JP2001050109A - Cogeneration system - Google Patents

Cogeneration system

Info

Publication number
JP2001050109A
JP2001050109A JP11227241A JP22724199A JP2001050109A JP 2001050109 A JP2001050109 A JP 2001050109A JP 11227241 A JP11227241 A JP 11227241A JP 22724199 A JP22724199 A JP 22724199A JP 2001050109 A JP2001050109 A JP 2001050109A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
gas
exhaust gas
exhaust
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11227241A
Other languages
Japanese (ja)
Inventor
Takaaki Kojima
高明 小島
Masamichi Ipponmatsu
正道 一本松
Hidehiko Kobayashi
英彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11227241A priority Critical patent/JP2001050109A/en
Publication of JP2001050109A publication Critical patent/JP2001050109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of excessive temperature rise of catalyst caused by catalyst combustion and thermal damage of an exhaust heat recovery part, by using a lean combustion type gas engine so as to reduce NOx, in the case of removal of unburnt gas which is likely to form the lean combustion type engine with the use of an oxidation catalyst. SOLUTION: In a cogeneration system in which an oxidation catalyst device 4 is provided in an exhaust gas passage 3 extending from a gas engine 1 to an exhaust heat recovery part 2, a cooling air supply pipe 7 is merged into the passage 3 upstream of the oxidation catalyst device 4, through the intermediary of a regulating valve 5, and is incorporated therein with temperature sensors 8a, 8b for detecting a temperature of the catalyst device 4. With this arrangement, cooling air is fed into the exhaust gas passage 3 while the volume thereof is changed in accordance with outputs form the sensors 8a, 8b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希薄燃焼型ガスエンジ
ンを用いたコージェネレーションシステムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration system using a lean-burn gas engine.

【0002】[0002]

【従来の技術】近年希薄燃焼型ガスエンジン1を用いた
コージェネレーションシステムが開発されている。希薄
ガスエンジンは低NOx性能がすぐれているので、これ
をコージェネレーションシステムに使用することができ
れば、高価なNOx還元装置を省略することができるの
であるが、実際には希薄ガスエンジンをコージェネレー
ションに採用する場合、次のような問題があった。すな
わち希薄ガスエンジン1は燃焼ガスが希薄であるため
に、火炎中に局所的な高温部を発生せず低NOx性能が
きわめて良好である反面、燃焼が緩慢であるために排気
中に未燃ガスが混入し易いという欠点があり、その傾向
は特に点火ミスによる失火が発生し易い始動時あるいは
負荷移行時などに著しい。また排熱回収ボイラ3に再加
熱用バーナ4のような着火源が設けられていると、この
未燃ガスによってボイラ3内あるいは排気ダクト5内で
爆発を起こす危険がある。
2. Description of the Related Art In recent years, a cogeneration system using a lean-burn gas engine 1 has been developed. Since a lean gas engine has excellent low NOx performance, if it can be used in a cogeneration system, an expensive NOx reduction device can be omitted. When adopting, there were the following problems. That is, the lean gas engine 1 has a very low NOx performance without generating a local high-temperature portion in the flame because the combustion gas is lean, but the unburned gas in the exhaust gas because the combustion is slow. This tendency is remarkable particularly at the time of starting or at the time of load transfer, where misfiring is likely to occur due to an ignition error. If an ignition source such as a reheating burner 4 is provided in the exhaust heat recovery boiler 3, there is a risk that the unburned gas may cause an explosion in the boiler 3 or the exhaust duct 5.

【0003】そこで本発明者等は、図3に点線で示した
ように、希薄ガスエンジン1の排ガス経路3中に酸化触
媒4を介装し、未燃ガスを触媒燃焼させることにより排
ガス中から除去する方式を試みた。この酸化触媒4とし
ては、例えばハニカム状に成形されたアルミナ多孔体若
しく状のアルミナに白金系活性金属を担持させたものを
使用する。この方式によれば、外部に未燃ガスを排出す
るおそれがない上に、排熱回収部2に追い焚きバーナ1
3のような着火源を設けても爆発のおそれがなく、しか
も触媒燃焼により発生する熱は排熱回収部2で無駄なく
回収されて、エネルギー効率も改善されるという利点が
ある。
Therefore, as shown by a dotted line in FIG. 3, the present inventors interposed an oxidation catalyst 4 in the exhaust gas passage 3 of the lean gas engine 1 and catalytically burned unburned gas to thereby remove the unburned gas from the exhaust gas. An attempt was made to remove it. As the oxidation catalyst 4, for example, a porous alumina body formed into a honeycomb shape or a catalyst in which a platinum-based active metal is supported on alumina is used. According to this method, there is no possibility of discharging unburned gas to the outside, and the reburning burner 1
Even if an ignition source such as 3 is provided, there is no danger of explosion, and there is an advantage that heat generated by catalytic combustion is recovered by the exhaust heat recovery unit 2 without waste and energy efficiency is improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら図3の方
式では、排ガスの温度が高くなり過ぎると酸化触媒4が
劣化するという問題があり、また未燃ガスが多く発生し
た場合に、それが全て触媒燃焼によって熱に変換される
ことになるため、酸化触媒4を劣化させるばかりでな
く、排熱回収部2に対して例えばボイラの鑞付部が熱損
傷するというような悪影響を与えるおそれがあるという
問題があった。そこで本発明は、きわめて簡単な構成に
よって酸化触媒の劣化と排熱回収部2の熱損傷の問題を
解消し、希薄ガスエンジンを使用した低NOxでしかも
低コストのコージェネレーションシステムを実用化する
ことを目的とするものである。
However, the system shown in FIG. 3 has a problem that the oxidation catalyst 4 is deteriorated when the temperature of the exhaust gas becomes too high. Since it is converted into heat by combustion, not only the oxidation catalyst 4 is deteriorated, but also the exhaust heat recovery unit 2 may be adversely affected, for example, the brazing part of the boiler is thermally damaged. There was a problem. Therefore, the present invention solves the problems of the deterioration of the oxidation catalyst and the heat damage of the exhaust heat recovery unit 2 by a very simple configuration, and realizes a low-NOx and low-cost cogeneration system using a lean gas engine. It is intended for.

