えることなくそのまま
濃縮処理することができる利点をも有する。また更に、
本発明の上記分析試料採取器具を用いたサンプリング処
理においては、冷媒浴槽中に充填する冷媒として氷水
や、液体窒素とエタノールの混合物を用いることが好ま
く、特に、液体窒素・エタノール混合冷媒は、冷却効果
及びその持続性が極めて良好である。
Further, in the analytical sample collecting instrument according to the present invention, since the lid and the receiver are detachably formed, the concentrated condensate can be directly concentrated without transferring the collected condensate from the receiver. It also has advantages. Moreover,
In the sampling process using the analytical sample collecting instrument of the present invention, ice water or a mixture of liquid nitrogen and ethanol is preferably used as the refrigerant to be charged into the refrigerant bath.In particular, a liquid nitrogen / ethanol mixed refrigerant is used. The cooling effect and its persistence are very good.

【0015】上記技術的課題を解決するためになされた
本発明にかかる半導体用水蒸気生成装置の分析試料採取
器具を用いた分析処理方法は、半導体製造プロセス用の
外部燃焼式水蒸気生成装置から生成される水蒸気中の微
量不純物の分析処理方法において、前記した分析試料採
取器具を前記水蒸気生成装置に接続し、該採取器具の冷
媒浴槽中に水蒸気冷却凝縮用の冷媒を充填した後、水蒸
気導入管から受器内に水蒸気を導入し、該受器内で水蒸
気を冷却凝縮させて捕集し、所定量捕集後、該蓋付き受
器を冷媒浴槽から取り出すと共に蓋体を受器から外し、
該受器を加熱して凝縮液を濃縮することを特徴としてい
る。このように、該受器内で水蒸気を冷却凝縮させて捕
集しているため、従来のような純水中に存在する不純物
を合算して分析計測することがない。
An analytical processing method using an analytical sampling device of a semiconductor steam generator according to the present invention, which has been made to solve the above technical problem, is generated from an external combustion steam generator for a semiconductor manufacturing process. In the method for analyzing trace impurities in water vapor, the above-mentioned analytical sample collecting instrument is connected to the steam generating apparatus, and a refrigerant for cooling and condensing water vapor is filled in a refrigerant bath of the collecting instrument, and then is supplied from the water vapor introducing pipe. Introducing water vapor into the receiver, cooling and condensing the water vapor in the receiver to collect the water vapor, and after collecting a predetermined amount, take out the receiver with the lid from the refrigerant bath and remove the lid from the receiver,
It is characterized in that the condensate is concentrated by heating the receiver. As described above, since the water vapor is cooled and condensed and collected in the receiver, there is no need to analyze and measure the impurities present in the pure water as in the related art.

【0016】[0016]

【発明の実施の形態】以下に、本発明の分析試料採取器
具及びそれを用いた分析処理方法を図面に基づきより詳
細に説明する。なお、図1は、本発明の分析試料採取器
具の概略図であって、(a)は該採取器具の使用状態に
おける断面図、(b)は凝縮液を捕集した受器をそのま
ま濃縮処理に付する態様を示した断面図である。また、
図2は、本発明の分析試料採取器具を用いた処理方法の
一例を示した概略図であり、この図では、冷媒として氷
水を用い、採取器具を2台直列に接続した態様を示して
いる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an analytical sample collecting instrument and an analytical processing method using the instrument according to the present invention. FIG. 1 is a schematic view of an analytical sample collecting instrument of the present invention, in which (a) is a cross-sectional view in a state of use of the sampling instrument, and (b) is a concentration treatment of a receiver that has collected a condensate as it is. It is sectional drawing which showed the aspect attached to. Also,
FIG. 2 is a schematic view showing an example of a processing method using the analytical sample collecting instrument of the present invention. In this figure, an aspect in which ice water is used as a refrigerant and two sampling instruments are connected in series is shown. .

