JP2002250612A - Strain or deformation measuring method of pipe - Google Patents

Strain or deformation measuring method of pipe

Info

Publication number
JP2002250612A
JP2002250612A JP2001051153A JP2001051153A JP2002250612A JP 2002250612 A JP2002250612 A JP 2002250612A JP 2001051153 A JP2001051153 A JP 2001051153A JP 2001051153 A JP2001051153 A JP 2001051153A JP 2002250612 A JP2002250612 A JP 2002250612A
Authority
JP
Japan
Prior art keywords
optical fiber
pipe
strain
deformation
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001051153A
Other languages
Japanese (ja)
Inventor
Keiichi Okada
敬一 岡田
Taro Sasaki
太郎 佐々木
Nobuaki Nishimura
暢明 西村
Hajime Shinkai
元 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Tokyo Gas Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Tokyo Gas Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Tokyo Gas Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2001051153A priority Critical patent/JP2002250612A/en
Publication of JP2002250612A publication Critical patent/JP2002250612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable continuous measurement of strain or deformation generated in a pipe, and to thereby facilitate grasping of the strain or deformation state in the pipe. SOLUTION: A pipe displacement measuring optical fiber sensor 3 is fixed tightly on the circumferential surface of the pipe 1, and is installed so that the strain can be generated on the position, corresponding to a generation spot of the pipe displacement measuring optical fiber sensor 3, when the strain or the deformation is generated in the pipe 1. Required light is made to enter the pipe displacement measuring optical fiber sensor 3, and the strain or the deformation of the pipe 1 is calculated, based on a strain distribution along the sensor longitudinal direction acquired as optical information from the pipe displacement measuring optical fiber sensor 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバセンサを
用いた管の歪み、変形計測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring distortion and deformation of a tube using an optical fiber sensor.

【0002】[0002]

【発明が解決しようとする課題】従来、地中に設置され
るガス管などにおいて地盤沈下などによる影響を定量的
に管理する方法としては、計測対象のガス管に沈下棒を
取り付け、その沈下棒の上端部を地上側計測箱に達しさ
せて上端部の位置測定により沈下量を測定するようにし
ている。しかしながら、このような管理方法では、地中
に設置される管に外力などによって生じる管自体の変形
状態を把握することができず、よって、管が破壊される
のを防止する上でどの位置にどのような歪みが生じてい
るかといった推測が困難である。また地上に位置してい
る管に対しても外界からの影響が加わっているが、この
場合にあってもその管の変形状態を把握することができ
ず、どの位置にどのような歪みが生じているかといった
推測が困難である。これらの管の応力状態を直接把握す
る方法としては、管に歪みゲージを貼り付けて測定する
方法が考えられるが、測定箇所は散逸的であって、実際
の現象を把握する上で多くの歪みゲージを貼り付けて測
定を行なわなければならず、現実的な手段ではない。
Conventionally, as a method for quantitatively controlling the influence of land subsidence in a gas pipe installed underground, a sink rod is attached to a gas pipe to be measured, and the sink rod is attached to the gas pipe. The upper end of the is reached to the measurement box on the ground side, and the amount of settlement is measured by measuring the position of the upper end. However, with such a management method, it is not possible to grasp the deformation state of the pipe itself caused by external force or the like in the pipe installed underground, and therefore, in any position in order to prevent the pipe from being broken, It is difficult to estimate what kind of distortion has occurred. In addition, pipes located on the ground are also affected by the outside world, but even in this case, it is not possible to grasp the deformation state of the pipe, and what kind of distortion occurs at which position It is difficult to guess whether it is. As a method of directly grasping the stress state of these tubes, a method of measuring by attaching a strain gauge to the tube can be considered.However, since the measurement points are dissipative, many strains are required to grasp the actual phenomenon. The measurement must be performed by attaching a gauge, which is not a practical means.