【0005】[0005]

【課題を解決するための手段】本発明によるコージェネ
レーションシステムは、図1に示すように、希薄燃焼型
ガスエンジン1から排熱回収部2に至る排ガス経路3中
に酸化触媒装置4を介装したコージェネレーションシス
テムにおいて、酸化触媒装置4の上流側の排ガス経路3
に調整弁5を介して冷却用空気供給管7を合流せしめる
と共に、酸化触媒4の温度を検出する温度センサ8a,
8bを備え、冷却用空気を該温度センサ8a,8bの出
力に応じて増減させながら、排ガス経路3に合流せしめ
るようにしたものであって、希薄ガスエンジンの排ガス
中に未燃ガスが多くなった場合にも、温度過上昇による
酸化触媒4の劣化あるいは排熱回収部2におけるボイラ
等の設備の熱損傷を防止することができる点に特長を有
するものである。
As shown in FIG. 1, in the cogeneration system according to the present invention, an oxidation catalyst device 4 is interposed in an exhaust gas path 3 from a lean burn gas engine 1 to an exhaust heat recovery section 2. Exhaust gas path 3 upstream of the oxidation catalyst device 4 in the cogeneration system
The cooling air supply pipe 7 via the regulating valve 5 and a temperature sensor 8 a for detecting the temperature of the oxidation catalyst 4.
8b, the cooling air is increased or decreased in accordance with the outputs of the temperature sensors 8a and 8b, and is joined to the exhaust gas path 3. The unburned gas in the exhaust gas of the lean gas engine increases. Also in this case, it is characterized in that deterioration of the oxidation catalyst 4 due to excessive temperature rise or thermal damage to equipment such as a boiler in the exhaust heat recovery unit 2 can be prevented.

【0006】[0006]

【発明の実施の形態】図1は本発明コージェネレーショ
ンシステムの一実施例を示したもので、ガスエンジン1
には希薄燃焼型が使用され、このガスエンジン1から排
熱回収部2に至る排ガス経路3中に、酸化触媒装置4が
介装されており、希薄ガスエンジン1から発生する未燃
ガスが、酸化触媒4上で触媒燃焼するようになってい
る。この酸化触媒装置4の上流側において、排ガス経路
3に冷却用空気供給管7が合流するように連結されてお
り、この冷却用空気供給管7には酸化触媒を冷却するた
めに外気を供給するためのブロア6が設けられると共
に、この空気量を調節するための電動式調整弁5が設け
られている。本実施例において、調整弁5、ブロア6を
備えた空気供給管7が、常時運転用(#1)と緊急運転
用(#2)との2系統設けたのは、常時運転されるブロ
ア6を小型化してコストダウンを図るためである。
FIG. 1 shows an embodiment of a cogeneration system according to the present invention.
A lean burn type is used. An oxidation catalyst device 4 is interposed in an exhaust gas path 3 from the gas engine 1 to the exhaust heat recovery unit 2, and unburned gas generated from the lean gas engine 1 is Catalytic combustion is performed on the oxidation catalyst 4. On the upstream side of the oxidation catalyst device 4, a cooling air supply pipe 7 is connected to the exhaust gas path 3 so as to merge with the exhaust gas path 3, and supplies outside air to the cooling air supply pipe 7 to cool the oxidation catalyst. And a motor-operated adjusting valve 5 for adjusting the amount of air. In the present embodiment, the air supply pipe 7 provided with the regulating valve 5 and the blower 6 is provided in two systems, one for always-on operation (# 1) and the other for emergency operation (# 2). Is to reduce the size and cost.

