JP2011164024A - Method and device of calculating amount of deflection of structure provided with optical fiber sensor - Google Patents

Method and device of calculating amount of deflection of structure provided with optical fiber sensor Download PDF

Info

Publication number
JP2011164024A
JP2011164024A JP2010029223A JP2010029223A JP2011164024A JP 2011164024 A JP2011164024 A JP 2011164024A JP 2010029223 A JP2010029223 A JP 2010029223A JP 2010029223 A JP2010029223 A JP 2010029223A JP 2011164024 A JP2011164024 A JP 2011164024A
Authority
JP
Japan
Prior art keywords
deflection
optical fiber
amount
fiber sensor
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029223A
Other languages
Japanese (ja)
Inventor
Hideaki Iwaki
英朗 岩城
Toshihiro Wakahara
敏裕 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010029223A priority Critical patent/JP2011164024A/en
Publication of JP2011164024A publication Critical patent/JP2011164024A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device of calculating an amount of deflection of a structure provided with an optical fiber sensor capable of calculating the amount of the deflection of the structure according to a construction progress. <P>SOLUTION: The method of calculating the amount of the deflection includes measuring upper-side strain and lower-side strain of the structure with the optical fiber sensor, dividing a difference between the upper-side strain and the lower-side strain measured with the optical fiber sensor by a vertical height of the structure to obtain deflection curvature regulating the amount of the deflection, integrating the deflection curvature twice concerning a horizontal direction of the structure to obtain a basic deflection amount consisting of a numerical equation including any arbitrary integral constant, applying a boundary condition in a prescribed construction progress of the structure for the basic deflection amount to determine a value of an integral constant, and calculating the amount of the deflection in the prescribed construction progress of the structure on the basis of the basic deflection amount substituted with the value of a determined integral constant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ファイバセンサを備えた構造物のたわみ量の算定方法および装置に関するものである。   The present invention relates to a method and an apparatus for calculating a deflection amount of a structure including an optical fiber sensor.

新たな社会資本投資が堅調に進む一方、高度成長期に整備が進められた社会資本は、供用開始より30〜40年の年月を経ており、これらの安全かつ効率的な維持管理は今後の大きな課題である。   While new social capital investment has been steadily progressing, social capital, which has been developed in the period of high growth, has been in operation for 30 to 40 years, and these safe and efficient maintenance management will continue in the future. It is a big issue.

すでに米国では、1990年代から橋梁や高速道路などの老朽化に伴う大小の事故、障害が頻発して社会問題化しており、さらにノースリッジ地震などの数々の地震災害を契機として、社会資本の維持管理手法に関する検討が盛んであるが、その中で適用が有望視されている技術に構造ヘルスモニタリングがあげられる(例えば、非特許文献1および2参照)。   Already in the United States, large and small accidents and obstacles due to aging of bridges and highways have become a social problem since the 1990s, and the social capital has been maintained by numerous earthquake disasters such as the Northridge earthquake. There are many studies on management methods, and structural health monitoring is one of the promising applications (see, for example, Non-Patent Documents 1 and 2).

構造ヘルスモニタリングとは、構造体にあらかじめセンサ等を設置して、そのセンサからの情報から、損傷箇所の検知や劣化度の診断を目的とした技術であり、いわばセンサ技術、計測技術と、計測データを適切に処理し、損傷、劣化の指標を導出する解析技術の複合技術である(例えば、非特許文献3参照)。   Structural health monitoring is a technology that aims at detecting damaged parts and diagnosing the degree of deterioration based on information from sensors installed in the structure in advance. This is a combined technique of analysis techniques for appropriately processing data and deriving indexes of damage and deterioration (for example, see Non-Patent Document 3).

しかし従来は、光ファイバセンサに代表される先端センサの開発、および、これらセンサを構造体に設置するためのセンサ適用手法の開発が主体となっていた。そのため、果たしてこれらの先端センサを用いた構造ヘルスモニタリングシステムは、社会資本の管理者、使用者などに対して、損傷の検知や、維持管理に有用な情報を提供できるのかどうか、解析技術の開発を含めて検討する必要がある。   Conventionally, however, the development of advanced sensors typified by optical fiber sensors and the development of sensor application methods for installing these sensors on structures have been the main. Therefore, whether structural health monitoring systems using these advanced sensors can provide useful information for social capital managers and users, such as damage detection and maintenance management, is developed. Need to be considered.

その一方で、現在数多く建設が進められている長大橋をはじめとする土木構造物では、建設時は安全かつ高精度な施工管理を目的として、各種センサによる計測や高精度な測量などによる大規模管理が必須であり、さらに、完成後、供用中には長期にわたる維持管理をサポートする何らかのモニタリングシステムの設置が必要である。これらは従来、別個のシステムとして考えられていたため、供用中の長期の維持管理において非常に重要な指標となる建設中および完成直後(供用初期)の構造性能を引き継ぐことは困難であった。   On the other hand, civil engineering structures such as long-span bridges that are currently under construction are constructed on a large scale by various sensors and high-precision surveying for the purpose of safe and highly accurate construction management. Management is indispensable, and after completion, it is necessary to install some kind of monitoring system that supports long-term maintenance during operation. Since these were conventionally considered as separate systems, it was difficult to take over the structural performance during construction and immediately after completion (early in service), which is a very important index in long-term maintenance during operation.

そこで、建設時の施工管理から完成後、供用申の維持管理まで一貫して担うことが可能な構造モニタリングシステムの構築が可能であれば、設計者、施工者、さらに管理者にとって有益でかつ有効なツールとして活用することができる。また、一貫したシステム構築により、高性能、高耐久性などの利点に関わらず、コスト面で導入が困難であった光ファイバセンサ等の先端センサの使用にも改めて道を開くことができる。   Therefore, if it is possible to build a structural monitoring system that can be consistently handled from construction management at the time of construction to maintenance of service applications, it is beneficial and effective for designers, installers, and managers. Can be used as a simple tool. In addition, the consistent system construction can open the way to the use of advanced sensors such as optical fiber sensors, which are difficult to introduce in terms of cost, regardless of advantages such as high performance and high durability.

これに関し、本発明者は、光ファイバセンサを主体とした長大PC橋構造ヘルスモニタリングシステムを既に開発している(例えば、非特許文献4および5参照)。   In this regard, the present inventor has already developed a long PC bridge structure health monitoring system mainly composed of optical fiber sensors (see, for example, Non-Patent Documents 4 and 5).

非特許文献5には、主桁の上床版と下床版とに光ファイバセンサを敷設し、この光ファイバセンサによる主桁上下の計測ひずみ値から、長大橋の主桁たわみ曲線(たわみ量)を求めることが示されている。これは、主桁を連続梁としてモデル化し、工事進捗による主桁と各塔との締結・閉合に沿って変化する境界条件を逐次反映させることにより求めている。   In Non-Patent Document 5, optical fiber sensors are laid on the upper floor plate and lower floor plate of the main girder, and the main girder deflection curve (deflection amount) of the long-span bridge from the measured strain values above and below the main girder by this optical fiber sensor. Has been shown to seek. This is obtained by modeling the main girder as a continuous beam and sequentially reflecting the boundary conditions that change along the fastening and closing of the main girder and each tower due to construction progress.