【0003】ところで、光ファイバには、光を入射し、
その光の一部が散乱されると、散乱光として入射端に戻
ってくる性質がある。この散乱光の強度の変化を調べる
ことで光ファイバの曲がりを求めることができ、周波数
分布を解析することによって変位などを求めることがで
きる。また入射から散乱光が戻ってくるまでの時間から
歪みが生じている部分の計測位置を決定できる。本発明
は、光ファイバを歪計測用の光ファイバセンサとし、そ
の光ファイバから得られる光情報によって光ファイバ全
体に渡っての歪みや損失およびその位置が検出できると
いう点に着目したものである。そこで本発明は上記事情
に鑑み、この光ファイバを管に取り付け、管において生
じている歪み、変形を連続的に測定できるようにするこ
とを課題とし、管における歪み、変形状態を把握し易く
することを目的とするものである。
By the way, light enters an optical fiber,
When a part of the light is scattered, it has a property of returning to the incident end as scattered light. The bending of the optical fiber can be determined by examining the change in the intensity of the scattered light, and the displacement and the like can be determined by analyzing the frequency distribution. Further, the measurement position of the portion where the distortion has occurred can be determined from the time from the incidence to the return of the scattered light. The present invention focuses on the fact that an optical fiber is used as an optical fiber sensor for strain measurement, and that the optical information obtained from the optical fiber can detect distortion, loss, and the position of the entire optical fiber. In view of the above circumstances, it is an object of the present invention to attach this optical fiber to a tube so that distortion and deformation occurring in the tube can be continuously measured, and to facilitate understanding of the distortion and deformation state in the tube. The purpose is to do so.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を考慮
してなされたもので、配管された管に生じる歪み、変形
を計測するにあたり、管の外周面に管変位測定用光ファ
イバセンサを密着固定して、管に歪み、変形が発生した
ときにこの発生箇所に応じた位置で管変位測定用光ファ
イバセンサに前記歪み、変形に対応した歪みが発生可能
に設けられ、管変位測定用光ファイバセンサに所要光を
入射して、該管変位測定用光ファイバセンサから光情報
として得られるセンサ長手方向に沿った歪み分布に基づ
いて管の歪み、変形を算出する構成としたことを特徴と
する管の歪み、変形計測方法を提供して、上記課題を解
消するものである。そして、本発明において、複数箇所
の管に設けられた上記管変位測定用光ファイバセンサに
光ファイバ通信線を接続し、該光ファイバ通信線を介し
て各管変位測定用光ファイバセンサから光情報を得るこ
とが可能である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and in measuring distortion and deformation occurring in a pipe, a fiber optic sensor for measuring pipe displacement is provided on the outer peripheral surface of the pipe. When the tube is deformed and deformed by tight contact, the tube fiber displacement measuring optical fiber sensor is provided at a position corresponding to the location where the deformation and deformation occur, and the strain corresponding to the deformation can be generated. The required light is incident on the optical fiber sensor, and the distortion and deformation of the tube are calculated based on the strain distribution along the sensor longitudinal direction obtained as optical information from the optical sensor for tube displacement measurement. The object of the present invention is to solve the above-mentioned problem by providing a method for measuring distortion and deformation of a pipe. In the present invention, an optical fiber communication line is connected to the tube displacement measuring optical fiber sensors provided at a plurality of pipes, and optical information is transmitted from each tube displacement measuring optical fiber sensor via the optical fiber communication line. It is possible to obtain

【0005】[0005]

