JP2001050781A - Disturbed state measuring device for ground - Google Patents

Disturbed state measuring device for ground

Info

Publication number
JP2001050781A
JP2001050781A JP11227204A JP22720499A JP2001050781A JP 2001050781 A JP2001050781 A JP 2001050781A JP 11227204 A JP11227204 A JP 11227204A JP 22720499 A JP22720499 A JP 22720499A JP 2001050781 A JP2001050781 A JP 2001050781A
Authority
JP
Japan
Prior art keywords
ground
deformation
optical fiber
measured
disturbed state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11227204A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fujihashi
一彦 藤橋
Masaru Okutsu
大 奥津
Hiroyuki Komatsu
宏至 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11227204A priority Critical patent/JP2001050781A/en
Publication of JP2001050781A publication Critical patent/JP2001050781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To monitor and measure the disturbed state of the ground even when the direction of disturbed state is known and the disturbed state quantity is minimum, and even when the direction of disturbed state is unknown and the quantity is maximum, by providing a groove for fixing core wire on one face of a member stuck with a flexible optical fiber core wire in one specific direction. SOLUTION: A member 20 is fundamentally provided with rigidity, provided with flexibility only in one direction, and a groove 22 for sticking an optical fiber core wire 30 on the opposite side of a irregular part 21. The member 20 is provided so that the irregular part 21 side of arranged dales and hills is stuck to the disturbed state generated place of the ground or the like. When the direction of the disturbed ground is known, a strain-loss joint type optical pulse tester is connected to one end of the optical fiber core wire, strain of the optical fiber core wire 30 accompanying the disturbed state of ground is measured, and diplacement generating it is obtained to compute the disturbed state of ground. When the direction of the ground disturbed state is unknown, a plurality of the members 20 are combined to be provided in the respective directions, the disturbed states in the respective directions are measured, these strains are vector-compounded, and the disturbed state quantity and the direction of the measured point can be computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被計測対象に貼り
付けられている光ファイバ心線の歪を検知することによ
って、上記被計測対象の変状を計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a deformation of an object to be measured by detecting a distortion of an optical fiber core attached to the object to be measured.

【0002】[0002]

【従来の技術】構造物や地盤の歪等の変状を計測する場
合、従来、歪ゲージ等によって歪を電気抵抗に変換する
方法が用いられている。この従来方法によれば、歪ゲー
ジが貼り付けられている数mm〜数cm近接の変状を正
確に測定することができる。しかし、上記従来例では、
長距離に渡る変状の計測を行うことが困難であるという
欠点がある。
2. Description of the Related Art When measuring deformation such as distortion of a structure or ground, a method of converting distortion into electric resistance using a strain gauge or the like has been conventionally used. According to this conventional method, it is possible to accurately measure the deformation in the vicinity of several mm to several cm to which the strain gauge is attached. However, in the above conventional example,
There is a drawback that it is difficult to measure the deformation over a long distance.

【0003】また、従来、ひび割れ等を目視する観測
や、傾斜計、沈下計、変位計、荷重計を用いることによ
って、地盤の変状を計測している。しかし、このように
計測すると、観測を定期的に行う必要があるので、多く
の手間を必要とし、測定箇所が不連続な点になるので、
大規模構造物や広範囲な地域の変状を監視・計測するこ
とが困難であるという欠点がある。
[0003] Conventionally, ground deformation has been measured by visual observation of cracks and the like, and by using inclinometers, sinkers, displacement meters, and load meters. However, measuring in this way requires a lot of trouble because it is necessary to perform observations periodically, and the measurement points become discontinuous points.
The disadvantage is that it is difficult to monitor and measure large-scale structures and deformations in a wide area.

【0004】さらに、地震等のように変状量が大きい場
合には、地震前後に航空写真による測量を行ない、また
は変状を実測する。しかし、このような計測は、多大な
時間と労力とを必要とし、地震中または地震直後にその
データを測定することが困難であるという欠点がある。
Further, when the amount of deformation is large, such as in an earthquake, surveying by aerial photography is performed before or after the earthquake, or the deformation is actually measured. However, such a measurement requires a great deal of time and labor, and has a drawback that it is difficult to measure the data during or immediately after the earthquake.