K. P. Chong, N. J. Carino, G. Washer : Health Monitoring of civil Infrastructures, Smart Materials and Structures, Vol. 12, pp.483-493, 2003.05K. P. Chong, N. J. Carino, G. Washer: Health Monitoring of civil Infrastructures, Smart Materials and Structures, Vol. 12, pp.483-493, 2003.05 A. Mita : Emerging Needs in Japan for Health Monitoring Technologies in Civil and Building Structures, Proceedings of Second Workshop on Structural Health Monitoring, pp. 56-67, 1999.09A. Mita: Emerging Needs in Japan for Health Monitoring Technologies in Civil and Building Structures, Proceedings of Second Workshop on Structural Health Monitoring, pp. 56-67, 1999.09 武田展雄ほか:第1回〜第3回知的材料・構造システムシンポジウム、1999.12、2000.12、2002.01Nobuo Takeda et al .: 1st-3rd Symposium on Intelligent Materials and Structural Systems, 1999.12, 2000.12, 2002.01 岩城英朗、稲田裕、若原敏裕:“光ファイバひずみセンサ(B−OTDR)を用いた長大斜張橋施工時モニタリング”、土木学会第62回年次学術講演会、pp.805−806、2007年9月Hideaki Iwaki, Hiroshi Inada, Toshihiro Wakahara: “Monitoring during construction of a long cable stayed bridge using an optical fiber strain sensor (B-OTDR)”, 62nd Annual Lecture Meeting of Japan Society of Civil Engineers, pp. 805-806, September 2007 岩城英朗、稲田裕、若原敏裕:“長大橋モニタリングシステムの開発と適用例”、プレストレストコンクリート、第50巻第2号、2008年3月、社団法人プレストレストコンクリート技術協会Hideaki Iwaki, Hiroshi Inada, Toshihiro Wakahara: “Development and application of monitoring system for long bridge” Prestressed Concrete, Vol. 50, No. 2, March 2008, Japan Prestressed Concrete Technology Association

ところで、上記の従来の非特許文献5の長大橋の構造ヘルスモニタリングシステムにおいては、長大橋建設のごく初期における主桁のたわみ曲線を表す式を示すに留まり、この開示内容では、施工開始時から完成後に至るまでの工事進捗の各段階のたわみ量を求めることは難しい。   By the way, in the structural health monitoring system for a long-span bridge in the conventional non-patent document 5 described above, only a formula representing a deflection curve of a main girder at the very initial stage of the long-span bridge construction is shown. It is difficult to determine the amount of deflection at each stage of construction progress until completion.

本発明は、上記に鑑みてなされたものであって、工事進捗に応じた構造物のたわみ量を算定することができる光ファイバセンサを備えた構造物のたわみ量の算定方法および装置を提供することを目的とする。   The present invention has been made in view of the above, and provides a method and apparatus for calculating a deflection amount of a structure including an optical fiber sensor capable of calculating the deflection amount of the structure according to the progress of the construction. For the purpose.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る光ファイバセンサを備えた構造物のたわみ量の算定方法は、光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する方法において、前記構造物の上側のひずみと下側のひずみとを前記光ファイバセンサで計測し、前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定することを特徴とする。   In order to solve the above-described problems and achieve the object, a method for calculating the amount of deflection of a structure provided with an optical fiber sensor according to claim 1 of the present invention provides the amount of deflection of a structure provided with an optical fiber sensor. In the method of calculating based on the measured strain of the structure measured by the optical fiber sensor, the upper strain and the lower strain of the structure are measured by the optical fiber sensor and measured by the optical fiber sensor. The difference between the upper strain and the lower strain is divided by the height in the vertical direction of the structure to obtain a flexural curvature that defines the flexure amount, and the flexural curvature is 2 with respect to the horizontal direction of the structure. The basic deflection amount consisting of a mathematical formula including an arbitrary integration constant is obtained by integrating the number of times, and a boundary condition in a predetermined construction progress of the structure is applied to the basic deflection amount to obtain the value of the integration constant. Determined, characterized by calculating the amount of deflection at a given work progress of the structure on the basis of the basic deflection amount a value is substituted into the determined the constant of integration.

また、本発明の請求項2に係る光ファイバセンサを備えた構造物のたわみ量の算定装置は、光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する装置において、前記光ファイバセンサは、前記構造物の上側のひずみと下側のひずみとを計測するものであり、前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定することを特徴とする。   According to a second aspect of the present invention, there is provided an apparatus for calculating a deflection amount of a structure including an optical fiber sensor, wherein the deflection amount of the structure including the optical fiber sensor is measured by the optical fiber sensor. In the apparatus for calculating based on the measured strain, the optical fiber sensor measures an upper strain and a lower strain of the structure, and the upper strain measured by the optical fiber sensor and the lower strain are measured. By dividing the difference from the side strain by the height in the vertical direction of the structure, a deflection curvature that defines the deflection amount is obtained, and the deflection curvature is integrated twice with respect to the horizontal direction of the structure to obtain an arbitrary integration constant. And determining a value of the integral constant by applying a boundary condition in a predetermined construction progress of the structure to the basic deflection amount, and determining the product Based on the basic deflection amount of the value of the constant is substituted, characterized in that to calculate the amount of deflection at a given work progress of the structure.

また、本発明の請求項3に係る光ファイバセンサを備えた構造物のたわみ量の算定装置は、上述した請求項2において、前記構造物は、橋梁であることを特徴とする。   According to a third aspect of the present invention, there is provided an apparatus for calculating a deflection amount of a structure including an optical fiber sensor according to the second aspect, wherein the structure is a bridge.

また、本発明の請求項4に係る光ファイバセンサを備えた構造物のたわみ量の算定装置は、上述した請求項3において、前記橋梁は、斜張橋であることを特徴とする。   According to a fourth aspect of the present invention, there is provided an apparatus for calculating a deflection amount of a structure including an optical fiber sensor according to the third aspect, wherein the bridge is a cable-stayed bridge.

本発明によれば、光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する方法において、前記構造物の上側のひずみと下側のひずみとを前記光ファイバセンサで計測し、前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定するので、工事進捗に応じた構造物のたわみ量を算定することができるという効果を奏する。   According to the present invention, in a method for calculating a deflection amount of a structure including an optical fiber sensor based on a measured strain of the structure measured by the optical fiber sensor, an upper strain and a lower side of the structure are calculated. The amount of deflection is defined by dividing the difference between the upper strain and the lower strain measured by the optical fiber sensor by the height in the vertical direction of the structure. And calculating the basic deflection amount comprising a mathematical formula including an arbitrary integration constant by integrating the deflection curvature twice with respect to the horizontal direction of the structure, and obtaining a predetermined deflection of the structure with respect to the basic deflection amount. The value of the integral constant is determined by applying boundary conditions in the construction progress, and the predetermined construction progress of the structure is determined based on the basic deflection amount to which the determined integral constant value is substituted. Because calculating the amount of deflection, there is an effect that it is possible to calculate the amount of deflection of the structure according to the construction progress.

図1は、本発明の適用対象例とした長大PC斜張橋の側面図である。FIG. 1 is a side view of a long PC cable stayed bridge as an application target example of the present invention. 図2は、本発明の算定装置が含まれる構造ヘルスモニタリングシステムの構成図である。FIG. 2 is a configuration diagram of a structural health monitoring system including the calculation device of the present invention. 図3は、光ファイバセンサを示す斜視図である。FIG. 3 is a perspective view showing an optical fiber sensor. 図4は、光ファイバセンサによるひずみの計測部の構成図である。FIG. 4 is a configuration diagram of a strain measurement unit using an optical fiber sensor. 図5は、架設時の光ファイバセンサの延伸プロセスを示す斜視図であり、(a)は主桁コンクリート打設直後の図、(b)は型枠移動・配筋完了後の図である。5A and 5B are perspective views showing a drawing process of the optical fiber sensor at the time of erection, where FIG. 5A is a view immediately after placing the main girder concrete, and FIG. 5B is a view after completion of the formwork movement and bar arrangement. 図6は、ひずみ計測結果の一例を示す図である。FIG. 6 is a diagram illustrating an example of a strain measurement result. 図7は、本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定方法の実施例を示すフローチャート図である。FIG. 7 is a flowchart showing an embodiment of a method for calculating a deflection amount of a structure including an optical fiber sensor according to the present invention. 図8は、主桁たわみ解析に用いる座標系を示す図である。FIG. 8 is a diagram showing a coordinate system used for main girder deflection analysis. 図9は、ステージ1のたわみ曲線を示す図である。FIG. 9 is a diagram illustrating a deflection curve of the stage 1. 図10は、ステージ2のたわみ曲線を示す図である。FIG. 10 is a diagram illustrating a deflection curve of the stage 2. 図11は、ステージ3のたわみ曲線を示す図である。FIG. 11 is a diagram illustrating a deflection curve of the stage 3. 図12は、ステージ4のたわみ曲線を示す図である。FIG. 12 is a diagram illustrating a deflection curve of the stage 4. 図13は、主桁たわみ曲線を比較した図であり、(a)は測量レベルとの比較図であり、(b)は設計値との比較図である。FIG. 13 is a diagram comparing the main girder deflection curves, where (a) is a comparison diagram with the survey level, and (b) is a comparison diagram with the design value.