【発明の実施の形態】つぎに本発明をガス管を計測対象
にした例を示す図1から図6に基づいて詳細に説明す
る。図1は絶縁被覆のガス管である管1が地中に設置さ
れている状態を示していて、この管1の所要位置に沈下
棒2が取り付けられ、それぞれの沈下棒2の上端部2a
が地上の地上側計測箱2bに達して、この地上側計測箱
2bにて沈下棒2の上端部2aの高さ位置を計測するこ
とで沈下量が得られるようにしている。この点はガス管
などの沈下を知る上で従来から行なわれているものであ
る。なお、図においてAはモルタル被覆部分を示してい
る。そして、図示されているように、この管1に対し
て、複数本の管変位測定用光ファイバセンサ3が管1に
平行となるようにしてその管1の長さ方向に亘って取り
付けられており、モルタル被覆部分Aにも前記管1が通
されている。前記光ファイバセンサ3それぞれは管1の
表面に密着されているものであり、管1が変形した場合
には、光ファイバセンサ3に前記変形箇所に応じた部分
で管の歪み、変形に対応した歪みが生じるようになり、
後述する測定演算手段にその位置、歪み量が読み取られ
るようになるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to FIGS. 1 to 6 showing an example in which a gas pipe is measured. FIG. 1 shows a state in which a pipe 1 which is a gas pipe of insulating coating is installed in the ground, and a sinking rod 2 is attached to a required position of the pipe 1, and an upper end 2 a of each sinking rod 2.
Reaches the ground-side measurement box 2b on the ground, and measures the height position of the upper end 2a of the settlement rod 2 in the ground-side measurement box 2b so that the settlement amount can be obtained. This point has been conventionally performed in order to know the settlement of a gas pipe or the like. In the drawings, A indicates a mortar-covered portion. As shown, a plurality of tube displacement measuring optical fiber sensors 3 are attached to the tube 1 so as to be parallel to the tube 1 along the length direction of the tube 1. The tube 1 is also passed through the mortar coating portion A. Each of the optical fiber sensors 3 is in close contact with the surface of the tube 1, and when the tube 1 is deformed, the optical fiber sensor 3 responds to distortion and deformation of the tube at a portion corresponding to the deformed portion. Distortion occurs,
The position and the amount of distortion can be read by a measurement calculation unit described later.

【0006】図示されているように管1から地上部の上
記地上側計測箱2bに及ぶ縦管4が位置しており、この
縦管4の内部を上記管変位測定用光ファイバセンサ3が
通って、その光ファイバセンサ3の一端に設けられてい
る光ファイバコネクタ5が前記地上側計測箱2bに位置
している。そして、地上側計測箱2bに位置した光ファ
イバコネクタ5に、光ファイバ歪み計測装置6aと演算
装置6bとからなる測定演算手段6を接続し、測定演算
手段6が光を発信し光ファイバセンサ3からの戻りであ
る光情報にて、光ファイバセンサ3が取り付けられてい
る範囲に亘る歪み分布(光ファイバセンサ長手方向に沿
った歪み分布)を測定する。
As shown in the figure, a vertical pipe 4 extending from the pipe 1 to the above-ground measuring box 2b on the ground is located, and the optical fiber sensor 3 for measuring the pipe displacement passes through the inside of the vertical pipe 4. An optical fiber connector 5 provided at one end of the optical fiber sensor 3 is located in the ground side measurement box 2b. Then, the measuring and calculating means 6 including the optical fiber strain measuring device 6a and the calculating device 6b is connected to the optical fiber connector 5 located on the ground side measuring box 2b, and the measuring and calculating means 6 emits light and transmits the light to the optical fiber sensor 3. Based on the optical information returned from, the strain distribution (strain distribution along the longitudinal direction of the optical fiber sensor) over the range where the optical fiber sensor 3 is attached is measured.