【0005】一方、長距離に渡る変状を容易に計測する
ことができる方法として、光ファイバを用いて変状を計
測する方法が知られている。この方法は、光ファイバを
変状物に接着固定して変状を計測する方法であり、上記
光ファイバの長手方向に渡るブリルアン散乱光の強さに
関する周波数分布が、変状の大きさによってシフトする
ことを利用し、長距離に渡る変状を計測する方法であ
る。この計測方法では、変状物に接着固定された光ファ
イバに、計測用の光パルスを入射し、光ファイバ内で発
生した散乱光を受信するまでの時間に基づいて、計測位
置を求めることができ、また、上記散乱光の強さの周波
数分布を解析することによって、その計測位置における
変状を求めることができる。
On the other hand, as a method for easily measuring a deformation over a long distance, a method for measuring the deformation using an optical fiber is known. This method is a method of measuring deformation by bonding an optical fiber to a deformed object, and the frequency distribution related to the intensity of Brillouin scattered light in the longitudinal direction of the optical fiber shifts according to the size of the deformation. This is a method of measuring the deformation over a long distance. In this measurement method, a measurement light pulse is incident on an optical fiber bonded and fixed to a deformed object, and the measurement position can be determined based on the time until the scattered light generated in the optical fiber is received. In addition, by analyzing the frequency distribution of the intensity of the scattered light, it is possible to determine the deformation at the measurement position.

【0006】[0006]

【発明が解決しようとする課題】上記光ファイバを用い
て変状を計測する従来の技術は、上記光ファイバに沿っ
た線の情報として、広範囲なデータを得ることができ
る。
The conventional technique for measuring the deformation using the optical fiber can obtain a wide range of data as information on a line along the optical fiber.

【0007】しかし、光ファイバを用いて変状を計測す
る上記従来の技術は、地盤変状の鉛直方向分布や、大変
形や変形の正確な方向は考慮されていない。
However, the above-described conventional technique of measuring deformation using an optical fiber does not take into account the vertical distribution of ground deformation and the exact direction of large deformation or deformation.

【0008】本発明は、観測施工・近接施工による地盤
の変状を想定し、変状の方向が既知であるが変状量が小
さい場合に、高精度の監視・計測をおこなうことがで
き、しかも、地震時の液状化現象による地盤の変状を想
定し、変状の方向は未知であるが変状量が大きい場合
に、その変状方向および大きな変状量を検出することが
できる地盤の監視・計測を行うための地盤の変状計測装
置を提供することを目的とするものである。
According to the present invention, it is possible to perform high-precision monitoring and measurement when the deformation direction is known but the amount of deformation is small, assuming deformation of the ground due to observation construction and proximity construction. Moreover, assuming the ground deformation due to the liquefaction phenomenon during an earthquake, the direction of the deformation is unknown, but when the deformation amount is large, the ground direction and the large deformation amount can be detected. It is an object of the present invention to provide a ground deformation measuring device for monitoring and measuring the ground.

【0009】[0009]

【課題を解決するための手段】本発明は、被計測対象と
ともに変状する光ファイバ心線の歪を検知することによ
って、上記被計測対象の変状を計測する装置において、
所定の一方向にのみ可撓性を具備し、上記光ファイバ心
線が貼り付けられる部材と、上記部材の1つの面に設け
られている上記光ファイバ心線の固定用溝とを有する地
盤の変状計測装置である。
According to the present invention, there is provided an apparatus for measuring a deformation of an object to be measured by detecting a distortion of an optical fiber core deforming together with the object to be measured.
A member having flexibility in only one predetermined direction, a member to which the optical fiber core is attached, and a groove for fixing the optical fiber core provided on one surface of the member. It is a deformation measuring device.