【0017】図1に示したように、本発明の分析試料採
取器具は、水蒸気生成装置に接続された水蒸気導入管4
から導入された水蒸気を凝縮貯留する受器1と、該水蒸
気導入管4が固定付設された受器1の蓋体2と、該蓋体
が装着された受器1を冷却するための冷媒5が充填され
る冷媒浴槽3とからなる。また、前記蓋体2には、水蒸
気に同伴して導入された、例えば、アルゴン、ヘリウ
ム、ネオン等の非凝縮性ガス等を排気する排気管6が設
けられている。更に、蓋体2を受器1の上部に、例えば
螺合等により装着した状態において、水蒸気導入管4の
端部4bが、受器底面1aに近接して配置されている。
また、該端部に設けられている水蒸気導入口4aが受器
底面1aに略垂直に、受器1の側壁面に向けて横向き配
置されている。
As shown in FIG. 1, the analytical sample collecting instrument of the present invention comprises a steam introducing pipe 4 connected to a steam generating apparatus.
1 for condensing and storing the water vapor introduced from the container 1, a lid 2 of the receiver 1 to which the water vapor introducing pipe 4 is fixedly attached, and a refrigerant 5 for cooling the receiver 1 to which the lid is attached. Is filled with a refrigerant bath 3. Further, the lid 2 is provided with an exhaust pipe 6 for exhausting a non-condensable gas such as argon, helium, neon, or the like introduced together with the water vapor. Further, in a state where the lid 2 is mounted on the upper portion of the receiver 1 by, for example, screwing, the end 4b of the steam introduction pipe 4 is arranged close to the receiver bottom surface 1a.
In addition, a water vapor inlet 4 a provided at the end is disposed substantially perpendicularly to the bottom surface 1 a of the receiver and laterally toward the side wall surface of the receiver 1.

【0018】本発明において、上記状態での水蒸気導入
管の端部4bと受器底面1aとの高低差(隙間)は、0
乃至5mmの範囲に設定されることが、貯留凝縮液7が
少量でも早期に水蒸気導入口4aが液で覆われ、トラッ
ピング効果が速く出現する点で好ましい。また、該水蒸
気導入管4の水蒸気導入口4aは受器側壁からある程
度、例えば10mm程度以上離れて位置することが、導
入される水蒸気ガスの圧損をできるだけ少なくする点か
ら好ましい。更に、前記受器1と、水蒸気導入管4及び
排気管6を含めた蓋体2とにおいて、少なくとも導入さ
れた水蒸気と接触する部分は、フッ素樹脂からなること
が採取試料液の汚染防止の点から好ましい。また、蓋体
2の内側天井部分が凹曲面形状に形成されていること
が、蓋体2の天井部に凝縮付着したり、あるいは飛沫に
より付着した水滴が、凝集しながら受器1内に流下する
ため好ましい。
In the present invention, the difference in height (gap) between the end 4b of the steam introduction pipe and the bottom surface 1a of the receiver in the above state is 0.
It is preferable to set the thickness within a range of from about 5 mm to the point that even if the amount of the stored condensate 7 is small, the steam inlet 4a is covered with the liquid at an early stage, and the trapping effect appears quickly. Further, it is preferable that the water vapor inlet 4a of the water vapor introducing pipe 4 is located at a certain distance from the side wall of the receiver, for example, about 10 mm or more from the viewpoint of minimizing the pressure loss of the introduced vapor gas. Further, at least a portion of the receiver 1 and the lid 2 including the steam introduction pipe 4 and the exhaust pipe 6 that comes into contact with the introduced steam is preferably made of a fluororesin in order to prevent contamination of the collected sample liquid. Is preferred. Further, the fact that the inner ceiling portion of the lid 2 is formed into a concave curved shape means that water droplets condensing and adhering to the ceiling portion of the lid 2 or water droplets adhering by droplets flow down into the receiver 1 while coagulating. Is preferred.