【0007】図2は図1に示す管変位測定用光ファイバ
センサ3の管断面方向での取付状態を示すもので、光フ
ァイバセンサ3は接着剤7にて接着することで密着固定
され保護接着テープ8にて保護されている。図3は管1
の断面方向における前記光ファイバセンサ3の配置例を
示すもので、(ア)は管1の外周に周方向に等間隔にし
て上下左右の四本の光ファイバセンサ3を配置している
例であり、(イ)は管1の断面方向における上下に、ま
た(ウ)は管1の断面方向における左右に配置している
例である。さらに(エ)は管1の外周においてその周方
向に巻いた状態にして取り付けた例を示している。な
お、(エ)の周方向での密着固定は、管1の周方向での
歪みのみを計測する場合に採用できるものである。ま
た、上記管変位測定用光ファイバセンサ3を管1の断面
方向において上下、左右などの組み合わせて配置する
際、一本の光ファイバセンサ3をその密着固定の範囲で
一筆書き状となるパターンで配置するようにしてもよ
く、この場合、管上での計測位置は光ファイバセンサ3
の距離で表されることになる。
FIG. 2 shows the mounting state of the optical fiber sensor 3 for measuring tube displacement shown in FIG. 1 in the cross-sectional direction of the tube. Protected with tape 8. Figure 3 shows tube 1
(A) is an example in which four upper, lower, left, and right optical fiber sensors 3 are arranged on the outer periphery of the tube 1 at equal intervals in the circumferential direction. (A) is an example in which it is arranged up and down in the cross-sectional direction of the tube 1, and (C) is an example in which it is arranged left and right in the cross-sectional direction of the tube 1. (D) shows an example in which the tube 1 is mounted on the outer periphery of the tube 1 while being wound in the circumferential direction. In addition, (d) the close contact fixing in the circumferential direction can be adopted when only the distortion in the circumferential direction of the tube 1 is measured. Further, when the optical fiber sensors 3 for measuring tube displacement are arranged in a combination such as up and down, left and right in the cross-sectional direction of the tube 1, one optical fiber sensor 3 is drawn in a one-stroke pattern within the range of its close contact and fixing. In this case, the measurement position on the tube is determined by the optical fiber sensor 3.
Will be represented by the distance

【0008】また、管1に対して複数本の管変位測定用
光ファイバセンサ3を取り付け、求めた歪みから管1の
長さ方向の伸縮と長さ方向に直交する方向での変位を算
出することが可能である。例えば、図4の算出の手法を
示されているように、各光ファイバセンサ3それぞれか
ら長さ方向に沿っての歪み量が連続して得られる(長さ
方向に沿った歪み分布として得られる)ことを利用して
いるものである。便宜上、図で示した光ファイバセンサ
3を地中に横にして敷設したものと想定し、この状態に
基づいて、上下に相対する二本の光ファイバセンサ3の
それぞれの歪み量で管の上下変位、長さ変位を算出する
例を説明する。起点aの変位及び回転をゼロとして、長
さ方向の距離xの地点における起点aに対しての上下変
位、起点aに対しての長さ変位は、上下の光ファイバセ
ンサ3の間の距離をd、上側の光ファイバセンサ3の起
点aから距離x位置での歪み量をεx1、下側の光ファイ
バセンサ3のxでの歪み量をεx2とすると、図4に示す
通りに積分して算出できる。
A plurality of optical fiber sensors 3 for measuring tube displacement are attached to the tube 1, and the displacement in the direction orthogonal to the length direction and the lengthwise direction of the tube 1 are calculated from the obtained strain. It is possible. For example, as shown in the calculation method of FIG. 4, the strain amount along the length direction is continuously obtained from each of the optical fiber sensors 3 (obtained as a strain distribution along the length direction). ). For the sake of convenience, it is assumed that the optical fiber sensor 3 shown in the figure is laid horizontally in the ground, and based on this state, the upper and lower portions of the tube are displaced by the respective amounts of distortion of the two optical fiber sensors 3 that are vertically opposed. An example of calculating the displacement and the length displacement will be described. Assuming that the displacement and rotation of the starting point a are zero, the vertical displacement with respect to the starting point a and the length displacement with respect to the starting point a at the point of the distance x in the longitudinal direction are the distance between the upper and lower optical fiber sensors 3. Assuming that d is the amount of strain at a position x from the starting point a of the upper optical fiber sensor 3 at ε x1 , and that the strain of the lower optical fiber sensor 3 at x is ε x2 , integration is performed as shown in FIG. Can be calculated.

【0009】このようにして、複数本の光ファイバセン
サ3の組としての上下変位、長さ方向の変位が得られ、
これが、地中において、起点aからの長さ方向の距離x
の地点での起点aに対しての管1の上下変位と長さ変位
となる。また同じ光ファイバセンサ3から水平変位を計
測する場合には、左右に相対する二本の歪み計測用光フ
ァイバセンサ3それぞれの歪み量を、上記上下変位を算
出する式の歪み量と入れ替えればよく、同様にして算出
することで地中での起点aからの水平変位が計測でき
る。
In this way, vertical displacement and longitudinal displacement as a set of a plurality of optical fiber sensors 3 are obtained.
This is the distance x in the longitudinal direction from the starting point a in the ground.
The vertical displacement and the length displacement of the tube 1 with respect to the starting point a at the point (1). When measuring the horizontal displacement from the same optical fiber sensor 3, the distortion amount of each of the two strain measuring optical fiber sensors 3 facing left and right may be replaced with the distortion amount in the above equation for calculating the vertical displacement. , The horizontal displacement from the starting point a in the ground can be measured.