以下に、本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定方法および装置の実施例を、長大PC斜張橋主桁のたわみ量を例にとり図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   In the following, an embodiment of a method and apparatus for calculating the amount of deflection of a structure equipped with an optical fiber sensor according to the present invention will be described in detail with reference to the drawings taking the amount of deflection of a main PC cable stayed bridge main girder as an example. Note that the present invention is not limited to the embodiments.

まず、本発明のたわみ量の算定方法および装置を説明する前に、光ファイバセンサが敷設された長大PC斜張橋について説明する。   First, before explaining the deflection amount calculation method and apparatus of the present invention, a long-sized PC cable-stayed bridge in which an optical fiber sensor is laid will be explained.

図1に示すように、この長大PC斜張橋1は、移動型枠を用いた張出し架設工法等により施工される中央支間長500m程度の橋梁である。この斜張橋1は、径間中央CLに関して略左右対称であり、主塔P3、P4と、橋脚A1、P1、P2、P5、P6Aを有する。架設工法を用いた施工では、安全かつ高精度な施工のために、架設全期間にわたって、型枠移動やコンクリート打設、斜材緊張などに伴う構造体の変形の常時把握、および出来高の管理や、台風などの強風時の変形や振動予測が重要な課題となる。   As shown in FIG. 1, the long PC cable-stayed bridge 1 is a bridge having a center span length of about 500 m, which is constructed by an overhanging construction method using a movable mold. The cable-stayed bridge 1 is substantially bilaterally symmetric with respect to the center CL of the span, and includes main towers P3 and P4 and piers A1, P1, P2, P5, and P6A. In construction using the construction method, for safe and highly accurate construction, over the entire construction period, the deformation of the structure due to formwork movement, concrete placement, slanting material tension, etc. is constantly grasped, and the production volume is managed. Therefore, deformation and vibration prediction during strong winds such as typhoons are important issues.

このため、架設時には、工事進捗に沿った線形・出来高の管理、施工期間中にわたる気候変動などの外乱に対する応答、型枠移動などで発生する振動(内乱)に対する応答の把握を主眼として施工管理を行う必要がある。一方、完成後の供用中の維持管理においては、クリープ、斜材張力の緩和等の影響、強風などの外乱に対する応答、走行車両等の活荷重による応答等を逐次計測し、これらを維持管理の指標とする必要がある。   For this reason, when erection, construction management mainly focuses on the management of alignment / volume in line with the progress of construction, the response to disturbances such as climate change during the construction period, and the response to vibrations (internal disturbances) that occur due to formwork movement. There is a need to do. On the other hand, in maintenance during operation after completion, the effects of creep, slack material tension relaxation, response to disturbances such as strong winds, response due to live loads of traveling vehicles, etc. are sequentially measured, and these are maintained and managed. Need to be an indicator.

図2に示すように、本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定装置100は、光ファイバセンサ10により主桁2のひずみを計測する構造ヘルスモニタリングシステム101(以下、システムという。)の中に備えてある。このシステム101は、取得したひずみデータをインターネットを通じてデータセンターに転送し、所定のデータ処理をした後、サーバー上に保存するシステムである。設計者、管理者などはWebブラウザを通じてシステム101を用い、どこからでも計測データの参照や分析を行うことができる。なお、システム101の設置は、図1に示した適用対象の対称性を考慮し、同図に示す主塔P3側としてある。また、本発明のたわみ量の算定装置100は、設計者や管理者側のパソコン(パーソナルコンピュータ)に含まれるCPUや記憶領域を使用して動作するものであり、受信したひずみ値に基づいてたわみ量を算定する。   As shown in FIG. 2, an apparatus 100 for calculating the amount of deflection of a structure including an optical fiber sensor according to the present invention includes a structural health monitoring system 101 (hereinafter referred to as a system) that measures strain of a main beam 2 using an optical fiber sensor 10. It is prepared in). This system 101 is a system for transferring acquired strain data to a data center through the Internet, performing predetermined data processing, and storing the data on a server. Designers, managers, and the like can refer to and analyze measurement data from anywhere using the system 101 through a Web browser. The system 101 is installed on the main tower P3 side shown in FIG. 1 in consideration of the symmetry of the application target shown in FIG. The deflection amount calculation apparatus 100 according to the present invention operates using a CPU or a storage area included in a personal computer (personal computer) on the designer or manager side, and bends based on the received strain value. Calculate the quantity.

システム101で用いる光ファイバセンサ10(B−OTDR方式:Brillouin Optical Time Domain Reflectometer)は、光ファイバの軸方向に沿って非常に短い周期のパルス光を入射すると光ファイバ中のパルス光伝搬に伴って微量な光が反射するという特性(後方散乱)を利用している。反射光の波長は光ファイバに加わるひずみや温度で変化するため、反射光の波長と伝搬時間(パルス光を入射してから反射光が受信されるまでの時間)をあわせて記録すれば、光ファイバ全域をひずみセンサ、温度センサとして使用できる。   An optical fiber sensor 10 (B-OTDR system: Brillouin Optical Time Domain Reflectometer) used in the system 101 is accompanied by propagation of pulse light in an optical fiber when pulse light having a very short period is incident along the axial direction of the optical fiber. The characteristic (backscattering) that a very small amount of light is reflected is used. Since the wavelength of the reflected light changes depending on the strain and temperature applied to the optical fiber, if the wavelength of the reflected light and the propagation time (the time from when the pulsed light is incident until the reflected light is received) are recorded, the light The entire fiber can be used as a strain sensor and temperature sensor.

なお、計測できるひずみ・温度の長さ方向の精度(空間分解能)と光ファイバに入射するパルス光の周期(幅)とは反比例関係にあり、入射パルス光の周期(幅)を長くすると、空間分解能は低下する。例えば、入射パルス光の周期が10n秒(10×10−9秒)の場合の空間分解能は1mとなり、ある点で計測された計測値(ひずみ・温度)はその点の前後0.5mの範囲の平均ひずみ(温度)値となる。周期が100n秒の場合の空間分解能は10mである。さらに、反射光は非常に微弱な光であるため、実際の計測ではパルス光を反復して入射し、反射光を平均化してひずみ・温度を求める。また、入射パルス光の周期とはべつに、反射光の受信間隔を変化させ、計測間隔(サンプリング間隔)を設定する。 Note that the accuracy (spatial resolution) in the length direction of strain and temperature that can be measured and the period (width) of the pulsed light incident on the optical fiber are inversely proportional to each other. The resolution is reduced. For example, when the period of incident pulse light is 10 nsec (10 × 10 −9 sec), the spatial resolution is 1 m, and the measured value (strain / temperature) measured at a certain point is in the range of 0.5 m before and after that point. The average strain (temperature) value. The spatial resolution when the period is 100 ns is 10 m. Furthermore, since reflected light is very weak light, in actual measurement, pulsed light is repeatedly incident, and the reflected light is averaged to obtain strain / temperature. In addition to the period of the incident pulse light, the reception interval of the reflected light is changed to set the measurement interval (sampling interval).