【0019】前記受器1は、通常この種の分析に必要と
される試料液量を充分に収容できる容積、即ち、通常1
00乃至500ミリリットル程度の容量に形成されてい
る。そしてまた、受器1の形状は、必ずしも限定される
ものではないが、試料液採取後、蓋体2を取り外してそ
のままホットプレート8上で、濃縮処理できるように、
ビーカーのような円筒型に形成されることが好ましい。
なお、水蒸気導入管4の管径は、必ずしもこれに限定さ
れるものではないが、通常、内径3乃至5mm程度とす
る。冷媒浴槽3の容量、材質、形状も、採取水蒸気ガス
の冷却凝縮に充分な熱容量を有する冷媒を収容できる容
積を有し、保冷能力を備えたものである限り、特に制約
はなく、例えば、ステンレス製の2重壁型の保冷容器等
を適宜使用して良い。
The receiver 1 has a volume enough to accommodate the amount of sample liquid normally required for this type of analysis,
It is formed in a capacity of about 00 to 500 ml. Further, the shape of the receiver 1 is not necessarily limited, but after the sample liquid is collected, the lid 2 is removed and the concentration processing can be performed on the hot plate 8 as it is.
It is preferably formed in a cylindrical shape such as a beaker.
The diameter of the steam introduction pipe 4 is not necessarily limited to this, but is usually about 3 to 5 mm in inner diameter. There is no particular limitation on the capacity, material, and shape of the coolant bath 3 as long as it has a capacity capable of accommodating a coolant having a heat capacity sufficient for cooling and condensing the collected steam gas and has a cooling capacity. A double-walled cold storage container or the like may be used as appropriate.

【0020】このように構成された分析試料採取器具を
用いて、半導体製造プロセス用の外部燃焼式水蒸気生成
装置で生成した水蒸気ガスをサンプリングし、採取され
た試料液を分析処理する方法として、図1に示したよう
に採取器具をセットし、例えば、氷水、あるいはドライ
アイスとメチル乃至エチルアルコールの混合液、液体窒
素とメチル乃至エチルアルコール等の冷媒を冷媒浴槽に
充填した後に、水蒸気生成装置との接続部から水蒸気導
入管4を経由して水蒸気ガスを導入し、所定量の凝縮液
7が捕集された後、受器1を蓋体2から取外し、そのま
ま濃縮処理に付する。
The method of sampling the steam gas generated by the external combustion type steam generator for the semiconductor manufacturing process using the analytical sample collecting instrument configured as described above and analyzing the sample liquid sample is shown in FIG. After setting the sampling device as shown in FIG. 1 and filling the refrigerant bath with, for example, ice water or a mixed solution of dry ice and methyl to ethyl alcohol, liquid nitrogen and methyl to ethyl alcohol, and the like, After a predetermined amount of condensed liquid 7 has been collected from the connecting portion of the above through a steam introducing pipe 4 and a predetermined amount of condensate 7 has been collected, the receiver 1 is removed from the lid 2 and subjected to a concentration treatment as it is.

【0021】ここで、使用する冷媒が、液体窒素とメチ
ルあるいはエチルアルコール等の低温冷媒の場合は、図
1のような水蒸気分析試料採取器具一組みからなるシス
テム構成のものを使用しても目的とする試料採取を達成
することができる。しかし、冷媒が氷水の場合は、図2
に示したように、ジョイント9等を用いて水蒸気分析試
料採取器具を2組以上直列に接続連結したシステム構成
とすることが、導入した水蒸気ガスの完全凝縮捕集を担
保できるため、好ましい。
Here, when the refrigerant to be used is a low-temperature refrigerant such as liquid nitrogen and methyl or ethyl alcohol, a system having a system configuration consisting of a set of water vapor analysis sampling equipment as shown in FIG. Sampling can be achieved. However, when the coolant is iced water, FIG.
As shown in (1), it is preferable to use a system configuration in which two or more sets of steam analysis sample collection instruments are connected and connected in series using the joint 9 or the like, since it is possible to ensure complete condensation and collection of the introduced steam gas.

【0022】[0022]