【0010】上記測定演算手段6では、管変位測定用光
ファイバセンサ3それぞれの歪み分布をその光ファイバ
センサ3が密着している線上での歪み分布として測定し
ている。そして、上述したように管1の管長さ方向に取
り付けた複数本の光ファイバセンサ3から得られる歪み
分布にて管1の変位を算出できることから、測定演算手
段6の上記演算装置6bは、歪み分布により歪み量とそ
の位置、図4に示す計算式から得られる変位などに基づ
いて演算を行ない、管1の変形量を算出できるように構
成されているものであり、この情報により管1の変形状
態を把握できるようにしているものである。
In the measurement calculating means 6, the strain distribution of each optical fiber sensor 3 for measuring tube displacement is measured as a strain distribution on a line on which the optical fiber sensor 3 is in close contact. As described above, since the displacement of the tube 1 can be calculated based on the strain distribution obtained from the plurality of optical fiber sensors 3 attached in the tube length direction of the tube 1, the computing device 6b of the measurement computing means 6 has The calculation is performed based on the amount of distortion and its position based on the distribution, the displacement obtained from the calculation formula shown in FIG. 4, and the like, so that the amount of deformation of the tube 1 can be calculated. This allows the user to grasp the deformation state.

【0011】上記実施の例ではガス管自体を測定対象の
管とし、管変位測定用光ファイバセンサ3を取り付けた
例を示したが、本発明はこれに限定されるものではな
い。図5は掘削された領域9を通るガス管10を鋼製鞘
管11で覆って埋め戻された状態を示しており、この鋼
製鞘管11を管1として埋設管変位測定用光ファイバセ
ンサ3を取り付けて敷設したものであり、これによって
鋼製鞘管11の変形を測定することができる。
In the above embodiment, an example is shown in which the gas pipe itself is used as a pipe to be measured, and the optical fiber sensor 3 for measuring pipe displacement is attached. However, the present invention is not limited to this. FIG. 5 shows a state in which the gas pipe 10 passing through the excavated area 9 is covered with a steel sheath pipe 11 and is buried back. The steel sheath pipe 11 is used as the pipe 1 and an optical fiber sensor for measuring displacement of a buried pipe. 3 is attached and laid, whereby the deformation of the steel sheath tube 11 can be measured.