【0010】[0010]

【発明の実施の形態および実施例】図1は、本発明の第
1の実施例である地盤の変状計測装置10を示す斜視図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing a ground deformation measuring apparatus 10 according to a first embodiment of the present invention.

【0011】地盤の変状計測装置10は、地盤変状を計
測する部材20であり、この部材20に、光ファイバ心
線30が貼り付けられている。
The ground deformation measuring apparatus 10 is a member 20 for measuring ground deformation, and an optical fiber core 30 is attached to the member 20.

【0012】部材20は、板状を有し、その1つの面
(表面)に、山揃えと谷揃えとが行われている凸凹21
を有する。つまり、凹凸21における複数の山の高さが
互いに同じであり、また、凹凸21における複数の谷の
深さが互いに同じである。なお、部材20として、板状
の代わりに、棒状、膜状の部材を使用してもよい。
The member 20 has a plate-like shape, and its one surface (surface) is provided with irregularities 21 on which peaks and valleys are aligned.
Having. That is, the heights of the plurality of peaks in the unevenness 21 are the same, and the depths of the plurality of valleys in the unevenness 21 are the same. Note that a rod-shaped or film-shaped member may be used as the member 20 instead of the plate-shaped member.

【0013】部材20は、基本的には剛性を有する部材
であるが、一方向にのみ可撓性を有する。つまり、部材
20の凹凸21における山の稜線方向(B方向)には、
大きな剛性を有するが、部材20における山の稜線と直
交する方向(A方向)では、谷によって剛性が低下して
いるので、可撓性を有する。
The member 20 is basically a member having rigidity, but has flexibility only in one direction. In other words, in the direction of the ridgeline of the mountain (direction B) in the unevenness 21 of the member 20,
Although it has great rigidity, it has flexibility in the direction (A direction) orthogonal to the ridgeline of the mountain in the member 20 because the rigidity is reduced by the valley.

【0014】部材20において、凹凸21と反対の面
(裏面)には、光ファイバ心線30を貼り付けるための
溝22を有する。この溝22に、光ファイバ心線30が
数回程度往復して貼り付けられ、光ファイバ心線30が
部材20と一体化される。
The member 20 has a groove 22 for attaching an optical fiber 30 on the surface (back surface) opposite to the unevenness 21. The optical fiber 30 is reciprocated about several times in the groove 22, and the optical fiber 30 is integrated with the member 20.

【0015】次に、上記実施例である地盤の変状計測装
置10の動作について説明する。
Next, the operation of the ground deformation measuring apparatus 10 according to the above embodiment will be described.

【0016】まず、光ファイバ心線30が貼り付けられ
た部材20の山揃え、谷揃えの凸凹21側を、地盤等の
変状の生じる場所に密着して設置する。
First, the concave-convex 21 side of the member 20 to which the optical fiber core 30 is attached is arranged in close contact with a place where deformation occurs such as the ground.

【0017】そして、光ファイバ心線30の一端には、
図示しない従来の歪・損失統合型光パルス試験機(BO
TDR)が接続され、地盤の変状に伴う光ファイバ心線
30の歪を計測し、その歪を生じさせる変位を求めるこ
とによって、地盤の変状量を算出する。
At one end of the optical fiber core 30,
A conventional distortion / loss integrated optical pulse tester (not shown)
TDR) is connected, and measures the distortion of the optical fiber core wire 30 accompanying the deformation of the ground, and calculates the amount of deformation of the ground by calculating the displacement causing the distortion.

【0018】部材20における凹凸21の山の稜線方向
(B方向)には、大きな剛性を有するので歪がほとんど
発生せず、剛性の小さい方向(山の稜線方向と直行する
方向、A方向)に歪が発生する。したがって、部材20
に貼り付けられた光ファイバ心線30によって、山の稜
線方向と直行する方向(A方向)の歪のみを検出するこ
とができる。
In the direction of the ridgeline (direction B) of the ridges and projections 21 of the member 20, there is little distortion due to high rigidity, and the rigidity is low (direction perpendicular to the ridgeline direction of the mountain, direction A). Distortion occurs. Therefore, the member 20
By using the optical fiber core 30 stuck on the ridge, it is possible to detect only the distortion in the direction (A direction) perpendicular to the ridgeline direction of the mountain.