【実施例】「実施例1」希フッ酸洗浄等により清浄化し
た本発明にかかる分析試料採取器具を、図1に示したよ
うにセットし、この器具の水蒸気導入管の上流側端部
を、外部燃焼式の高温水蒸気生成装置にジョイントで接
続した。冷媒浴槽中に氷水を充填して器具内を充分に冷
却した後、水蒸気生成装置に酸素ガスを2リットル/
分、アルゴンガスを5リットル/分、水素ガスを2リッ
トル/分を供給し、20分間燃焼させて水蒸気ガスを生
成させた。これを、水蒸気導入管から導入し、受器内で
水蒸気分を凝縮させて分析用の凝縮液(試料)を捕集し
た。捕集した凝縮液(試料)を濃縮し、捕集試料中の金
属不純物量を原子吸光法で測定定量した。その測定結果
と捕集された凝縮液量を表1に示す。
Example 1 An analytical sample collecting instrument according to the present invention, which was cleaned by dilute hydrofluoric acid washing or the like, was set as shown in FIG. 1, and the upstream end of a steam introduction pipe of this instrument was set. Was connected to an external combustion type high temperature steam generator by a joint. After filling the cooling bath with ice water and sufficiently cooling the inside of the appliance, oxygen gas was supplied to the steam generator at 2 liters / liter.
5 liters / minute of argon gas and 2 liters / minute of hydrogen gas were supplied and burned for 20 minutes to generate steam gas. This was introduced from a steam introduction pipe, and the steam was condensed in the receiver to collect a condensate (sample) for analysis. The collected condensate (sample) was concentrated, and the amount of metal impurities in the collected sample was measured and quantified by an atomic absorption method. Table 1 shows the measurement results and the amount of condensate collected.

【0023】実施例1において、従来評価が困難であっ
た極微量のシリカの定量が可能であることが確認され
た。また、採取受器を移し替えることなくそのまま濃縮
工程に使用できるため、汚染防止が非常に容易になっ
た。しかし、氷水を冷媒として用い、採取器具を一組だ
け単独で使用した実施例1の場合、捕集された凝縮液量
は25ml程度とやや少なく、分析評価に支障はない
が、完全捕集は達成されていないことが判った。
In Example 1, it was confirmed that it was possible to quantify a very small amount of silica, which was conventionally difficult to evaluate. In addition, since the collection receiver can be used as it is in the concentration step without being transferred, the prevention of contamination is greatly facilitated. However, in the case of Example 1 in which ice water was used as a cooling medium and only one set of sampling equipment was used, the amount of condensate collected was as small as about 25 ml, which did not hinder the analysis and evaluation. It turns out that it has not been achieved.

【0024】「実施例2」図2に示したように、本発明
の分析試料採取器具を直列に2組接続した他は、実施例
1と同様の条件で操作処理し、捕集液量(直列2受器で
の合計量)を計量すると共に金属不純物含有量を評価し
た。この実施例においては、捕集された凝縮液量は40
mlであった。その結果を表1に示す。
Example 2 As shown in FIG. 2, except that two sets of analytical sample collecting instruments of the present invention were connected in series, the operation was performed under the same conditions as in Example 1, and the collected liquid amount ( And the metal impurity content was evaluated. In this embodiment, the amount of condensate collected is 40
ml. Table 1 shows the results.

【0025】「実施例3」分析試料採取器具を直列に3
組接続した他は、実施例1と同様の条件で操作して処理
し、捕集液量(直列3受器の合計量)を計量すると共に
金属不純物含有量を評価した。その結果を表1に示す。
なお、実施例3での捕集液量は、採取器具を2組直列に
接続した実施例2の捕集液量と同量であり、捕集容器
(分析試料採取器具)の接続個数は通常の場合2組みで
良いことが判った。
Example 3 An analytical sample collecting device was connected in series
Except for the connection, the operation was performed under the same conditions as in Example 1, and the amount of the collected liquid (the total amount of the three serial receivers) was measured and the content of metal impurities was evaluated. Table 1 shows the results.
The amount of collected liquid in Example 3 was the same as the amount of collected liquid in Example 2 in which two sets of collection instruments were connected in series, and the number of connected collection vessels (analytical sample collection instruments) was usually In the case of the above, it turned out that two sets are sufficient.

【0026】「実施例4」実施例2において、冷媒の氷
水を、液体窒素・エタノール混合液に替えた以外は実施
例2と同様に操作、処理し、捕集された凝縮液量を計量
すると共に金属不純物含有量を評価した。その結果を表
1に示す。
Example 4 The procedure and operation of Example 2 were repeated, except that the ice water as the refrigerant was replaced with a liquid mixture of liquid nitrogen and ethanol, and the amount of condensate collected was measured. In addition, the metal impurity content was evaluated. Table 1 shows the results.