【0012】上記光ファイバコネクタ5には光ファイバ
通信線を接続して上記測定演算手段6までの距離を大き
く延長することが可能であるとともに、測定演算手段6
は複数箇所の管1の光情報を受ける構成とすることが可
能である。図6はその例を示していて、複数箇所の管1
側の光ファイバコネクタ5それぞれに対して光ファイバ
通信線12を単独で接続したり、一つの管1側から他の
計測対象である管1へと長尺な管変位測定用光ファイバ
センサ3を一筆書き状に取り付け、これに光ファイバ通
信線12を接続している。そして、複数箇所からの前記
光ファイバ通信線12を、測定演算手段6に設けたスイ
ッチング手段6cを介して接続する。これによって、前
記測定演算手段6により複数箇所の管1の変形状態を管
理することができるようになる。なお、上記各実施の例
では地中に埋設された管に対しての適用を示したが、本
発明はこれに限定されるものではなく、例えば地上に位
置する管にあっても適用できるものである。
An optical fiber communication line can be connected to the optical fiber connector 5 to greatly extend the distance to the measuring and calculating means 6.
May be configured to receive optical information of a plurality of tubes 1. FIG. 6 shows an example thereof, in which a plurality of pipes 1 are provided.
The optical fiber communication line 12 is connected to each of the optical fiber connectors 5 on the respective sides, or a long tube displacement measuring optical fiber sensor 3 is connected from one tube 1 to the other tube 1 to be measured. An optical fiber communication line 12 is connected to this in a one-stroke form. Then, the optical fiber communication lines 12 from a plurality of locations are connected via switching means 6c provided in the measurement calculation means 6. As a result, it is possible to manage the deformation states of the pipes 1 at a plurality of locations by the measurement calculation means 6. In each of the above embodiments, application to a pipe buried in the ground has been described. However, the present invention is not limited to this, and can be applied to a pipe located on the ground, for example. It is.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、配
管された管に生じる歪み、変形を計測するにあたり、管
の外周面に管変位測定用光ファイバセンサを密着固定し
て、管に歪み、変形が発生したときにこの発生箇所に応
じた位置で管変位測定用光ファイバセンサに前記歪み、
変形に対応した歪みが発生可能に設けられ、管変位測定
用光ファイバセンサに所要光を入射して、該管変位測定
用光ファイバセンサから光情報として得られるセンサ長
手方向に沿った歪み分布に基づいて管の歪み、変形を算
出する構成としたので、管の歪み、変形を管上での位置
を特定した状態で把握できるようになり、管の管理が適
切に行なえるようになる。そして、複数箇所の管から光
ファイバ通信線を介して得られる光ファイバセンサの歪
み部分に基づいて複数の管の歪み、変形を算出すれば、
設置位置から離れた場所において複数箇所の管の歪み、
変形状態を管理できるなど、実用性に優れた効果を奏す
るものである。
As described above, according to the present invention, in order to measure the strain and deformation generated in a pipe, the optical fiber sensor for measuring the displacement of the pipe is fixed to the outer peripheral surface of the pipe, and the pipe is attached to the pipe. When the strain and deformation occur, the strain is applied to the pipe displacement measuring optical fiber sensor at a position corresponding to the location where the strain occurs,
A strain corresponding to the deformation is provided so as to be able to be generated, the required light is incident on the tube displacement measuring optical fiber sensor, and the strain distribution along the sensor longitudinal direction obtained as optical information from the tube displacement measuring optical fiber sensor is obtained. Since the distortion and the deformation of the pipe are calculated based on this, the distortion and the deformation of the pipe can be grasped in a state where the position on the pipe is specified, and the pipe can be properly managed. Then, if the strain and deformation of the plurality of tubes are calculated based on the strain portion of the optical fiber sensor obtained from the plurality of tubes via the optical fiber communication line,
Distortion of multiple pipes at locations away from the installation location,
This has an effect that is excellent in practicality, for example, the deformation state can be managed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る管の歪み、変形計測方法の一例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a method for measuring distortion and deformation of a pipe according to the present invention.

【図2】管変位測定用光ファイバセンサの密着状態を示
す説明図である。
FIG. 2 is an explanatory diagram showing a state of close contact of an optical fiber sensor for measuring tube displacement.

【図3】管変位測定用光ファイバセンサの取付状態を示
す説明図である。
FIG. 3 is an explanatory diagram showing an attached state of an optical fiber sensor for measuring tube displacement.

【図4】二本の光ファイバセンサによる上下変位と長さ
変位を算出する例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of calculating vertical displacement and length displacement by two optical fiber sensors.

【図5】他の実施の形態を示す説明図である。FIG. 5 is an explanatory diagram showing another embodiment.

【図6】複数個所の管変位測定用光ファイバセンサから
の光情報を集約する状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state in which optical information from a plurality of tube displacement measuring optical fiber sensors is aggregated.

