JP2001052972A - Manufacture of alkali activated carbon for electrode of electric double-layer capacitor - Google Patents

Manufacture of alkali activated carbon for electrode of electric double-layer capacitor

Info

Publication number
JP2001052972A
JP2001052972A JP11226719A JP22671999A JP2001052972A JP 2001052972 A JP2001052972 A JP 2001052972A JP 11226719 A JP11226719 A JP 11226719A JP 22671999 A JP22671999 A JP 22671999A JP 2001052972 A JP2001052972 A JP 2001052972A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
alkali
treatment
alkali activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226719A
Other languages
Japanese (ja)
Inventor
Shigeki Koyama
茂樹 小山
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11226719A priority Critical patent/JP2001052972A/en
Priority to US10/048,470 priority patent/US7214646B1/en
Priority to DE10084910T priority patent/DE10084910B4/en
Priority to PCT/JP2000/005340 priority patent/WO2001013390A1/en
Publication of JP2001052972A publication Critical patent/JP2001052972A/en
Priority to US11/727,974 priority patent/US20070183958A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkali activated carbon for the electrode of an electric double-layered capacitor capable of enhancing electrode density. SOLUTION: At providing an alkali activated carbon, there are provided successively a process where a mesophase pitch lump is crushed to provide a pulverized powder, a process where the pulverized powder is processed for infusibility at 300-450 deg.C in an atmospheric current, a process where the pulverized powder is carbonized at 600-900 deg.C in an inert gas current to provide a carbide powder, a process where the carbide powder is alkali-activation processed at 500-1000 deg.C in an inert gas atmosphere then a post-process provides an alkali activated carbon, and a process where the alkali activated carbon is crushed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層コンデン
サの電極用アルカリ賦活炭の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alkali activated carbon for an electrode of an electric double layer capacitor.

【0002】[0002]

【従来の技術】従来,この種の電極用活性炭としては,
その静電容量の増加を狙って,メソフェーズピッチを原
料とするアルカリ賦活炭が用いられている。
2. Description of the Related Art Conventionally, as this type of activated carbon for electrodes,
In order to increase the capacitance, alkali activated carbon using mesophase pitch as a raw material has been used.

【0003】このアルカリ賦活炭は,メソフェーズピッ
チを用いて紡糸を行うことにより繊維状物を製造し,次
いでその繊維状物に不融化処理,それに次ぐ炭化処理を
施し,その後,アルカリ賦活処理に次いで粉砕処理を行
うか,または粉砕処理に次いでアルカリ賦活処理を行
う,といった方法により製造されている。
[0003] This alkali activated carbon is produced by spinning using a mesophase pitch to produce a fibrous material, then subjecting the fibrous material to an infusibilization treatment and a subsequent carbonization treatment, and then to an alkali activation treatment It is manufactured by a method of performing a pulverization treatment or performing an alkali activation treatment after the pulverization treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,従来法
によるアルカリ賦活炭は,繊維状物を粉砕したものであ
るから,粉砕によりその長さが短くなっても,長さ方向
の破断,つまり繊維端面を分断するような破断は起りづ
らく,また過粉砕は性能の劣化を招くこともあって,ア
ルカリ賦活炭は柱状をなす粒子を多く含むことになる。
このようなアルカリ賦活炭を用いて電極を構成すると,
柱状粒子がランダムに分散してそれらの間に空隙が生じ
易く,その結果,電極密度(g/cc)が低く,延いて
は電気二重層コンデンサの静電容量密度(F/cc)を
高めることができない,という問題を生じた。
However, since the alkali activated carbon according to the conventional method is obtained by pulverizing a fibrous material, even if the length is shortened by pulverization, it is broken in the longitudinal direction, that is, the fiber end face is broken. It is difficult to cause breakage such as fragmentation, and excessive pulverization may cause deterioration of performance. Therefore, alkali activated carbon contains many particles in columnar form.
When an electrode is constructed using such an alkali activated carbon,
The columnar particles are randomly dispersed and voids are easily formed between them, so that the electrode density (g / cc) is low and the capacitance density (F / cc) of the electric double layer capacitor is increased. The problem was that it was not possible.

【0005】[0005]

【課題を解決するための手段】本発明は,特定の手段を
採用することにより,電極密度を高めることが可能なア
ルカリ賦活炭を得ることのできる前記製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing an alkaline activated carbon capable of increasing the electrode density by employing a specific means.