光ファイバセンサ10は、コンクリート中に埋設使用されることを前提として、図3に示すように、光ファイバ素線4を、エンボス加工したポリエチレン樹脂6およびアラミド繊維8で被覆補強したものをひずみセンサとして開発し、適用している。なお、コンクリート埋設時にもセンサ外部からの応力(側圧や付着による引張や圧縮)の影響を回避するために、光ファイバ素線をステンレス細管に内挿し保護したものを温度センサとして使用することもできる。   As shown in FIG. 3, the optical fiber sensor 10 is a strain sensor obtained by coating and reinforcing an optical fiber 4 with an embossed polyethylene resin 6 and an aramid fiber 8, as shown in FIG. Developed and applied as. In order to avoid the influence of stress from the outside of the sensor (side pressure or tension or compression due to adhesion) even when buried in concrete, it is possible to use a temperature sensor with an optical fiber strand inserted and protected in a stainless steel tube. .

光ファイバセンサ10の敷設に際しては、移動型枠に沿って主塔P3から延伸するPC主桁2の四隅に上記センサを順次埋設する工法を用いる。すなわち、主桁2の四隅に埋設するおのおのの光ファイバセンサ10の始端(主塔P3側)を、図4に示すように、センサ埋設開始当初から光成端箱22と光スイッチ12を介して計測器14に接続して計測可能な状態とし、センサ10の未埋設部および終端はリール16を使用し束ね移動型枠の先端部近傍に仮設する。次に、主桁2の延伸に伴う型枠の移動および配筋完了後、リール16から光ファイバセンサ10を引き出して鉄筋に沿わせ固定し、コンクリート打設にあわせて主桁2中に埋設する。   When laying the optical fiber sensor 10, a construction method is used in which the sensors are sequentially embedded in the four corners of the PC main beam 2 extending from the main tower P3 along the movable mold. That is, the start end (main tower P3 side) of each optical fiber sensor 10 embedded in the four corners of the main beam 2 is passed through the optical termination box 22 and the optical switch 12 from the beginning of sensor embedding as shown in FIG. It is connected to the measuring instrument 14 so as to be measurable, and the unembedded part and the terminal end of the sensor 10 are temporarily installed in the vicinity of the front end part of the bundle moving mold using the reel 16. Next, after the movement of the formwork and the arrangement of the main girder 2 are completed, the optical fiber sensor 10 is pulled out from the reel 16 and fixed along the reinforcing bar, and is embedded in the main girder 2 in accordance with the concrete placement. .

また、図4に示すように、計測器14とパソコン18(パーソナルコンピュータ)、光スイッチ12とパソコン18、パソコン18および計測器14とハブ20はそれぞれ接続してある。なお、パソコン18のCPUに余裕があれば、たわみ量の算定装置100をパソコン18に組み込み、現地でたわみ量を算出した後、インターネットを介して設計者や管理者に送信するようにしても良い。   4, the measuring instrument 14 and the personal computer 18 (personal computer), the optical switch 12 and the personal computer 18, the personal computer 18, the measuring instrument 14 and the hub 20 are connected to each other. If the CPU of the personal computer 18 has a margin, the deflection amount calculation device 100 may be incorporated in the personal computer 18 to calculate the deflection amount at the site and then send it to the designer or manager via the Internet. .

図5(a)、(b)に本工法の概要を示す。本工法の適用により、主桁延伸の開始初頭から完成まで、継続した計測が可能となり、かつセンサ設置の労力を大幅に軽減できる。   An outline of the present construction method is shown in FIGS. By applying this method, continuous measurement is possible from the beginning to the completion of main girder extension, and the labor for sensor installation can be greatly reduced.

架設時の主桁ひずみ計測結果例を図6に示す。システム101では、入射パルス光の周期を20n秒、反射光の平均化回数を213回、計測間隔(サンプリング間隔)を0.5mと設定している。すなわち、敷設した光ファイバセンサ全域において、0.5m刻みでひずみ値が得られ、そのおのおののひずみ値は、計測点の前後1m(計2m)の光ファイバセンサに沿った範囲のひずみ平均値(ひずみ分布)である。 An example of main girder strain measurement results during erection is shown in FIG. In system 101, cycle 20n seconds incident pulsed light, average number of times 2 13 times of the reflected light is set measurement interval (sampling interval) and 0.5 m. That is, a strain value is obtained in 0.5 m increments in the entire laid optical fiber sensor, and each strain value is a strain average value in a range along the optical fiber sensor 1 m before and after the measurement point (2 m in total) ( Strain distribution).

上記の計測パラメータを用いた場合に必要な計測時間は1本のセンサあたり数分程度である。このため、振動や衝撃などによって生じるひずみ変化には追従しない。すなわち、本システム101から得られるデータは、ほぼ静的現象によって得られたひずみ値である。   The measurement time required when the above measurement parameters are used is about several minutes per sensor. For this reason, it does not follow the strain change caused by vibration or impact. That is, the data obtained from the system 101 is a strain value obtained by a substantially static phenomenon.

なお、光スイッチに接続したすべての光ファイバセンサの計測が完了するまでの時間は、光スイッチのチャンネル切替え、おのおののセンサからの計測データの保存に要する時間などを含めると、約1時間である。   It should be noted that the time required to complete the measurement of all the optical fiber sensors connected to the optical switch is about one hour including the time required for switching the channel of the optical switch and storing the measurement data from each sensor. .

また、本システム101で採用した光ファイバセンサは、現場での施工の進捗に合わせてコンクリート打設時に埋設するため、破断に対する補償として、1本のセンサに2本の光ファイバ素線を配置する方式を採用しており(図3)、リール先端部で両素線を折り返して融着し、センサ全体でループ状にしている。このため、コンクリート打設時などに1本の光ファイバ素線が破断しても、残りの一方から光を逆向きに入射することで、途切れることなく計測が可能となる。図6においてもリール先端部を中心としてひずみ値は左右対称であり、センサ中の光ファイバは2素線ともに稼働状態にあることを示している。   Further, since the optical fiber sensor employed in the present system 101 is embedded at the time of concrete placement in accordance with the progress of construction at the site, two optical fiber strands are arranged in one sensor as compensation for breakage. The system is adopted (FIG. 3), and both strands are folded and fused at the reel tip, and the entire sensor is looped. For this reason, even if one optical fiber strand breaks at the time of placing concrete or the like, measurement can be performed without interruption by entering light in the opposite direction from the other one. Also in FIG. 6, the strain values are symmetrical with respect to the reel tip, indicating that both optical fibers in the sensor are in operation.

なお、光ファイバセンサを用いたひずみ計測は、システム稼働開始当初から、連日2(架設中)〜4時間(完成後)おき(1日あたり6〜12回)に継続して実施している。   In addition, the strain measurement using an optical fiber sensor has been carried out continuously every 2 days (during installation) to 4 hours (after completion) (6 to 12 times per day) from the beginning of system operation.

架設時の主桁たわみ分布を把握することは施工管理上非常に重要である。上記で示した光ファイバセンサによるひずみ値から主桁たわみ曲線(たわみ量)を算定することになる。たわみ量の算定は、以下より詳述する本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定方法または装置100による。   It is very important for construction management to understand the distribution of main girder deflection at the time of erection. The main girder deflection curve (deflection amount) is calculated from the strain value obtained by the optical fiber sensor described above. The calculation of the amount of deflection is performed by the method or apparatus 100 for calculating the amount of deflection of the structure including the optical fiber sensor according to the present invention, which will be described in detail below.