【符号の説明】[Explanation of symbols]

1…管 a…モルタル被覆部分 2…沈下棒 3…埋設管変位測定用光ファイバセンサ 4…縦管 5…光ファイバコネクタ 6…測定演算手段 10…ガス管 11…鋼製鞘管 12…光ファイバ通信線 DESCRIPTION OF SYMBOLS 1 ... Tube a ... Mortar coating part 2 ... Subsidence rod 3 ... Optical fiber sensor for buried pipe displacement measurement 4 ... Vertical pipe 5 ... Optical fiber connector 6 ... Measurement calculation means 10 ... Gas pipe 11 ... Steel sheath pipe 12 ... Optical fiber Communication line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 暢明 神奈川県藤沢市片瀬山5−15−7 (72)発明者 新海 元 神奈川県横浜市青葉区美しが丘4−17−71 Fターム(参考) 2F065 AA65 BB08 BB11 CC00 FF41 LL02 2F073 AA19 AA21 AB02 AB06 BB06 BB12 BC04 CC02 DD01 FF14 FH01 GG04 GG05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuaki Nishimura 5-15-7 Kataseyama, Fujisawa-shi, Kanagawa Prefecture (72) Inventor Gen Shinkai 4-17-71, Miigaoka, Aoba-ku, Yokohama-shi, Kanagawa F-term (reference) 2F065 AA65 BB08 BB11 CC00 FF41 LL02 2F073 AA19 AA21 AB02 AB06 BB06 BB12 BC04 CC02 DD01 FF14 FH01 GG04 GG05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】配管された管に生じる歪み、変形を計測す
るにあたり、管の外周面に管変位測定用光ファイバセン
サを密着固定して、管に歪み、変形が発生したときにこ
の発生箇所に応じた位置で管変位測定用光ファイバセン
サに前記歪み、変形に対応した歪みが発生可能に設けら
れ、管変位測定用光ファイバセンサに所要光を入射し
て、該管変位測定用光ファイバセンサから光情報として
得られるセンサ長手方向に沿った歪み分布に基づいて管
の歪み、変形を算出する構成としたことを特徴とする管
の歪み、変形計測方法。
When measuring distortion and deformation occurring in a pipe, an optical fiber sensor for measuring tube displacement is fixed to an outer peripheral surface of the pipe in close contact with the pipe, and when a distortion or deformation occurs in the pipe, a location where the deformation occurs. The tube displacement measuring optical fiber sensor is provided at a position corresponding to the distortion, the strain corresponding to the deformation is provided to be able to generate, the required light is incident on the tube displacement measuring optical fiber sensor, and the tube displacement measuring optical fiber A strain and deformation measuring method for a pipe, wherein the strain and the deformation of the pipe are calculated based on a strain distribution along the sensor longitudinal direction obtained as optical information from the sensor.
【請求項2】複数箇所の管に設けられた上記管変位測定
用光ファイバセンサに光ファイバ通信線を接続し、該光
ファイバ通信線を介して各管変位測定用光ファイバセン
サから光情報を得る請求項1に記載の管の歪み、変形計
測方法。
2. An optical fiber communication line is connected to the tube displacement measuring optical fiber sensors provided at a plurality of pipes, and optical information is transmitted from each tube displacement measuring optical fiber sensor via the optical fiber communication line. The method for measuring distortion and deformation of a pipe according to claim 1.
JP2001051153A 2001-02-26 2001-02-26 Strain or deformation measuring method of pipe Pending JP2002250612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051153A JP2002250612A (en) 2001-02-26 2001-02-26 Strain or deformation measuring method of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051153A JP2002250612A (en) 2001-02-26 2001-02-26 Strain or deformation measuring method of pipe

Publications (1)

Publication Number Publication Date
JP2002250612A true JP2002250612A (en) 2002-09-06

Family

ID=18911998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051153A Pending JP2002250612A (en) 2001-02-26 2001-02-26 Strain or deformation measuring method of pipe

Country Status (1)