【0006】前記目的を達成するため本発明によれば,
塊状メソフェーズピッチに粉砕処理を施して粉砕粉を得
る工程と,前記粉砕粉に,大気気流中,300℃以上,
450℃以下の条件で不融化処理を施す工程と,前記粉
砕粉に,不活性ガス気流中,600℃以上,900℃以
下の条件で炭化処理を施して炭化粉を得る工程と,前記
炭化粉に,不活性ガス雰囲気中,500℃以上,100
0℃以下の条件でアルカリ賦活処理を施し,次いで後処
理を行ってアルカリ賦活炭を得る工程と,前記アルカリ
賦活炭に粉砕処理を施す工程とを順次行う,電気二重層
コンデンサの電極用アルカリ賦活炭の製造方法が提供さ
れる。
According to the present invention, in order to achieve the above object,
A step of subjecting the bulk mesophase pitch to a pulverization process to obtain a pulverized powder;
A step of performing infusibilizing treatment at a temperature of 450 ° C. or less, a step of subjecting the pulverized powder to a carbonizing treatment in an inert gas stream at a temperature of 600 ° C. to 900 ° C. to obtain a carbonized powder, In an inert gas atmosphere, at least 500 ° C, 100
Performing an alkali activation treatment under a condition of 0 ° C. or lower, and then performing a post-treatment to obtain an alkali activated carbon; and sequentially performing a pulverizing process on the alkali activated carbon, the alkali activation for an electrode of an electric double layer capacitor. A method for producing charcoal is provided.

【0007】前記方法により得られたアルカリ賦活炭
は,塊状メソフェーズピッチの粉砕粉を出発原料として
いるので,微小な塊状粒子よりなり,したがって電極に
おいてはそれら微小塊状粒子が最密充填構造に近い構造
をとるため電極密度を大いに高めることが可能である。
[0007] The alkali activated carbon obtained by the above-mentioned method is composed of crushed powder of lumpy mesophase pitch as a starting material, and is therefore composed of lumpy particles. Therefore, it is possible to greatly increase the electrode density.

【0008】前記不融化処理において,その温度が30
0℃未満では,不融化が不十分であることから,次の炭
化処理工程において粉砕粉が溶融し,一方,450℃を
越えると酸化が過度に進行するため好ましくない。また
炭化処理において,その温度が600℃未満では,次工
程で得られるアルカリ賦活炭の密度が低下し,一方,9
00℃を越えると炭化粉の賦活が非常に進行しにくくな
る。さらにアルカリ賦活処理において,その温度が50
0℃未満では賦活が進行しにくく,一方,1000℃を
越えると過度の賦活によりアルカリ賦活炭の密度が低下
すると共にその収率も悪化する。
[0008] In the infusibilization treatment, the temperature is 30
If the temperature is lower than 0 ° C., the infusibilization is insufficient, so that the pulverized powder is melted in the next carbonization step. On the other hand, if the temperature exceeds 450 ° C., the oxidation excessively proceeds, which is not preferable. In the carbonization treatment, if the temperature is lower than 600 ° C., the density of the alkali activated carbon obtained in the next step is reduced.
When the temperature exceeds 00 ° C., activation of the carbonized powder becomes very difficult to proceed. Further, in the alkali activation treatment, the temperature is 50
If the temperature is lower than 0 ° C., the activation hardly proceeds. On the other hand, if the temperature is higher than 1000 ° C., excessive activation lowers the density of the alkali activated carbon and the yield thereof.

【0009】[0009]

【発明の実施の形態】図1,2において,円筒型電気二
重層コンデンサ1は,Al製容器2と,その容器2内に
収容された電極巻回体3と,その容器2内に注入された
電解液とを有する。容器2は有底筒形本体4と,その一
端開口部を閉鎖する端子板5とよりなり,その端子板5
に正,負端子6,7と安全弁8とが設けられている。
1 and 2, a cylindrical electric double-layer capacitor 1 has an Al container 2, an electrode winding body 3 accommodated in the container 2, and an electrode wound body 3 injected into the container 2. Electrolyte solution. The container 2 comprises a bottomed cylindrical main body 4 and a terminal plate 5 for closing one end opening thereof.
Are provided with positive and negative terminals 6, 7 and a safety valve 8.