図7に示すように、本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定方法は、主桁の上側のひずみ値と下側のひずみ値とを光ファイバセンサで計測し(ステップS1)、ひずみ値で定義した主桁のたわみ曲線を表す数式(基本たわみ量)に工事進捗により変化する境界条件を反映する(ステップS2)。そして、基本たわみ量の積分定数を決定し(ステップS3)、この積分定数の値が代入された基本たわみ量に基づいて、主桁の工事進捗におけるたわみ量を算定する(ステップS4)という手順からなる。本発明の算定装置100としては、この手順をコンピュータを用いた演算処理により行う。   As shown in FIG. 7, in the method for calculating the amount of deflection of a structure including an optical fiber sensor according to the present invention, the upper strain value and the lower strain value of the main girder are measured by the optical fiber sensor (step S1) The boundary condition that changes with the progress of construction is reflected in the mathematical expression (basic deflection amount) representing the deflection curve of the main girder defined by the strain value (step S2). Then, the integral constant of the basic deflection amount is determined (step S3), and the deflection amount in the construction progress of the main girder is calculated based on the basic deflection amount into which the value of the integral constant is substituted (step S4). Become. The calculation apparatus 100 of the present invention performs this procedure by arithmetic processing using a computer.

たわみ曲線を表す数式(基本たわみ量)は、たわみ量の算定式であり、光ファイバセンサで計測した上側のひずみと下側ひずみとの差を主桁の上下方向の高さで除算して得られるたわみ曲率を、主桁の水平方向に関して2回積分することで得られ、任意の積分定数を含んでいる。   The mathematical expression (basic deflection amount) representing the deflection curve is a formula for calculating the deflection amount, and is obtained by dividing the difference between the upper strain and lower strain measured by the optical fiber sensor by the vertical height of the main girder. The obtained bending curvature is obtained by integrating twice with respect to the horizontal direction of the main girder, and includes an arbitrary integration constant.

この積分定数を含むたわみ曲線を表す数式に、工事進捗の各段階に対して予め求めてある境界条件を適用することで、工事進捗に応じた長大PC斜張橋主桁のたわみ量を容易に算定することができる。   By applying the boundary conditions obtained in advance for each stage of construction progress to the mathematical expression representing the deflection curve including the integral constant, the deflection amount of the main PC cable stayed bridge main girder according to construction progress can be easily achieved. Can be calculated.

次に、たわみ量の算定式の導出過程等について具体的に説明する。   Next, the process for deriving the calculation formula for the amount of deflection will be specifically described.

[座標系および基本式]
図8に示すように、主塔P3と主桁の結合部を原点とし、主径間方向をx軸、主桁計画線からのずれ量をy軸とする座標系を導入する。傾斜角θは反時計回りを正とする。
主桁のたわみ曲率1/ρおよび傾斜角θの基本式は、
[Coordinate system and basic formula]
As shown in FIG. 8, a coordinate system is introduced in which the connecting portion between the main tower P3 and the main girder is the origin, the main span direction is the x axis, and the deviation from the main girder plan line is the y axis. The inclination angle θ is positive in the counterclockwise direction.
The basic equations for the main beam deflection curvature 1 / ρ and the inclination angle θ are:

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

で表すことができ、たわみ曲率とひずみの関係式は、主桁上面の分布ひずみ値をεu、下面の分布ひずみ量をεd、主桁断面の高さをhとおくと、以下の式の通り示される。 The relationship between the deflection curvature and strain can be expressed by the following equation, where the distribution strain value of the main girder upper surface is ε u , the distribution strain amount of the lower surface is ε d , and the height of the main girder cross section is h: As shown.

Figure 2011164024
Figure 2011164024

式(3)を式(1)に代入し、さらに逐次積分すると、   Substituting equation (3) into equation (1) and further integrating sequentially,

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

となる。主桁の各点の傾斜角θとたわみ量yは、式(5)、(6)中の積分定数C1およびC2を境界条件から求めることにより得られる。 It becomes. The inclination angle θ and the deflection amount y of each point of the main girder can be obtained by obtaining the integration constants C 1 and C 2 in the equations (5) and (6) from the boundary conditions.

主桁の工事進捗に伴う支持状態の変化により境界条件は変化するため、本実施の形態においては、長大PC斜張橋の一方の主塔P3から主桁を延伸して、他方の主塔P4の主桁と中央で閉合するまでを4つの段階(ステージ1〜4)に分けてモデル化し、それぞれの傾斜角とたわみ量を算定する。なお、以下の計算においては、表記を簡単にするため、以下の定積分を定義する。   Since the boundary condition changes due to the change in the support state accompanying the progress of the main girder construction, in this embodiment, the main girder is extended from one main tower P3 of the long PC cable-stayed bridge and the other main tower P4. The model is divided into four stages (stages 1 to 4) until the main girder is closed at the center, and the inclination angle and the amount of deflection are calculated. In the following calculation, in order to simplify the notation, the following definite integral is defined.

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

すなわち、上記基本式(5)、(6)は、   That is, the basic formulas (5) and (6) are

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

と書き表すことができる。   Can be written as:

[主桁支持状態の変化に伴うたわみ量]
(ステージ1:主桁延伸BL00〜P2結合まで)
まず、ステージ1のたわみ量の算定式について説明する。
[Deflection amount due to changes in main girder support status]
(Stage 1: Main girder extension BL00 to P2 connection)
First, a calculation formula for the deflection amount of stage 1 will be described.

図9に示すように、本ステージ1での境界条件は主塔P3における拘束のみであり、次式のように示される。   As shown in FIG. 9, the boundary condition in this stage 1 is only the constraint in the main tower P3, and is expressed by the following equation.

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

式(11)、(12)を式(9)、(10)に代入すると、積分定数はそれぞれ   Substituting Equations (11) and (12) into Equations (9) and (10), the integration constant is

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

と求められる。したがって、本条件下でのたわみ曲線(図中太線で表示)は、   Is required. Therefore, the deflection curve under this condition (shown in bold in the figure)

Figure 2011164024
Figure 2011164024

となる。   It becomes.

(ステージ2:P2結合〜P1閉合前)
次に、ステージ2のたわみ量の算定式について説明する。
(Stage 2: P2 binding-before P1 closing)
Next, a calculation formula for the deflection amount of stage 2 will be described.

図10に示すように、本ステージ2での境界条件はP2および主塔P3における拘束であり、次式のように示される。   As shown in FIG. 10, the boundary condition in this stage 2 is a constraint in P2 and the main tower P3, and is expressed by the following equation.

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

式(16)、(17)を式(9)、(10)に代入すると、積分定数はそれぞれ   Substituting Equations (16) and (17) into Equations (9) and (10), the integration constant is

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

と求められる。したがって、本条件下でのたわみ曲線は、   Is required. Therefore, the deflection curve under this condition is

Figure 2011164024
Figure 2011164024

となる。   It becomes.

(ステージ3:P1閉合〜中央閉合前)
次に、ステージ3のたわみ量の算定式について説明する。
(Stage 3: P1 closing-before central closing)
Next, a calculation formula for the deflection amount of stage 3 will be described.

本ステージ3の条件では、不静定はりとなるため、図11に示すように、P1〜P2間(点A〜点B)、P2〜中央(点B〜中央)の2つの区間にはりを分割し、P2(点B)における仮想モーメント(未知定数)および角度を導入する。   Under the conditions of this stage 3, since the beam is indefinitely constant, as shown in FIG. 11, the beam is placed in two sections between P1 and P2 (point A to point B) and P2 to center (point B to center). Divide and introduce a virtual moment (unknown constant) and angle at P2 (point B).