【0027】上記液体窒素・エタノール混合冷媒を用い
た実施例4の場合も、もちろん極微量のシリカ分の正確
な定量が可能であった。また、捕集された凝縮液量も実
施例2と同量であった。更に、冷却効果を持続させるに
は、この種の混合冷媒を用いるのが効果的であることも
判った。因に、液体窒素単独使用は、突沸、その他の危
険性が高く冷媒として適当でない。
In the case of Example 4 using the above-mentioned liquid nitrogen / ethanol mixed refrigerant, it was of course possible to accurately determine a trace amount of silica. The amount of condensate collected was the same as in Example 2. Furthermore, it has been found that it is effective to use this type of mixed refrigerant in order to maintain the cooling effect. Incidentally, the use of liquid nitrogen alone has a high risk of bumping and other problems and is not suitable as a refrigerant.

【0028】「比較例1」従来法である純水50mlを
満たしたフッ素樹脂製容器中に、実施例1と同様にして
生成させた水蒸気ガスを導入し凝縮捕集させた。この捕
集された凝縮液の測定結果と凝縮液を表1に示す。従来
法では純水中に存在するシリカの影響により正確な水蒸
気試料中のシリカ分の定量検定ができなかった。
[Comparative Example 1] A steam gas produced in the same manner as in Example 1 was introduced into a fluororesin container filled with 50 ml of pure water according to the conventional method, and was condensed and collected. Table 1 shows the measurement results of the collected condensed liquid and the condensed liquid. In the conventional method, it was not possible to accurately determine the amount of silica in a water vapor sample due to the effect of silica present in pure water.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の分析試料採
取器具は、純水等のトラッピング液を使用することなく
高温の水蒸気をそのままの組成でほぼ完全に凝縮液とし
て捕集できるため、半導体製造プロセス等に使用する高
温でかつ高純度の水蒸気中に含まれる微量の不純物を正
確に分析することができる。また、上記分析試料採取器
具を用いる本発明の分析処理方法によれば、採取試料の
処理時における汚染防止が容易である。また従来法で
は、純水中に含まれていたシリカ分との識別が困難なた
め、定量が非常に困難であるとされていた水蒸気中のシ
リカ分を正確に定量できる利点を有する。
As described in detail above, the analytical sample collecting instrument of the present invention can collect high-temperature steam almost completely as a condensate with the same composition without using a trapping liquid such as pure water. It is possible to accurately analyze trace impurities contained in high-temperature and high-purity steam used in a semiconductor manufacturing process or the like. Further, according to the analytical processing method of the present invention using the analytical sample collecting instrument, it is easy to prevent contamination during processing of the collected sample. Further, in the conventional method, it is difficult to distinguish the silica content from the pure water, so that there is an advantage that the silica content in the water vapor, which is considered to be very difficult to determine, can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分析試料採取器具の概略図であって、
(a)は、該採取器具の使用状態における断面図、
(b)は凝縮液を捕集した受器をそのまま濃縮処理に付
する態様を示した断面図である。
FIG. 1 is a schematic view of an analytical sample collecting instrument of the present invention,
(A) is a cross-sectional view in a use state of the sampling instrument,
(B) is a cross-sectional view showing a mode in which the receiver that has collected the condensed liquid is subjected to concentration processing as it is.

【図2】本発明の分析試料採取器具を用いた処理方法の
一例を示した概略図である。
FIG. 2 is a schematic view showing an example of a processing method using the analytical sample collecting instrument of the present invention.

【図3】従来の採取器具を用いた場合の通常の処理方法
を示す概略図である。
FIG. 3 is a schematic diagram showing a normal processing method when a conventional sampling instrument is used.