【0010】電極巻回体3は,正極積層帯9と負極積層
帯10とを有する。その正極積層帯9は,アルミ箔より
なる帯状集電体11の両面に,それぞれ帯状分極性電極
eを導電性接着剤を用いて貼付し,一方の帯状分極性電
極eにPTFE(ポリテトラフルオロエチレン)よりな
る第1のセパレータ13を重ね合せたものである。これ
ら一対の分極性電極eにより帯状正極12が構成され
る。また第1のセパレータ13に電解液が含浸保持され
る。負極積層帯10は,アルミ箔よりなる帯状集電体1
4の両面に,それぞれ帯状分極性電極eを導電性接着剤
を用いて貼付し,一方の帯状分極性電極eにPTFEよ
りなる第2のセパレータ16を重ね合せたものである。
これら一対の分極性電極eにより帯状負極15が構成さ
れる。また第2のセパレータ16に電解液が含浸保持さ
れる。
The wound electrode body 3 has a positive electrode laminated band 9 and a negative electrode laminated band 10. The positive electrode laminated band 9 is formed by attaching a band-shaped polarizable electrode e to both sides of a band-shaped current collector 11 made of aluminum foil using a conductive adhesive, and PTFE (polytetrafluoroethylene) is applied to one of the band-shaped polarizable electrodes e. The first separator 13 made of ethylene is superposed. A belt-like positive electrode 12 is constituted by the pair of polarizable electrodes e. Further, the first separator 13 is impregnated and held with the electrolytic solution. The negative electrode laminated strip 10 is a strip-shaped current collector 1 made of aluminum foil.
A band-shaped polarizable electrode e is adhered to both sides of each of the electrodes 4 using a conductive adhesive, and a second separator 16 made of PTFE is superposed on one band-shaped polarizable electrode e.
A strip-shaped negative electrode 15 is constituted by the pair of polarizable electrodes e. In addition, the second separator 16 is impregnated and held with the electrolytic solution.

【0011】電極巻回体3の製造に当っては,正極積層
帯9の,露出している分極性電極eに負極積層帯10の
第2のセパレータ16を重ね合せ,その重ね合せ物を,
正極積層帯9の第1のセパレータ13が最外側に位置す
るように渦巻き状に巻回するものである。
In manufacturing the wound electrode body 3, the second separator 16 of the negative electrode lamination strip 10 is superimposed on the exposed polarizable electrode e of the positive electrode lamination strip 9, and the superposed product is
The first separator 13 of the positive electrode laminated strip 9 is spirally wound so as to be located on the outermost side.

【0012】電解液としては,ホウフッ化第4アンモニ
ウム化合物,例えばTEMA・BF 4 [(C2 5 3
CH3 N・BF4 (ホウフッ化トリエチルメチルアンモ
ニウム),溶質]のPC(プロピレンカーボネート,溶
媒)溶液が用いられる。
As the electrolyte, borofluorinated fourth ammonium
Compounds, such as TEMA.BF Four[(CTwoHFive)Three
CHThreeN ・ BFFour(Triethyl borofluoride ammonium
), Solute] PC (propylene carbonate,
Medium) solution is used.

【0013】電極用活性炭としてはメソフェーズピッチ
を原料とするアルカリ賦活炭が用いられ,そのアルカリ
賦活炭は以下の方法により製造される。
As activated carbon for electrodes, alkali activated carbon using mesophase pitch as a raw material is used, and the alkali activated carbon is produced by the following method.

【0014】即ち,塊状メソフェーズピッチに粉砕処理
を施して粉砕粉を得る工程と,粉砕粉に,大気気流中,
300℃以上,450℃以下の条件で不融化処理を施す
工程と,粉砕粉に,不活性ガス気流中,600℃以上,
900℃以下の条件で炭化処理を施して炭化粉を得る工
程と,炭化粉に,不活性ガス雰囲気中,500℃以上,
1000℃以下の条件でアルカリ賦活処理を施し,次い
で後処理を行ってアルカリ賦活炭を得る工程と,アルカ
リ賦活炭に粉砕処理を施す工程とを順次行うものであ
る。
That is, a step of subjecting the bulk mesophase pitch to a pulverization process to obtain a pulverized powder;
A step of performing infusibilizing treatment at a temperature of 300 ° C. or more and 450 ° C. or less;
A step of obtaining a carbonized powder by performing a carbonization treatment at a temperature of 900 ° C. or less;
The step of performing an alkali activation treatment at a temperature of 1000 ° C. or lower and then performing a post-treatment to obtain an alkali activated carbon, and the step of pulverizing the alkali activated carbon are sequentially performed.