<ステージ3−1:P1〜P2間(点A〜点B)の連続はり>
P2における曲げモーメント寄与分を未知定数M2として導入すると、
<Stage 3-1: Continuous beam between P1 and P2 (point A to point B)>
The introduction of bending moments contribution as an unknown constant M 2 in P2,

Figure 2011164024
Figure 2011164024

となる。式(21)を逐次積分すると、   It becomes. When equation (21) is integrated sequentially,

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

なお、この場合の境界条件は、P1およびP2に拘束され、さらにP2における連続はりの傾斜角をθ2(未知定数)として導入すると、 Note that the boundary condition in this case is constrained by P1 and P2, and when the inclination angle of the continuous beam at P2 is introduced as θ 2 (an unknown constant),

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

となる。   It becomes.

<ステージ3−2:P2〜中央までの連続はり>
P2における曲げモーメント寄与は、上記のステージ3−1と等価であると考えられる。したがって、本ステージ3−2でのたわみ曲線は、以下の3つの式で表すことができる。
<Stage 3-2: Continuous beam from P2 to the center>
The bending moment contribution at P2 is considered to be equivalent to the above stage 3-1. Therefore, the deflection curve in this stage 3-2 can be expressed by the following three expressions.

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

なお、この場合の境界条件はP2およびP3での拘束となり、さらにP2における連続はりの傾斜角は上記のステージ3−1と等価のθ2を導入できるので、以下のようになる。 Note that the boundary condition in this case is a constraint at P2 and P3, and the inclination angle of the continuous beam at P2 can introduce θ 2 equivalent to the above stage 3-1, so that it is as follows.

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

<ステージ3−3:P2で結合>
本ステージ3−3での積分定数および未知定数を簡単に求めるため、式(21)以降を行列表記する。
式(22)、(23)は、
<Stage 3-3: Coupling at P2>
In order to easily obtain the integral constant and the unknown constant in this stage 3-3, Expression (21) and subsequent expressions are expressed in a matrix.
Equations (22) and (23) are

Figure 2011164024
Figure 2011164024

同様に、式(28)、(29)は、   Similarly, equations (28) and (29) are

Figure 2011164024
Figure 2011164024

と表すことができる。上記の境界条件を表す式(24)、(25)、(26)、(30)、(31)、(32)を行列(33)、(34)に代入し整理すると、   It can be expressed as. Substituting the equations (24), (25), (26), (30), (31), and (32) representing the boundary conditions into the matrices (33) and (34),

Figure 2011164024
Figure 2011164024

と表記できる。積分定数および未知定数は、行列(35)の両辺に、右辺第1項の6次正方行列の逆行列を左方から乗ずることで求められる。すなわち、   Can be written. The integral constant and the unknown constant are obtained by multiplying both sides of the matrix (35) by the inverse matrix of the sixth-order square matrix of the first term on the right side from the left. That is,

Figure 2011164024
Figure 2011164024

上記行列(36)に対して掃き出し法などを用いた数値計算を行えばよい。   Numerical calculation using a sweeping method or the like may be performed on the matrix (36).

(ステージ4:中央閉合後)
次に、ステージ4のたわみ量の算定式について説明する。
(Stage 4: After closing the center)
Next, a calculation formula for the deflection amount of the stage 4 will be described.

本ステージ4では、上記のステージ3と同様に不静定はりとなるため、主桁を図12に示すP1〜P2間(点A〜点B)、P2〜P3間(点B〜点C)、P3〜P4間の3つの区間にはりを分割し検討する。   Since this stage 4 is an indeterminate beam as in the above stage 3, the main girder is between P1 and P2 (point A to point B) and between P2 and P3 (point B to point C) shown in FIG. , And divide the beam into three sections between P3 and P4.

<ステージ4−1:P1〜P2間>
支配方程式および境界条件は上記のステージ3−1と同様である。すなわち、
<Stage 4-1: Between P1 and P2>
The governing equations and boundary conditions are the same as in stage 3-1. That is,

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

となる。   It becomes.

<ステージ4−2:P2〜P3間>
本条件における両端の曲げモーメント寄与をそれぞれM2、M3として与えると、支配方程式は
<Stage 4-2: Between P2 and P3>
When the bending moment contributions at both ends in this condition are given as M 2 and M 3 respectively, the governing equation is

Figure 2011164024
Figure 2011164024

となる。式(43)を逐次積分すると、   It becomes. When equation (43) is integrated sequentially,

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

となる。また、境界条件は、   It becomes. The boundary condition is

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

である。   It is.

<ステージ4−3:P3〜P4間>
本条件での支配方程式は、上記のステージ4−2の未知定数M3のみが寄与する。したがって、
<Stage 4-3: Between P3 and P4>
Only the unknown constant M 3 of stage 4-2 contributes to the governing equation under this condition. Therefore,

Figure 2011164024
Figure 2011164024

式(50)を逐次積分すると、   When equation (50) is integrated sequentially,

Figure 2011164024
Figure 2011164024
Figure 2011164024
Figure 2011164024

となる。境界条件は、

Figure 2011164024
Figure 2011164024
Figure 2011164024
It becomes. The boundary condition is
Figure 2011164024
Figure 2011164024
Figure 2011164024

である。   It is.

<ステージ4の積分定数、未知定数の導出について>
上記のステージ3と同様に、各支配方程式を行列表記する。
式(38)、(39)は、
<Derivation of stage 4 integral and unknown constants>
Similar to the above stage 3, each governing equation is expressed in a matrix.
Equations (38) and (39) are

Figure 2011164024
Figure 2011164024

同様に式(44)、(45)は、   Similarly, the equations (44) and (45) are

Figure 2011164024
Figure 2011164024

さらに、式(51)、(52)は、   Furthermore, the equations (51) and (52) are

Figure 2011164024
Figure 2011164024

と表すことができる。
境界条件を表す式(40)、(41)、(42)、(46)、(47)、(48)、(49)、(53)、(54)、(55)を行列(56)、(57)、(58)に代入し整理すると、
It can be expressed as.
Expressions (40), (41), (42), (46), (47), (48), (49), (53), (54), and (55) representing boundary conditions are converted into a matrix (56), Substituting and organizing into (57) and (58),

Figure 2011164024
Figure 2011164024

となり、これを上記のステージ3と同様に数値計算すればよい。   This can be numerically calculated in the same manner as in stage 3 above.

以上のステージ1〜ステージ4に示した方法により、光ファイバ分布ひずみセンサを敷設した長大橋主桁の工事進捗に伴うたわみ曲線を導出することができる。実際には、光ファイバ分布ひずみ計測器により得られる分布ひずみ値は、例えば0.5m程度間隔の値であるため、上記の方法で求めた未知定数および積分定数を使用して、数値積分を行う必要がある。また、主桁に光ファイバセンサを敷設しない未敷設区間がある場合には、この未敷設区間のたわみ曲線については、適切な方法で補間するようにしてもよい。   By the method shown in the above stage 1 to stage 4, it is possible to derive a deflection curve accompanying the progress of construction of the main bridge girder in which the optical fiber distributed strain sensor is laid. Actually, since the distributed strain value obtained by the optical fiber distributed strain measuring instrument is, for example, a value of about 0.5 m intervals, numerical integration is performed using the unknown constant and the integral constant obtained by the above method. There is a need. In addition, when there is an unlaid section in which the optical fiber sensor is not laid in the main beam, the deflection curve of the unlaid section may be interpolated by an appropriate method.

次に、本発明により算定したたわみ曲線と、測量値および設計値(理論値)との比較例について説明する。図13は、主桁たわみ曲線を比較した図であり、(a)は測量レベルとの比較図、(b)は設計値との比較図であり、それぞれ主桁延伸工程におけるたわみ曲線を、1つ前の施工ステップの斜材緊張後の線形を基準値として示している。   Next, a comparative example of a deflection curve calculated according to the present invention, a survey value, and a design value (theoretical value) will be described. FIGS. 13A and 13B are diagrams comparing the main girder deflection curves. FIG. 13A is a comparison diagram with the survey level, and FIG. 13B is a comparison diagram with the design value. The alignment after the oblique material tension of the previous construction step is shown as a reference value.