【0019】上記実施例は、地盤変状の方向が既知であ
る場合に、その地盤変状の方向における変状量を算出す
る場合に使用される。
The above embodiment is used when the direction of the ground deformation is known and the amount of deformation in the direction of the ground deformation is calculated.

【0020】部材20自体の剛性としては、計測すべき
地盤の剛性に適した剛性が選択される。部材20とし
て、たとえば、硬質ビニール、硬質ゴムが使用される。
As the rigidity of the member 20 itself, a rigidity suitable for the rigidity of the ground to be measured is selected. As the member 20, for example, hard vinyl or hard rubber is used.

【0021】図2は、本発明の第2の実施例である地盤
の変状計測装置11を示す図である。
FIG. 2 is a view showing a ground deformation measuring apparatus 11 according to a second embodiment of the present invention.

【0022】図3は、本発明の第3の実施例である地盤
の変状計測装置12を示す図である。
FIG. 3 is a view showing a ground deformation measuring apparatus 12 according to a third embodiment of the present invention.

【0023】図4は、本発明の第4の実施例である地盤
の変状計測装置13を示す図である。
FIG. 4 is a view showing a ground deformation measuring apparatus 13 according to a fourth embodiment of the present invention.

【0024】地盤の変状計測装置11、12、13は、
地盤変状の方向が未知である場合における部材20の配
置例である。
The ground deformation measuring devices 11, 12, and 13
It is an example of arrangement of the member 20 when the direction of the ground deformation is unknown.

【0025】地盤変状の方向が未知である場合には、図
2〜図4に示すように部材20を複数組み合わせて設置
することによって、地盤におけるそれぞれの方向の変状
を計測することができる。この場合、地盤変状を各部材
20に対して垂直方向に投影した歪が、各光ファイバ心
線30で測定される。また、その歪をベクトルとして合
成することによって、その測定点における変状の大き
さ、方向を算出することができる。
When the direction of the ground deformation is unknown, the deformation of the ground in each direction can be measured by installing a plurality of members 20 as shown in FIGS. . In this case, the distortion obtained by projecting the ground deformation in a direction perpendicular to each member 20 is measured by each optical fiber core 30. Also, by combining the distortion as a vector, the magnitude and direction of the deformation at the measurement point can be calculated.

【0026】なお、往復して貼り付けた光ファイバ心線
30によって測定される部材20の歪の分布状況によっ
て、部材20のねじれを把握することができる。
The torsion of the member 20 can be grasped from the state of distribution of the strain of the member 20 measured by the optical fiber 30 stuck back and forth.

【0027】特に地震時の液状化現象による地盤の変状
を監視・測定する際には、地盤の変状範囲が大きくな
り、絶対的な変位の算定が困難になるので、部材20の
下端を変位がない深度に達するまで、埋め込んで使用す
ることが望ましい。
Particularly, when monitoring and measuring the deformation of the ground due to the liquefaction phenomenon during an earthquake, the deformation range of the ground becomes large, and it becomes difficult to calculate the absolute displacement. It is desirable to embed and use until a depth without displacement is reached.

【0028】上記実施例において、可撓性を有す部材2
0を用いるので、地盤追従性が向上し、地盤の変状を正
確に計測することができる。
In the above embodiment, the flexible member 2
Since 0 is used, the ground followability is improved, and the deformation of the ground can be accurately measured.

【0029】また、上記実施例において、表面に凸凹2
1を有する部材20を地盤の動きに追従させることによ
って、部材20の歪を一方向に限定できるので、特定の
方向の変状のみを計測することができる。
Further, in the above embodiment, the unevenness 2
By causing the member 20 having 1 to follow the movement of the ground, the distortion of the member 20 can be limited to one direction, so that only the deformation in a specific direction can be measured.