【0015】なお,処理時間は,不融化処理,炭化処理
およびアルカリ賦活処理において,それぞれ0.5時間
以上,10時間以下が望ましい。何れの処理において
も,処理時間の下限値未満では,所期の目的を達成する
ことができず,一方,処理時間の上限値を越えると処理
物の特性が損われるおそれがある。
The treatment time is preferably 0.5 hours or more and 10 hours or less in each of the infusibilization treatment, the carbonization treatment, and the alkali activation treatment. In any of the processes, if the processing time is less than the lower limit value, the intended purpose cannot be achieved. On the other hand, if the processing time exceeds the upper limit value, the characteristics of the processed product may be impaired.

【0016】前記方法により得られたアルカリ賦活炭
は,塊状メソフェーズピッチの粉砕粉を出発原料として
いるので,微小な塊状粒子よりなり,したがって帯状
正,負極12,15においてはそれら微小塊状粒子が最
密充填構造に近い構造をとるため電極密度を大いに高め
ることが可能である。
The alkali activated carbon obtained by the above-mentioned method is composed of fine lump particles because the pulverized powder of the lump mesophase pitch is used as a starting material. Since the structure is close to the close-packed structure, the electrode density can be greatly increased.

【0017】以下,具体例について説明する。 〔実施例〕先ず,メソフェーズピッチを原料とするアル
カリ賦活炭,実施例ではKOH賦活炭を次のような方法
で製造した。
Hereinafter, a specific example will be described. [Example] First, alkali activated carbon using mesophase pitch as a raw material, and in this example, KOH activated carbon were produced by the following method.

【0018】(a)塊状メソフェーズピッチに室温下で
粉砕処理を施して平均粒径300μmの粉砕粉を製造
し,次いで粉砕粉に,大気気流中,350℃,2時間の
不融化処理を施し,その後,粉砕粉に,窒素気流中,7
00℃,1時間の炭化処理を施して炭化粉を得た。
(b)炭化粉と,その炭素重量の2倍量のKOHとを混
合し,次いで混合物に窒素雰囲気中,800℃,5時間
のアルカリ賦活処理としてのカリウム賦活処理を施し,
その後,混合物の,塩酸による中和,洗浄および乾燥と
いった後処理を行ってKOH賦活炭を得た。(c)KO
H賦活炭にジェットミルによる粉砕処理を施して,所定
の平均粒径を持つ微細なKOH賦活炭を得た。以下,こ
の微細KOH賦活炭を単にKOH賦活炭と言う。
(A) The pulverized mesophase pitch is pulverized at room temperature to produce a pulverized powder having an average particle size of 300 μm. Then, the pulverized powder is subjected to infusibilization treatment at 350 ° C. for 2 hours in an air stream. After that, the pulverized powder was mixed with nitrogen
Carbonization was performed at 00 ° C. for 1 hour to obtain carbonized powder.
(B) mixing carbonized powder with KOH twice as much as the carbon weight thereof, and then subjecting the mixture to a potassium activation treatment as an alkali activation treatment at 800 ° C. for 5 hours in a nitrogen atmosphere;
Thereafter, the mixture was subjected to post-treatments such as neutralization with hydrochloric acid, washing and drying to obtain KOH-activated carbon. (C) KO
The H activated carbon was subjected to a pulverization treatment by a jet mill to obtain a fine KOH activated carbon having a predetermined average particle size. Hereinafter, this fine KOH activated carbon is simply referred to as KOH activated carbon.

【0019】所定の平均粒径を有するKOH賦活炭,黒
鉛粉末(導電フィラ)およびPTFE(バインダ)を8
5:12.5:2.5の重量比となるように秤量し,次
いでその秤量物を混練し,その後,混練物を用いて圧延
を行い,厚さ175μmの電極シートを製作した。電極
シートから幅95mm,長さ1500mmの複数の帯状分極
性電極eを切出し,これら2枚の帯状分極性電極eと,
幅105mm,長さ1500mm,厚さ40μmの帯状集電
体11と,導電性接着剤とを用い,またPTFEよりな
る厚さ75μmの第1のセパレータ13を用いて正極積
層帯9を製作した。さらに,前記同様の2枚の帯状分極
性電極eと,帯状集電体14と,導電性接着剤とを用
い,また厚さ75μmの第2のセパレータ16を用いて
負極積層帯10を製作した。
KOH activated carbon having a predetermined average particle size, graphite powder (conductive filler) and PTFE (binder)
The weight ratio was 5: 12.5: 2.5, the weighed material was kneaded, and then rolled using the kneaded material to produce an electrode sheet having a thickness of 175 μm. A plurality of band-shaped polarizable electrodes e having a width of 95 mm and a length of 1500 mm are cut out from the electrode sheet, and these two band-shaped polarizable electrodes e are
The positive electrode laminated band 9 was manufactured using a belt-shaped current collector 11 having a width of 105 mm, a length of 1500 mm, and a thickness of 40 μm, a conductive adhesive, and a 75 μm-thick first separator 13 made of PTFE. Further, the negative electrode laminated band 10 was manufactured using the same two band-shaped polarizable electrodes e, the band-shaped current collector 14 and the conductive adhesive, and using the second separator 16 having a thickness of 75 μm. .