図13(a)は、本発明の算定装置100により算定したたわみ曲線と、1つ前のステップ斜材緊張時を基準とした測量レベル(相対レベル値)を比較した例であり、上からコンクリート打設時、型枠移動時、斜材緊張時の各施工ステップについての図である。連続計測を行っている光ファイバセンサ10から得られたひずみ値より上記の算定装置100により求めた主桁たわみ曲線の状況が、施工ステップの進展に伴う荷重変化に沿って、刻々と変化していることが分かる。また、光ファイバセンサ10による計測ひずみ値に基づくたわみ曲線(実線)と、測量レベル差分(黒▽印)は各施工プロセスにおいて、良好な関係を示していることが分かる。   FIG. 13 (a) is an example in which the deflection curve calculated by the calculation device 100 of the present invention is compared with the survey level (relative level value) based on the previous step diagonal material tension, and concrete from above. It is a figure about each construction step at the time of placement, a formwork movement, and diagonal material tension. The state of the main girder deflection curve obtained by the calculation device 100 from the strain value obtained from the optical fiber sensor 10 performing continuous measurement changes momentarily along the load change accompanying the progress of the construction step. I understand that. It can also be seen that the deflection curve (solid line) based on the measured strain value by the optical fiber sensor 10 and the survey level difference (black ▽) show a good relationship in each construction process.

また、図13(b)は、斜張橋の詳細設計で予め予測したたわみ量(〇印で示す設計値)との比較例を示している。光ファイバセンサ10による計測ひずみ値に基づくたわみ曲線(実線)と、設計値は良好な関係を示していることが分かる。このように、光ファイバセンサ10を用いた連続計測から得られたひずみ値を用いてたわみ曲線を時々刻々求める方法は、次ステップの上げ越し管理を行ううえで有用である。   FIG. 13B shows a comparative example with the deflection amount (design value indicated by a circle) predicted in advance in the detailed design of the cable-stayed bridge. It can be seen that the deflection curve (solid line) based on the strain value measured by the optical fiber sensor 10 and the design value show a good relationship. As described above, the method of obtaining the deflection curve from time to time using the strain value obtained from the continuous measurement using the optical fiber sensor 10 is useful in performing the up-and-coming management of the next step.

以上説明したように、本発明によれば、光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する方法において、前記構造物の上側のひずみと下側のひずみとを前記光ファイバセンサで計測し、前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定するので、工事進捗に応じた構造物のたわみ量を算定することができる。   As described above, according to the present invention, in the method for calculating the amount of deflection of a structure including an optical fiber sensor based on the measurement strain of the structure measured by the optical fiber sensor, The upper strain and the lower strain are measured by the optical fiber sensor, and the difference between the upper strain and the lower strain measured by the optical fiber sensor is divided by the vertical height of the structure. The deflection curvature that defines the deflection amount is obtained, the deflection curvature is integrated twice in the horizontal direction of the structure to obtain a basic deflection amount including an arbitrary integration constant, and the basic deflection amount is determined. A value of the integral constant is determined by applying a boundary condition in a predetermined construction progress of the structure, and the value of the structure is determined based on the basic deflection amount into which the determined value of the integral constant is substituted. Because calculating the amount of deflection in the constant construction progress, it is possible to calculate the amount of deflection of the structure according to the construction progress.

以上のように、本発明に係る光ファイバセンサを備えた構造物のたわみ量の算定方法および装置は、工事進捗に応じた構造物のたわみ量を算定するのに有用であり、特に、たわみ量を算定するための境界条件が工事進捗によって刻々と変化する橋梁などの構造物のたわみ量を算定するのに適している。   As described above, the method and apparatus for calculating the amount of deflection of a structure provided with the optical fiber sensor according to the present invention are useful for calculating the amount of deflection of the structure according to the progress of construction, and in particular, the amount of deflection. It is suitable for calculating the amount of flexure of structures such as bridges where the boundary condition for calculating the momentum changes with the progress of construction.

1 長大PC斜張橋
2 主桁(構造物)
4 光ファイバ素線
6 ポリエチレン樹脂
8 アラミド繊維
10 光ファイバセンサ
12 光スイッチ
14 計測器
16 リール
18 パソコン
20 ハブ
22 光成端箱
100 光ファイバセンサを備えた構造物のたわみ量の算定装置
101 構造ヘルスモニタリングシステム
1 Long-span PC cable-stayed bridge 2 Main girder (structure)
DESCRIPTION OF SYMBOLS 4 Optical fiber 6 Polyethylene resin 8 Aramid fiber 10 Optical fiber sensor 12 Optical switch 14 Measuring instrument 16 Reel 18 Personal computer 20 Hub 22 Optical termination box 100 Deflection amount calculation apparatus of structure provided with optical fiber sensor 101 Structural health Monitoring system

Claims (4)

光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する方法において、
前記構造物の上側のひずみと下側のひずみとを前記光ファイバセンサで計測し、
前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、
前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、
前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定することを特徴とする光ファイバセンサを備えた構造物のたわみ量の算定方法。
In the method of calculating the amount of deflection of the structure including the optical fiber sensor based on the measurement strain of the structure measured by the optical fiber sensor,
Measure the upper strain and lower strain of the structure with the optical fiber sensor,
Dividing the difference between the upper strain and the lower strain measured by the optical fiber sensor by the height in the vertical direction of the structure to obtain the deflection curvature that defines the deflection amount,
Integrating the deflection curvature twice with respect to the horizontal direction of the structure to obtain a basic deflection amount comprising a mathematical formula including an arbitrary integration constant;
Applying boundary conditions in the predetermined construction progress of the structure to the basic deflection amount to determine a value of the integral constant, and based on the basic deflection amount to which the determined value of the integral constant is substituted A method for calculating the amount of deflection of a structure having an optical fiber sensor, characterized by calculating the amount of deflection in a predetermined construction progress of the structure.
光ファイバセンサを備えた構造物のたわみ量を、前記光ファイバセンサで計測した前記構造物の計測ひずみに基づいて算定する装置において、
前記光ファイバセンサは、前記構造物の上側のひずみと下側のひずみとを計測するものであり、
前記光ファイバセンサで計測した前記上側のひずみと前記下側ひずみとの差を前記構造物の上下方向の高さで除算して前記たわみ量を規定するたわみ曲率を求め、
前記たわみ曲率を前記構造物の水平方向に関して2回積分して任意の積分定数を含む数式からなる基本たわみ量を求め、
前記基本たわみ量に対して前記構造物の所定の工事進捗における境界条件を適用して前記積分定数の値を決定し、決定した前記積分定数の値が代入された前記基本たわみ量に基づいて前記構造物の所定の工事進捗におけるたわみ量を算定することを特徴とする光ファイバセンサを備えた構造物のたわみ量の算定装置。
In an apparatus for calculating the amount of deflection of a structure including an optical fiber sensor based on the measured strain of the structure measured by the optical fiber sensor,
The optical fiber sensor measures the upper strain and the lower strain of the structure,
Dividing the difference between the upper strain and the lower strain measured by the optical fiber sensor by the height in the vertical direction of the structure to obtain the deflection curvature that defines the deflection amount,
Integrating the deflection curvature twice with respect to the horizontal direction of the structure to obtain a basic deflection amount comprising a mathematical formula including an arbitrary integration constant;
Applying boundary conditions in the predetermined construction progress of the structure to the basic deflection amount to determine a value of the integral constant, and based on the basic deflection amount to which the determined value of the integral constant is substituted An apparatus for calculating a deflection amount of a structure provided with an optical fiber sensor, wherein the deflection amount of the structure in a predetermined construction progress is calculated.
前記構造物は、橋梁であることを特徴とする請求項2に記載の光ファイバセンサを備えた構造物のたわみ量の算定装置。   The said structure is a bridge, The bending amount calculation apparatus of the structure provided with the optical fiber sensor of Claim 2 characterized by the above-mentioned. 前記橋梁は、斜張橋であることを特徴とする請求項3に記載の光ファイバセンサを備えた構造物のたわみ量の算定装置。   The said bridge is a cable-stayed bridge, The bending amount calculation apparatus of the structure provided with the optical fiber sensor of Claim 3 characterized by the above-mentioned.
JP2010029223A 2010-02-12 2010-02-12 Method and device of calculating amount of deflection of structure provided with optical fiber sensor Pending JP2011164024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029223A JP2011164024A (en) 2010-02-12 2010-02-12 Method and device of calculating amount of deflection of structure provided with optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029223A JP2011164024A (en) 2010-02-12 2010-02-12 Method and device of calculating amount of deflection of structure provided with optical fiber sensor