【0030】また、部材20を複数組み合わせて使用
し、観測された変状をベクトルとして合成することによ
って、変状の方向を高精度に計測することができる。
Further, by using a plurality of members 20 in combination and combining the observed deformations as vectors, the direction of the deformation can be measured with high accuracy.

【0031】さらに、光ファイバ心線30を部材20に
数回往復させて貼り付けることによって、部材20のね
じれ状況を把握することができる。つまり、上記のよう
に部材20の変形が一方向にのみ生じるように規制して
はいるが、それでも地盤の変状の方向によっては、ねじ
れが生じることが予想され、この場合には、光ファイバ
心線30の両端における測定値に大きな差が生じ、この
差を検出することによって、部材20のねじれ状況を把
握することができる。
Furthermore, by twisting the optical fiber core 30 back and forth on the member 20 several times, the twisted state of the member 20 can be grasped. In other words, as described above, the deformation of the member 20 is restricted so as to occur only in one direction. However, it is expected that the twist may still occur depending on the direction of deformation of the ground. A large difference occurs in the measured values at both ends of the core wire 30, and by detecting this difference, the torsion state of the member 20 can be grasped.

【0032】また、上記実施例において、方向性の変状
誤差を除去することができる。つまり、部材20の表面
に凸凹部21を持たせているので、部材20において発
生する歪を一方向に限定しているが、より確実に、方向
性の変状誤差を除去するには、数回往復させて貼り付け
た光ファイバ心線30の中央部において測定された歪の
みの値を用いる。
Further, in the above-described embodiment, it is possible to eliminate the directional deformation error. That is, since the projections and depressions 21 are provided on the surface of the member 20, the strain generated in the member 20 is limited to one direction. The value of only the strain measured at the central portion of the optical fiber core 30 that has been reciprocated and adhered is used.

【0033】上記実施例では、凹凸21の断面形状が三
角形であるが、三角形の代わりに、矩形等の多角形を使
用してもよく、また、半円形を使用するようにしてもよ
い。
In the above embodiment, the cross-sectional shape of the unevenness 21 is triangular, but a polygon such as a rectangle may be used instead of a triangle, or a semicircle may be used.

【0034】上記実施例における部材20は、山谷がそ
れぞれ揃えられている凹凸21を有するものであるが、
この代わりに、所定の一方向に規則的に繰り返される凹
凸を具備する部材を使用するようにしてもよい。すなわ
ち、部材20は、所定の一方向にのみ可撓性を具備し、
光ファイバ心線が貼り付けられる部材の例である。
The member 20 in the above embodiment has irregularities 21 in which peaks and valleys are aligned.
Instead, a member having irregularities that are regularly repeated in one predetermined direction may be used. That is, the member 20 has flexibility only in one predetermined direction,
It is an example of a member to which an optical fiber is attached.

【0035】上記部材20の代わりに、たとえば金属製
棒が等間隔で互いに平行に埋め込まれている可撓性の平
板等を使用するようにしてもよい。このようにしても、
一方向にのみ可撓性を持たせることができる。
Instead of the member 20, for example, a flexible flat plate or the like in which metal rods are embedded in parallel at equal intervals may be used. Even if you do this,
Flexibility can be provided in only one direction.

【0036】[0036]

【発明の効果】本発明によれば、観測施工・近接施工に
よる地盤の変状を想定し、変状の方向が既知であるが変
状量が小さい場合に、高精度の監視・計測をおこなうこ
とができ、しかも、地震時の液状化現象による地盤の変
状を想定し、変状の方向は未知であるが変状量が大きい
場合に、その変状方向および大きな変状量を検出するこ
とができるという効果を奏する。
According to the present invention, high-precision monitoring / measurement is performed when the deformation direction is known but the deformation amount is small, assuming the ground deformation due to the observation construction and the proximity construction. In addition, assuming the ground deformation due to the liquefaction phenomenon during the earthquake, if the deformation direction is unknown but the deformation amount is large, the deformation direction and large deformation amount are detected. It has the effect of being able to do so.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である地盤の変状計測装
置10を示す斜視図である。
FIG. 1 is a perspective view showing a ground deformation measuring apparatus 10 according to a first embodiment of the present invention.