【0020】そして,正極積層帯9の,露出している帯
状分極性電極eに負極積層帯10の第2のセパレータ1
6を重ね合せ,その重ね合せ物を,正極積層帯9の第1
のセパレータ13が最外側に位置するように渦巻き状に
巻回して,電極巻回体3を製造し,この電極巻回体3
と,1.5モルのTEMA・BF4 をPC溶液に溶解し
た電解液とを内径50mm,長さ130mmの容器2の有底
筒型本体4内に入れ,その開口部を端子板5を用いて閉
鎖して円筒型電気二重層コンデンサ1を得た。その閉鎖
の際に正極積層帯9および負極積層帯10の両集電体1
1が端子板5の正端子6および負端子7にそれぞれ接続
される。同様の方法で,さらに4個の円筒型電気二重層
コンデンサ1を製造した。これらのコンデンサ1を例
(1)〜(5)とする。 〔比較例〕メソフェーズピッチを用いて紡糸を行うこと
により平均直径10μmの繊維状物を製造し,次いでそ
の繊維状物に前記実施例の場合と同一条件で不融化処
理,炭化処理,アルカリ賦活処理および粉砕処理を順次
行って所定の平均粒径を持つKOH賦活炭を得た。
Then, the second separator 1 of the negative electrode laminated band 10 is applied to the exposed band-shaped polarizable electrode e of the positive electrode laminated band 9.
6 and the superimposed product is placed on the first
Is wound in a spiral so that the separator 13 is located at the outermost position, thereby producing the electrode winding body 3.
And an electrolytic solution prepared by dissolving 1.5 mol of TEMA.BF 4 in a PC solution are placed in a bottomed cylindrical main body 4 of a container 2 having an inner diameter of 50 mm and a length of 130 mm. And closed to obtain a cylindrical electric double layer capacitor 1. At the time of the closing, both the current collectors 1 of the positive electrode laminated band 9 and the negative electrode laminated band 10
1 is connected to the positive terminal 6 and the negative terminal 7 of the terminal plate 5, respectively. In the same manner, four more cylindrical electric double layer capacitors 1 were manufactured. These capacitors 1 are examples (1) to (5). [Comparative Example] A fibrous material having an average diameter of 10 µm was produced by spinning using a mesophase pitch, and then the fibrous material was subjected to infusibilization treatment, carbonization treatment, and alkali activation treatment under the same conditions as in the above-mentioned Example. Then, a pulverization treatment was sequentially performed to obtain a KOH-activated carbon having a predetermined average particle size.

【0021】次いで,前記実施例と同様の方法で5個の
円筒型電気二重層コンデンサ1を製造した。これらのコ
ンデンサ1を例(6)〜(10)とする。 〔電気二重層コンデンサの性能〕表1は,電気二重層コ
ンデンサ1の例(1)〜(10)に関するKOH賦活炭
の平均粒径,帯状正,負極12,15,したがって分極
性電極eの電極密度および静電容量密度(F/cc)を
示す。なお,KOH賦活炭の平均粒径は粒度分布測定装
置を用いて測定されたものであり,また充電は45℃雰
囲気下,2.5Vにて行われた。
Next, five cylindrical electric double layer capacitors 1 were manufactured in the same manner as in the above embodiment. These capacitors 1 are examples (6) to (10). [Performance of Electric Double Layer Capacitor] Table 1 shows the average particle size of the KOH-activated carbon for the examples (1) to (10) of the electric double layer capacitor 1, the positive and negative electrodes 12, 15 and therefore the electrodes of the polarizable electrode e. The density and the capacitance density (F / cc) are shown. The average particle size of the KOH activated carbon was measured using a particle size distribution analyzer, and charging was performed at 45 V in an atmosphere of 2.5 V.

【0022】[0022]

【表1】 [Table 1]

【0023】図3は,実施例における分極性電極e表面
の顕微鏡組織を示す。図3より,微小な塊状粒子が最密
充填構造に近い構造をとっていることが判る。
FIG. 3 shows a microscopic structure of the surface of the polarizable electrode e in the embodiment. From FIG. 3, it can be seen that the fine massive particles have a structure close to the close-packed structure.