Publications (1)

Publication Number Publication Date
JP2011164024A true JP2011164024A (en) 2011-08-25

Family

ID=44594863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029223A Pending JP2011164024A (en) 2010-02-12 2010-02-12 Method and device of calculating amount of deflection of structure provided with optical fiber sensor

Country Status (1)

Country Link
JP (1) JP2011164024A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106934114A (en) * 2017-02-21 2017-07-07 中交上海三航科学研究院有限公司 The Dynamic testing and appraisal procedure of stake girder construction node connection status
CN107664489A (en) * 2016-07-29 2018-02-06 中铁二院工程集团有限责任公司 A kind of bridge strain and the measuring method of deformation
JP2019045221A (en) * 2017-08-31 2019-03-22 横河電機株式会社 Optical fiber sensor measurement unit
JP2019200078A (en) * 2018-05-15 2019-11-21 株式会社神戸製鋼所 Deflection amount distribution calculation method of long-length construction
CN110514134A (en) * 2019-09-30 2019-11-29 西南石油大学 Bridge dynamic deflection monitoring method based on distribution type fiber-optic
CN111609805A (en) * 2020-04-23 2020-09-01 哈尔滨工业大学 Tunnel structure state diagnosis method based on full-distribution strain measurement point section curvature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106210A (en) * 1991-10-16 1993-04-27 P S Co Ltd Erecting method for concrete skew bridge
JP2002048518A (en) * 2000-08-03 2002-02-15 Shimizu Corp Method of measuring displacement using optical fiber sensor
JP2002250612A (en) * 2001-02-26 2002-09-06 Shimizu Corp Strain or deformation measuring method of pipe
JP2002340522A (en) * 2001-05-11 2002-11-27 Shimizu Corp Displacement measuring method using optical fiber sensor
JP2008180672A (en) * 2007-01-26 2008-08-07 Airec Engineering Corp Hollow displacement sensor, hollow displacement measuring system, mounting method of hollow displacement sensor
JP2011132680A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structural health monitoring system using optical fiber sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106210A (en) * 1991-10-16 1993-04-27 P S Co Ltd Erecting method for concrete skew bridge
JP2002048518A (en) * 2000-08-03 2002-02-15 Shimizu Corp Method of measuring displacement using optical fiber sensor
JP2002250612A (en) * 2001-02-26 2002-09-06 Shimizu Corp Strain or deformation measuring method of pipe
JP2002340522A (en) * 2001-05-11 2002-11-27 Shimizu Corp Displacement measuring method using optical fiber sensor
JP2008180672A (en) * 2007-01-26 2008-08-07 Airec Engineering Corp Hollow displacement sensor, hollow displacement measuring system, mounting method of hollow displacement sensor
JP2011132680A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structural health monitoring system using optical fiber sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013024270; 岩城 英朗,稲田 裕,若原 敏裕: '長大橋モニタリングシステムの開発と適用例' プレストテストコンクリート 第50巻第2号, 200803, pp. 79-84, 社団法人プレストテストコンクリート技術協会 *
JPN6013024271; '構造力学2は、静定構造物の変形計算に突入!!' 北海道2年制建築学科 建築のプロフェッショナルをめざす人のための学科情報ブログ , 20080712, 日本工学院北海道専門学校 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664489A (en) * 2016-07-29 2018-02-06 中铁二院工程集团有限责任公司 A kind of bridge strain and the measuring method of deformation
CN107664489B (en) * 2016-07-29 2019-02-22 中铁二院工程集团有限责任公司 A kind of measurement method of bridge strain and deformation
CN106934114A (en) * 2017-02-21 2017-07-07 中交上海三航科学研究院有限公司 The Dynamic testing and appraisal procedure of stake girder construction node connection status
JP2019045221A (en) * 2017-08-31 2019-03-22 横河電機株式会社 Optical fiber sensor measurement unit
JP2019200078A (en) * 2018-05-15 2019-11-21 株式会社神戸製鋼所 Deflection amount distribution calculation method of long-length construction
CN110514134A (en) * 2019-09-30 2019-11-29 西南石油大学 Bridge dynamic deflection monitoring method based on distribution type fiber-optic
CN111609805A (en) * 2020-04-23 2020-09-01 哈尔滨工业大学 Tunnel structure state diagnosis method based on full-distribution strain measurement point section curvature
CN111609805B (en) * 2020-04-23 2021-06-01 哈尔滨工业大学 Tunnel structure state diagnosis method based on full-distribution strain measurement point section curvature

Similar Documents

Publication Publication Date Title
JP2011132680A (en) Structural health monitoring system using optical fiber sensor
Davila Delgado et al. Management of structural monitoring data of bridges using BIM
Sigurdardottir et al. On-site validation of fiber-optic methods for structural health monitoring: Streicker Bridge
Butler et al. Evaluating the early-age behaviour of full-scale prestressed concrete beams using distributed and discrete fibre optic sensors
Kangas et al. Cable-stayed bridges: case study for ambient vibration-based cable tension estimation
Leung et al. A novel distributed optical crack sensor for concrete structures
Wu et al. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads
CN104677666A (en) Continuous rigid frame bridge prestress damage identification method based on deflection monitoring
JP2011164024A (en) Method and device of calculating amount of deflection of structure provided with optical fiber sensor
Chung et al. Deflection estimation of a full scale prestressed concrete girder using long-gauge fiber optic sensors
Brault et al. Monitoring of beams in an RC building during a load test using distributed sensors
Buda-Ożóg et al. Distributed fibre optic sensing: Reinforcement yielding strains and crack detection in concrete slab during column failure simulation
Bassil Distributed fiber optics sensing for crack monitoring of concrete structures
Xu et al. Modeling the tensile steel reinforcement strain in RC-beams subjected to cycles of loading and unloading
Hou et al. Cable reliability assessments for cable-stayed bridges using identified tension forces and monitored loads
Kerrouche et al. Strain measurement on a rail bridge loaded to failure using a fiber Bragg grating-based distributed sensor system
Ren et al. Field load tests and numerical analysis of Qingzhou cable-stayed bridge
Tan et al. Free vibration of the cracked non-uniform beam with cross section varying as polynomial functions
Mariniello et al. Layout-aware extreme learning machine to detect tendon malfunctions in prestressed concrete bridges using stress data
Xia et al. Estimation of extreme structural response distributions for mean recurrence intervals based on short-term monitoring
Hong et al. Displacement shape measurement of continuous beam bridges based on long-gauge fiber optic sensing
Morgese et al. Method and theory for conversion of distributed fiber-optic strains to crack opening displacements
Yan et al. Experimental study of buffeting control of Pingtang Bridge during construction
KR100602832B1 (en) Amentment method of differential shortenint of vertical member in reinforced-concrete structures
Shan et al. Tension identification of suspenders with supplemental dampers for through and half-through arch bridges under construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Effective date: 20130516

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008