【符号の説明】[Explanation of symbols]

1 受器 1a 受器底面 2 蓋体 3 冷媒浴槽 4 水蒸気導入管 4a 水蒸気導入口 4b 導入管端部 5 冷媒 6 排気管 7 貯留凝縮液 8 ホットプレート 9 ジョイント 31 捕集容器 32 純水(捕集液) 34 水蒸気導入管 36 排気管 A 半導体用水蒸気生成装置 DESCRIPTION OF SYMBOLS 1 Receiver 1a Receiver bottom surface 2 Lid 3 Refrigerant bath 4 Steam introduction pipe 4a Steam introduction port 4b Introductory pipe end 5 Refrigerant 6 Exhaust pipe 7 Storage condensate 8 Hot plate 9 Joint 31 Collection container 32 Pure water (collection) Liquid) 34 steam introduction pipe 36 exhaust pipe A steam generator for semiconductors

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造プロセス用の外部燃焼式水蒸
気生成装置に接続され、該装置で生成する水蒸気に含ま
れる微量不純物を分析するための半導体用水蒸気生成装
置の分析試料採取器具において、 前記分析試料採取器具が、採取すべき水蒸気を凝縮し貯
留するための受器と、水蒸気導入管が取付けられ、前記
受器に取外し可能に嵌合する蓋体と、該蓋体を装着した
受器を外部から冷却する冷媒浴槽とからなり、 前記水蒸気導入管が、蓋体装着時に受器内部下方に延
び、その端部が該受器の底面に近接して配置されること
を特徴とする半導体用水蒸気生成装置の分析試料採取器
具。
1. An analytical sample collection instrument of a semiconductor steam generator connected to an external combustion type steam generator for a semiconductor manufacturing process for analyzing trace impurities contained in steam generated by the apparatus. A sampling device is provided with a receiver for condensing and storing water vapor to be collected, a water vapor introduction tube attached thereto, a lid detachably fitted to the receiver, and a receiver equipped with the lid. A cooling water bath for cooling from the outside, wherein the water vapor introduction pipe extends downward inside the receiver when the lid is attached, and an end thereof is arranged close to the bottom surface of the receiver. An analytical sample collection instrument for a steam generator.
【請求項2】 前記水蒸気導入管端部の水蒸気導入口
が、受器の底面に対し略垂直に配置されていることを特
徴とする請求項1に記載された半導体用水蒸気生成装置
の分析試料採取器具。
2. The sample for analysis of a semiconductor steam generator according to claim 1, wherein the steam inlet at the end of the steam inlet tube is arranged substantially perpendicular to the bottom surface of the receiver. Collection equipment.
【請求項3】 前記受器に蓋体を装着した状態における
水蒸気導入管の端部と受器底面との間隙が、0乃至5m
mの範囲にあることを特徴とする請求項1または請求項
2に記載された半導体用水蒸気生成装置の分析試料採取
器具。
3. The gap between the end of the steam introduction pipe and the bottom of the receiver when the lid is attached to the receiver is 0 to 5 m.
The analytical sample collection instrument of the semiconductor steam generator according to claim 1 or 2, wherein the instrument is in the range of m.
【請求項4】 前記蓋体には、導入される水蒸気に同伴
する非凝縮性ガスを排出する排気管が付設されているこ
とを特徴とする請求項1乃至請求項3のいずれかに記載
された半導体用水蒸気発生装置の分析試料採取器具。
4. The lid according to claim 1, wherein an exhaust pipe for discharging a non-condensable gas accompanying the introduced steam is attached to the lid. An analytical sampling instrument for a steam generator for semiconductors.
【請求項5】 前記受器、水蒸気導入管、排気管、及び
蓋体の少なくとも水蒸気と接触する面が、フッ素樹脂か
らなることを特徴とする請求項1乃至請求項4のいずれ
かに記載された半導体用水蒸気発生装置の分析試料採取
器具。
5. The apparatus according to claim 1, wherein at least the surfaces of the receiver, the water vapor introducing pipe, the exhaust pipe, and the lid that come into contact with the water vapor are made of a fluororesin. An analytical sampling instrument for a steam generator for semiconductors.
【請求項6】 前記蓋体の内側天井部が凹曲面形状に形
成されていることを特徴とする請求項1乃至請求項5の
いずれかに記載の半導体用水蒸気発生装置の分析試料採
取器具。
6. The instrument according to claim 1, wherein an inner ceiling portion of the lid is formed in a concave curved shape.
【請求項7】 前記冷媒浴槽中に充填される冷媒が氷
水、または液体窒素とエタノールの混合物からなること
を特徴とする請求項1乃至請求項6のいずれかに記載さ
れた半導体用水蒸気発生装置の分析試料採取器具。
7. The steam generator for a semiconductor according to claim 1, wherein the refrigerant filled in the refrigerant bath is made of ice water or a mixture of liquid nitrogen and ethanol. Analytical sampling equipment.
【請求項8】 半導体製造プロセス用の外部燃焼式水蒸
気生成装置から生成される水蒸気中の微量不純物の分析
処理方法において、 前記請求項1乃至請求項7のいずれかに記載の分析試料
採取器具を前記水蒸気生成装置に接続し、該採取器具の
冷媒浴槽中に水蒸気冷却凝縮用の冷媒を充填した後、水
蒸気導入管から受器内に水蒸気を導入し、該受器内で水
蒸気を冷却凝縮させて捕集し、所定量捕集後、該蓋付き
受器を冷媒浴槽から取り出すと共に蓋体を受器から外
し、該受器を加熱して凝縮液を濃縮することを特徴とす
る半導体用水蒸気生成装置の分析試料採取器具を用いた
分析処理方法。
8. A method for analyzing trace impurities in steam generated from an external combustion type steam generator for a semiconductor manufacturing process, wherein the analysis sample collecting instrument according to any one of claims 1 to 7 is used. Connected to the steam generator, after filling the refrigerant bath for cooling and condensing refrigerant in the refrigerant bath of the sampling instrument, introduce steam into the receiver from the steam inlet pipe, cool and condense the steam in the receiver. And collecting a predetermined amount of water, removing the receiver with the lid from the coolant bath, removing the lid from the receiver, and heating the receiver to concentrate the condensate. An analytical processing method using an analytical sample collecting instrument of a generating apparatus.
JP11223649A 1999-08-06 1999-08-06 Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same Pending JP2001053124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223649A JP2001053124A (en) 1999-08-06 1999-08-06 Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223649A JP2001053124A (en) 1999-08-06 1999-08-06 Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same