Country Link
JP (1) JP2002250612A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015325A1 (en) * 2005-08-01 2007-02-08 Tama-Tlo, Ltd. Optical fiber sensor connected with optical fiber communication line
GB2435689A (en) * 2006-03-02 2007-09-05 Insensys Ltd Monitoring hollow structures
JP2011164024A (en) * 2010-02-12 2011-08-25 Shimizu Corp Method and device of calculating amount of deflection of structure provided with optical fiber sensor
WO2018221891A1 (en) * 2017-05-30 2018-12-06 (주)에프비지코리아 Apparatus and method for measuring height of molten material in blast furnace
JP2019143345A (en) * 2018-02-20 2019-08-29 東京瓦斯株式会社 Settlement measuring device and settlement measuring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749221A (en) * 1993-08-06 1995-02-21 Hitachi Cable Ltd Shape sensing optical fiber system
JP2000329530A (en) * 1999-05-24 2000-11-30 Shimizu Corp Displacement sensor of displacement measuring device and its setting method
JP2001050861A (en) * 1999-08-16 2001-02-23 Fujikura Ltd Light monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749221A (en) * 1993-08-06 1995-02-21 Hitachi Cable Ltd Shape sensing optical fiber system
JP2000329530A (en) * 1999-05-24 2000-11-30 Shimizu Corp Displacement sensor of displacement measuring device and its setting method
JP2001050861A (en) * 1999-08-16 2001-02-23 Fujikura Ltd Light monitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015325A1 (en) * 2005-08-01 2007-02-08 Tama-Tlo, Ltd. Optical fiber sensor connected with optical fiber communication line
JP2007040738A (en) * 2005-08-01 2007-02-15 Tama Tlo Kk Optical fiber sensor connected to optical fiber communication line
GB2435689A (en) * 2006-03-02 2007-09-05 Insensys Ltd Monitoring hollow structures
GB2435689B (en) * 2006-03-02 2009-04-08 Insensys Ltd Structural monitoring
JP2011164024A (en) * 2010-02-12 2011-08-25 Shimizu Corp Method and device of calculating amount of deflection of structure provided with optical fiber sensor
WO2018221891A1 (en) * 2017-05-30 2018-12-06 (주)에프비지코리아 Apparatus and method for measuring height of molten material in blast furnace
JP2019143345A (en) * 2018-02-20 2019-08-29 東京瓦斯株式会社 Settlement measuring device and settlement measuring system
JP7011487B2 (en) 2018-02-20 2022-01-26 東京瓦斯株式会社 Subsidence measurement system

Similar Documents

Publication Publication Date Title
KR100734390B1 (en) Instrument for measuring two dimensional deformation in tunnels
US20130291643A1 (en) Detecting the direction of acoustic signals with a fiber optical distributed acoustic sensing (das) assembly
KR20060136002A (en) Instrument for measuring two dimensional deformation in tunnels
CN106091975A (en) Duct pieces of shield tunnel seam fixed point optical cable for sensing two dimension deformation monitoring method
CN108020167A (en) A kind of stationary slope level device based on fiber grating
Guo et al. Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation
Cao et al. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content
US7200292B2 (en) Optical fiber inclinometer
JP6143225B2 (en) Ground stress sensor and earth pressure detection device
JP2007271513A (en) Optical fiber cable and optical fiber physical quantity variation detecting sensor using the same, and method for detecting physical quantity
CN115060186B (en) Bridge girder safety monitoring system and method based on weak reflectivity grating array
CN113739705A (en) Method for monitoring transverse displacement of member based on segmented arc splicing algorithm
JP2002250612A (en) Strain or deformation measuring method of pipe
JP2002156215A (en) Laying method for optical fiber sensor
EP1496352B1 (en) Method and apparatus for temperature monitoring of a physical structure
KR101437959B1 (en) Extensometer Using Distributed Time Domain Reflectometery Sensor
JP2002048518A (en) Method of measuring displacement using optical fiber sensor
JPH11287650A (en) Measuring device for deformation of internal space of tunnel by use of optical fiber
JP4660805B2 (en) Displacement measurement method using optical fiber sensor
KR200399594Y1 (en) Instrument for measuring two dimensional deformation in tunnels
JP2008185498A (en) Underground displacement measurement device
CN207675135U (en) A kind of stationary slope level device based on fiber grating
JP2004361285A (en) Angle sensor, and pipe line measuring instrument using the same
CN114216585A (en) Distributed optical fiber temperature measurement algorithm for petroleum horizontal well
JPH076883B2 (en) Subsidence control method for buried piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525