【図2】本発明の第2の実施例である地盤の変状計測装
置11を示す図である。
FIG. 2 is a view showing a ground deformation measuring apparatus 11 according to a second embodiment of the present invention.

【図3】本発明の第3の実施例である地盤の変状計測装
置12を示す図である。
FIG. 3 is a view showing a ground deformation measuring apparatus 12 according to a third embodiment of the present invention.

【図4】本発明の第4の実施例である地盤の変状計測装
置13を示す図である。
FIG. 4 is a diagram showing a ground deformation measuring apparatus 13 according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10、11、12、13…地盤の変状計測装置、 20…部材、 21…凸凹、 22…溝、 30…光ファイバ心線。 10, 11, 12, 13 ... ground deformation measuring device, 20 ... member, 21 ... unevenness, 22 ... groove, 30 ... optical fiber core.

フロントページの続き (72)発明者 小松 宏至 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2F065 AA65 CC00 CC40 DD00 FF12 FF33 LL02 PP01 UU03 2F076 BA01 BA11 BB09 BD05 BD06 BD17 BE02 2G086 CC03 DD05 Continuation of front page (72) Inventor Hiroshi Komatsu 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-term in Nippon Telegraph and Telephone Corporation (reference) 2F065 AA65 CC00 CC40 DD00 FF12 FF33 LL02 PP01 UU03 2F076 BA01 BA11 BB09 BD05 BD06 BD17 BE02 2G086 CC03 DD05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被計測対象とともに変状する光ファイバ
心線の歪を検知することによって、上記被計測対象の変
状を計測する装置において、 所定の一方向にのみ可撓性を具備し、上記光ファイバ心
線が貼り付けられる部材と;上記部材の1つの面に設け
られている上記光ファイバ心線の固定用溝と;を有する
ことを特徴とする地盤の変状計測装置。
An apparatus for measuring a deformation of an object to be measured by detecting a distortion of an optical fiber core deformed together with the object to be measured, wherein the apparatus has flexibility only in one predetermined direction, A ground deformation measuring apparatus comprising: a member to which the optical fiber core is attached; and a groove for fixing the optical fiber core provided on one surface of the member.
【請求項2】 請求項1において、 上記部材は、所定の一方向に規則的に繰り返される凹凸
を、上記1つの面とは反対の面に具備する部材であるこ
とを特徴とする地盤の変状計測装置。
2. The ground deformation according to claim 1, wherein the member is provided with irregularities that are regularly repeated in one predetermined direction on a surface opposite to the one surface. Condition measuring device.
【請求項3】 請求項2において、 上記凹凸は、山谷がそれぞれ揃えられている凹凸である
ことを特徴とする地盤の変状計測装置。
3. The ground deformation measuring apparatus according to claim 2, wherein the irregularities are irregularities in which peaks and valleys are aligned.
【請求項4】 請求項2において、 上記凹凸は、その断面形状が多角形または半円形である
ことを特徴とする地盤の変状計測装置。
4. The ground deformation measuring apparatus according to claim 2, wherein the unevenness has a polygonal or semicircular cross-sectional shape.
【請求項5】 請求項1において、 上記部材は、板状、棒状、膜状のうちの少なくとも1つ
の部材であることを特徴とする地盤の変状計測装置。
5. The ground deformation measuring apparatus according to claim 1, wherein the member is at least one member of a plate shape, a rod shape, and a film shape.
【請求項6】 請求項1において、 上記光ファイバ心線の固定用溝は、連続して往復する溝
であることを特徴とする地盤の変状計測装置。
6. The ground deformation measuring apparatus according to claim 1, wherein the fixing groove of the optical fiber is a groove that reciprocates continuously.
【請求項7】 請求項1〜請求項5のいずれか1項にお
いて、 上記地盤の変状計測装置が複数設けられ、上記複数の地
盤の変状計測装置によって、T字形状またはL字形状が
形成されていることを特徴とする地盤の変状計測装置。
7. The ground deformation measuring device according to claim 1, wherein a plurality of ground deformation measuring devices are provided, and a T-shaped or L-shaped shape is determined by the plurality of ground deformation measuring devices. A ground deformation measuring device characterized by being formed.
【請求項8】 請求項7において、 上記複数の地盤の変状計測装置のそれぞれによって計測
された変状をベクトルとして合成することによって、変
状の方向を計測することを特徴とする地盤の変状計測装
置。
8. The deformation of a ground according to claim 7, wherein a direction of the deformation is measured by synthesizing a deformation measured by each of the plurality of ground deformation measuring devices as a vector. Condition measuring device.
JP11227204A 1999-08-11 1999-08-11 Disturbed state measuring device for ground Pending JP2001050781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11227204A JP2001050781A (en) 1999-08-11 1999-08-11 Disturbed state measuring device for ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11227204A JP2001050781A (en) 1999-08-11 1999-08-11 Disturbed state measuring device for ground