Publications (1)

Publication Number Publication Date
JP2001053124A true JP2001053124A (en) 2001-02-23

Family

ID=16801502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223649A Pending JP2001053124A (en) 1999-08-06 1999-08-06 Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same

Country Status (1)

Country Link
JP (1) JP2001053124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002193A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002193A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor

Similar Documents

Publication Publication Date Title
CN107063784A (en) It is a kind of to be used for the extraction purification system and its method for extraction and purification of dissolving xenon in water
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
KR100263512B1 (en) Method of impurity analysis in silicon wafer
KR19980071582A (en) Method and apparatus for removing siloxane contained in silicon compound gas, Method and analyzer for analyzing content of siloxane
US4488887A (en) Cold trap
US4195524A (en) Method and apparatus for collecting and storing environmental gases
JPH08330271A (en) Method and device for etching surface of silicon wafer
CN201289439Y (en) Gas-liquid separating and collecting device of exhaled air
JP2001053124A (en) Analysis sample gathering unit for semiconductor vapor generator and analysis processing method using the same
WO2013094628A1 (en) Mist-containing gas analysis device
Yokel et al. A safe method to acid digest small samples of biological tissues for graphite furnace atomic absorption analysis of aluminum
CN217033263U (en) Pretreatment system of chlorosilane detection sample
CN207457129U (en) High temperature refractory mineral laser-BrF5Method oxygen isotope composition analysis system
CN206177666U (en) A draw purification system for xenon is dissolved to aquatic
JP2002005799A (en) Analytical method for trace metal impurities
CN214472089U (en) Simple exhaled air condensate collecting device
JP2011257381A (en) Thermal hydrolysis device and analysis system using the same
JPH0772056A (en) Analysis method and decomposition/dry-up device for analysis
CN206177636U (en) Sampling device of water sample dissolved gas analysis
JPH06130007A (en) Analyzing and determining method for novolatile impurity in ultra-pure water
JP2002318176A (en) Gas sampler for gas analyzer
US5900124A (en) Method and apparatus of concentrating chemicals for semiconductor device manufacturing
CN212275643U (en) Water-gas separation equipment
JP2004117271A (en) Method of collecting analytical exhaust gas containing high adsorptivity gas component
JPS58196443A (en) Mercury concentration measuring apparatus