【0024】図4は比較例における分極性電極e表面の
顕微鏡組織を示す。図4より,柱状粒子がランダムに分
散して,それらの間に空隙が生じていることが判る。
FIG. 4 shows the microstructure of the surface of the polarizable electrode e in the comparative example. From FIG. 4, it can be seen that the columnar particles are randomly dispersed and voids are generated between them.

【0025】図5,6は,表1に基づいて例(1)〜
(5)および例(6)〜(10)について,平均粒径と
電極密度との関係をそれぞれグラフ化したものである。
図5に示すように,実施例によるKOH賦活炭を用いる
と,例(2),(3)のように電極密度を約1g/cc
まで高めることができるが,比較例の場合は,例
(7),(8)のように電極密度は約0.9g/ccに
止まる。
FIGS. 5 and 6 show examples (1) to (4) based on Table 1.
9 is a graph showing the relationship between the average particle size and the electrode density for (5) and Examples (6) to (10).
As shown in FIG. 5, when the KOH activated carbon according to the embodiment is used, the electrode density is reduced to about 1 g / cc as in Examples (2) and (3).
However, in the case of the comparative example, the electrode density is only about 0.9 g / cc as in Examples (7) and (8).

【0026】表1,図5,6から明らかなように,実施
例によるKOH賦活炭を用いた例(1)〜(5)は比較
例によるKOH賦活炭を用いた例(6)〜(10)に比
べて電極密度が高く,またこれに応じて静電容量密度も
高くなっている。これは,図3,4にも示したようにK
OH賦活炭の粒子形状の違いに起因する。
As is clear from Table 1, FIGS. 5 and 6, Examples (1) to (5) using the KOH-activated carbon according to the examples are Examples (6) to (10) using the KOH-activated carbon according to the comparative example. ), The electrode density is higher, and the capacitance density is correspondingly higher. This is, as shown in FIGS.
This is due to the difference in the particle shape of the OH-activated carbon.

【0027】次に,例(1)〜(5)において最も高い
電極密度を有する例(2)と,例(6)〜(10)にお
いて最も高い電極密度を有する例(7)について,サイ
クル試験を行って静電容量劣化率および内部抵抗上昇率
を調べたところ,図7,8の結果を得た。サイクル試験
に当っては,45℃雰囲気下,2.5V,30Aで20
分間の充電を行い,次いでゼロファラッドまで放電し,
これを1サイクルとして200サイクル繰返した。
Next, a cycle test was performed on Example (2) having the highest electrode density in Examples (1) to (5) and Example (7) having the highest electrode density in Examples (6) to (10). Then, the capacitance deterioration rate and the internal resistance rise rate were examined, and the results shown in FIGS. In the cycle test, under a 45 ° C atmosphere, 20V at 2.5V, 30A
Charge for a minute, then discharge to zero farads,
This was defined as one cycle, and 200 cycles were repeated.

【0028】図7,8から明らかなように,例(2)は
例(7)に比べて静電容量劣化率および内部抵抗上昇率
が共に低いことが判る。これは,メソフェーズピッチを
原料とするKOH賦活炭は,充,放電の繰返し初期にお
いて膨脹する,といった特性を有するため,その膨脹に
起因して,例(2)においては電極密度がさらに上昇
し,その降下が経時的に極めて緩慢となるが,例(7)
においては前記膨脹による柱状粒子相互の離間,それに
伴う空隙の拡大が経時的に速く進行することによる,と
考えられる。
As is apparent from FIGS. 7 and 8, it is understood that both the capacitance deterioration rate and the internal resistance rise rate of Example (2) are lower than those of Example (7). This is because KOH-activated carbon made from mesophase pitch has the characteristic that it expands at the initial stage of repeated charging and discharging. Due to the expansion, the electrode density further increases in Example (2). The descent becomes extremely slow over time.
In this case, it is considered that the separation between the columnar particles due to the expansion and the accompanying expansion of the voids proceed rapidly with time.

【0029】[0029]

【発明の効果】本発明によれば前記のような手段を採用
することによって,微小塊状粒子よりなるアルカリ賦活
炭を得ることができ,これにより電極密度を高めて電気
二重層コンデンサの特性を向上させることができる。
According to the present invention, by employing the above-described means, it is possible to obtain an alkali activated carbon composed of fine aggregated particles, thereby increasing the electrode density and improving the characteristics of the electric double layer capacitor. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒型電気二重層コンデンサの要部破断斜視図
である。
FIG. 1 is a cutaway perspective view of a main part of a cylindrical electric double layer capacitor.