Publications (1)

Publication Number Publication Date
JP2001050781A true JP2001050781A (en) 2001-02-23

Family

ID=16857137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227204A Pending JP2001050781A (en) 1999-08-11 1999-08-11 Disturbed state measuring device for ground

Country Status (1)

Country Link
JP (1) JP2001050781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380476A (en) * 2018-12-27 2020-07-07 北京航空航天大学 Beam type structure deformation measuring method and device based on strain measurement data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380476A (en) * 2018-12-27 2020-07-07 北京航空航天大学 Beam type structure deformation measuring method and device based on strain measurement data
CN111380476B (en) * 2018-12-27 2021-03-09 北京航空航天大学 Beam type structure deformation measuring method and device based on strain measurement data

Similar Documents

Publication Publication Date Title
JPWO2004048889A1 (en) Optical fiber measurement module
CN206960005U (en) A kind of temperature sensing optical cable fixing device
KR20160103587A (en) Structural health monitoring system using carbon fiber grid and the monitoring method of the same
JP6143225B2 (en) Ground stress sensor and earth pressure detection device
CN108317965A (en) A kind of measurement deformation structure and method with fiber grating
JP3829180B2 (en) Ground deformation measurement system using optical fiber sensor
CN205246041U (en) Three -dimensional joint measurement device of displacement sensor parallel placement
CN104315946A (en) Rope groove detecting tool and method
JP6419543B2 (en) Measuring method of axial force of ground anchor
JP2001050781A (en) Disturbed state measuring device for ground
KR102089902B1 (en) Ultrasonic Wave Measurement Assisting Apparatus For Measuring Crack Of Circular Concrete Structure
JP2001021384A (en) Separation detection method by optical fiber sensor
JP2002048518A (en) Method of measuring displacement using optical fiber sensor
RU2330238C2 (en) Device and method for monitoring technical condition of tunnels
CN203894197U (en) Sensing device for monitoring bridge hanging rope damage employing active and passive waveguide
CN115752319A (en) Automatic horizontal displacement monitoring system and monitoring method
KR100833718B1 (en) apparatus for measuring-survey of pile using the plate-type survey senser
JP2004061112A (en) Displacement measurement method based on optical fiber strain sensor
JP2002340522A (en) Displacement measuring method using optical fiber sensor
CN108709531A (en) The flexible apparatus of the measurement of planeness
CN212052913U (en) Low-strain foundation pile integrity detection device
TWI697605B (en) Device and method for predicting location of structural damage
CN108872319B (en) Corrosion sensor
JP2001289616A (en) Optical fiber displacement sensor and displacement measuring method using the same
JP2002250612A (en) Strain or deformation measuring method of pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040402