【図2】図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】分極性電極の一例における表面の顕微鏡組織図
である。
FIG. 3 is a microscopic view of the surface of an example of a polarizable electrode.

【図4】分極性電極の他例における表面の顕微鏡組織図
である。
FIG. 4 is a microscopic view of the surface of another example of the polarizable electrode.

【図5】KOH賦活炭の平均粒径と電極密度との関係の
一例を示すグラフである。
FIG. 5 is a graph showing an example of the relationship between the average particle size of KOH-activated carbon and the electrode density.

【図6】KOH賦活炭の平均粒径と電極密度との関係の
他例を示すグラフである。
FIG. 6 is a graph showing another example of the relationship between the average particle size of KOH-activated carbon and the electrode density.

【図7】サイクル数と静電容量劣化率との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the number of cycles and the capacitance deterioration rate.

【図8】サイクル数と内部抵抗上昇率との関係を示すグ
ラフである。
FIG. 8 is a graph showing the relationship between the number of cycles and the rate of increase in internal resistance.

【符号の説明】[Explanation of symbols]

1 円筒型電気二重層コンデンサ 2 容器 3 電極巻回体 11,14 帯状集電体 12 帯状正極 15 帯状負極 13,16 セパレータ DESCRIPTION OF SYMBOLS 1 Cylindrical electric double layer capacitor 2 Container 3 Electrode winding body 11, 14 Strip current collector 12 Strip positive electrode 15 Strip negative electrode 13, 16 Separator

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月18日(2000.10.
18)
[Submission date] October 18, 2000 (2000.10.
18)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】次いで,前記実施例の場合と同様の方法で
5個の円筒型電気二重層コンデンサ1を製造した。これ
らのコンデンサ1を例(6)〜(10)とする。 〔電気二重層コンデンサの性能〕表1は,電気二重層コ
ンデンサ1の例(1)〜(10)に関するKOH賦活炭
の平均粒径,帯状正,負極12,15,したがって分極
性電極eの電極密度および静電容量密度(F/cc)を
示す。なお,KOH賦活炭の平均粒径は粒度分布測定装
置を用いて測定されたものであり,また充電は45℃雰
囲気下,2.5Vにて行われた。
[0021] Then, to produce five the cylindrical electric double-layer capacitor 1 in the same manner as in the case of the embodiment. These capacitors 1 are examples (6) to (10). [Performance of Electric Double Layer Capacitor] Table 1 shows the average particle size of the KOH-activated carbon for the examples (1) to (10) of the electric double layer capacitor 1, the positive and negative electrodes 12, 15 and therefore the electrodes of the polarizable electrode e. The density and the capacitance density (F / cc) are shown. The average particle size of the KOH activated carbon was measured using a particle size distribution analyzer, and charging was performed at 45 V in an atmosphere of 2.5 V.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】図3は,例(2)における分極性電極e表
面の顕微鏡組織を示す。図3より,微小な塊状粒子が最
密充填構造に近い構造をとっていることが判る。
FIG. 3 shows the microstructure of the surface of the polarizable electrode e in Example (2) . From FIG. 3, it can be seen that the fine massive particles have a structure close to the close-packed structure.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】図4は例(7)における分極性電極e表面
の顕微鏡組織を示す。図4より,柱状粒子がランダムに
分散して,それらの間に空隙が生じていることが判る。
FIG. 4 shows the microstructure of the surface of the polarizable electrode e in Example (7) . From FIG. 4, it can be seen that the columnar particles are randomly dispersed and voids are generated between them.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塊状メソフェーズピッチに粉砕処理を施
して粉砕粉を得る工程と,前記粉砕粉に,大気気流中,
300℃以上,450℃以下の条件で不融化処理を施す
工程と,前記粉砕粉に,不活性ガス気流中,600℃以
上,900℃以下の条件で炭化処理を施して炭化粉を得
る工程と,前記炭化粉に,不活性ガス雰囲気中,500
℃以上,1000℃以下の条件でアルカリ賦活処理を施
し,次いで後処理を行ってアルカリ賦活炭を得る工程
と,前記アルカリ賦活炭に粉砕処理を施す工程とを順次
行うことを特徴とする,電気二重層コンデンサの電極用
アルカリ賦活炭の製造方法。
A step of subjecting the bulk mesophase pitch to a pulverization process to obtain a pulverized powder;
A step of performing infusibility treatment at a temperature of 300 ° C. or more and 450 ° C. or less, and a step of subjecting the pulverized powder to a carbonization treatment at 600 ° C. or more and 900 ° C. or less in an inert gas stream to obtain a carbonized powder. , 500 g of the carbonized powder in an inert gas atmosphere.
A step of performing an alkali activation treatment under the condition of not less than 1000 ° C. and not more than 1000 ° C. and then performing a post-treatment to obtain an alkali activated carbon; and a step of performing a pulverization treatment on the alkali activated carbon. A method for producing an alkali activated carbon for an electrode of a double-layer capacitor.
JP11226719A 1999-08-10 1999-08-10 Manufacture of alkali activated carbon for electrode of electric double-layer capacitor Pending JP2001052972A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11226719A JP2001052972A (en) 1999-08-10 1999-08-10 Manufacture of alkali activated carbon for electrode of electric double-layer capacitor
US10/048,470 US7214646B1 (en) 1999-08-10 2000-08-09 Method for producing activated carbon for electrode of electric double-layer capacitor
DE10084910T DE10084910B4 (en) 1999-08-10 2000-08-09 Process for producing activated carbon for an electrode of an electric double-layer capacitor
PCT/JP2000/005340 WO2001013390A1 (en) 1999-08-10 2000-08-09 Method for producing activated carbon for electrode of electric double-layer capacitor
US11/727,974 US20070183958A1 (en) 1999-08-10 2007-03-29 Process for producing activated carbon for electrode of electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226719A JP2001052972A (en) 1999-08-10 1999-08-10 Manufacture of alkali activated carbon for electrode of electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2001052972A true JP2001052972A (en) 2001-02-23

Family

ID=16849565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226719A Pending JP2001052972A (en) 1999-08-10 1999-08-10 Manufacture of alkali activated carbon for electrode of electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2001052972A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154738B2 (en) 2002-11-29 2006-12-26 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
WO2006137323A1 (en) 2005-06-21 2006-12-28 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
JP2008169071A (en) * 2007-01-11 2008-07-24 Jfe Chemical Corp Porous carbon material, method for producing the same and electric double layer capacitor
US7582902B2 (en) 2004-12-22 2009-09-01 Nippon Oil Corporation Raw material carbon composition for carbon material for electrode in electric double layer capacitor
WO2016002668A1 (en) * 2014-07-03 2016-01-07 東レ株式会社 Porous carbon material and method for manufacturing porous carbon material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154738B2 (en) 2002-11-29 2006-12-26 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
US7582902B2 (en) 2004-12-22 2009-09-01 Nippon Oil Corporation Raw material carbon composition for carbon material for electrode in electric double layer capacitor
WO2006137323A1 (en) 2005-06-21 2006-12-28 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
US7993619B2 (en) 2005-06-21 2011-08-09 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
JP2008169071A (en) * 2007-01-11 2008-07-24 Jfe Chemical Corp Porous carbon material, method for producing the same and electric double layer capacitor
WO2016002668A1 (en) * 2014-07-03 2016-01-07 東レ株式会社 Porous carbon material and method for manufacturing porous carbon material
US10270082B2 (en) 2014-07-03 2019-04-23 Toray Industries, Inc. Porous carbon material and method for manufacturing porous carbon material

Similar Documents

Publication Publication Date Title
JP7161523B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4392169B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode material thereof
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP4144038B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO1998054779A1 (en) Nonaqueous electrolyte secondary battery
US7160615B2 (en) Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
EP0643431A1 (en) Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH03252053A (en) Nonaqueous electrolyte secondary battery
JPH07226204A (en) Manufacture of nonaqueous electrolyte secondary battery
WO2004034491A1 (en) Nonaqueous electrolyte secondary battery and process for producing positive electrode for use in nonaqueous electrolyte secondary battery
JPH1012241A (en) Negative electrode material for lithium ion secondary battery
WO2001013390A1 (en) Method for producing activated carbon for electrode of electric double-layer capacitor
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3920411B2 (en) Method for producing electrode material
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP2001052972A (en) Manufacture of alkali activated carbon for electrode of electric double-layer capacitor
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JPH0869819A (en) Nonaqueous electrolytic secondary battery
JPH10241690A (en) Lithium secondary battery negative electrode
JP3587935B2 (en) Lithium secondary battery
WO2002073731A1 (en) Battery
EP3993103A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP2002367585A (en) Separator, its manufacturing method, as well as battery, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090603