【0007】温度センサ8a及び8bは、触媒4の入口
付近及び出口付近にそれぞれ1個ずつ設けられている。
入口温度センサ8aは触媒内の温度上昇分を見込んで、
予めエンジンからの排ガス温度が一定温度(350℃)
以上のときに冷たい空気で希釈するためのものであり、
出口温度センサ8bは未燃ガス量が異常に多くなって触
媒の温度が過上昇(390℃以上)したときに、やはり
冷却空気を吹き込むためのものである。なお図中10は
消音器、11は手動バタフライ弁、12はバイパス弁で
ある。
The temperature sensors 8a and 8b are provided near the inlet and the outlet of the catalyst 4, respectively.
The inlet temperature sensor 8a estimates the temperature rise in the catalyst,
The temperature of the exhaust gas from the engine must be constant (350 ° C)
It is for dilution with cold air at the time of above
The outlet temperature sensor 8b is also for blowing cooling air when the temperature of the catalyst becomes excessively high (390 ° C. or more) due to an abnormal increase in the amount of unburned gas. In the figure, 10 is a silencer, 11 is a manual butterfly valve, and 12 is a bypass valve.

【0008】図2は本発明構成による動作の一例を示し
たもので、制御装置9のエンジン始動開始スイッチON
(t)により#1ブロアが運転を開始する(t)と
共に、#1調整弁が全開され、触媒出口温度Tbを(も
しも高かった場合に)300℃以下にするのに必要な時
間が経過すると、エンジンが始動される(t)。始動
当初は未燃ガスが多く発生するため、#1ブロアが全開
で未燃ガスを空気で希釈し触媒温度の上昇を防ぐ。運転
が安定し未燃ガス量が減少するための所定時間が経過す
ると、#1調整弁が一旦閉じられ(t)、以後は通常
運転に入って、#1調整弁が両温度センサ8a及び8b
からの出力信号に従ってオンオフ制御されることにな
る。この制御は2段階に行われ、触媒温度の上昇が激し
いときには#2調整弁及び#2ブロアも(出口温度Tb
>400℃で)も触媒の冷却に参加する(t)。エン
ジンを停止させる場合にも、まず負荷が減少する際に未
燃ガスが増加するので、例えばエンジン出力30%にな
った時点(t)で、一定時間#1及び#2調整弁が全
開されると共に両ブロアが運転され、その後(t)は
#1ブロアのみにより触媒出口温度がTb<300℃に
下がる(t)まで空気が吹き込まれる。
FIG. 2 shows an example of the operation according to the configuration of the present invention.
At (t 0 ), the # 1 blower starts to operate (t 1 ), and at the same time, the # 1 regulating valve is fully opened, and the time required to bring the catalyst outlet temperature Tb to 300 ° C. or lower (if high) is obtained. After elapse, the engine is started (t 2 ). Since a large amount of unburned gas is generated at the start of the operation, the # 1 blower is fully opened to dilute the unburned gas with air to prevent the catalyst temperature from rising. After a lapse of a predetermined time for the operation to stabilize and reduce the amount of unburned gas, the # 1 regulating valve is closed once (t 3 ), and thereafter the normal operation is started. 8b
ON / OFF control is performed in accordance with the output signal from the CPU. This control is performed in two stages, and when the catalyst temperature rises sharply, the # 2 regulating valve and the # 2 blower are also switched to the outlet temperature Tb.
> 400 ° C.) also participates in cooling the catalyst (t 4 ). If stopping the engine also, since first unburned gas when the load is reduced is increased, for example, when it becomes the engine output 30% (t 5), fixed time # 1 and # 2 control valve is fully opened At the same time, both blowers are operated, and thereafter (t 6 ), air is blown only by the # 1 blower until the catalyst outlet temperature falls to Tb <300 ° C. (t 7 ).

【0009】[0009]

【発明の効果】本発明は上述のように、希薄燃焼型ガス
エンジン1から排熱回収部2に至る排ガス経路3中に触
媒燃焼装置4を介装し、排ガス中に含まれる未燃ガスを
触媒燃焼させて、外部への排出を防止すると共に排熱回
収量を増加させ、しかもその際に生じる酸化触媒の温度
過上昇による劣化の問題と、すべての未燃ガスを触媒燃
焼させることによる排熱回収部2の熱損傷の問題を、酸
化触媒に冷却用空気を吹き込むというきわめて簡単且つ
安価な構成で解決し得るという利点がある。
According to the present invention, as described above, the catalytic combustion device 4 is interposed in the exhaust gas path 3 from the lean burn gas engine 1 to the exhaust heat recovery section 2 to remove unburned gas contained in the exhaust gas. Catalytic combustion prevents exhaust to the outside and increases the amount of exhaust heat recovery.In addition, the problem of deterioration due to excessive temperature rise of the oxidation catalyst at that time, and emission due to catalytic combustion of all unburned gas. There is an advantage that the problem of thermal damage to the heat recovery unit 2 can be solved with a very simple and inexpensive configuration in which cooling air is blown into the oxidation catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of one embodiment of the present invention.

【図2】同上の動作の一例を示すタイムチャート。FIG. 2 is a time chart showing an example of the above operation.

【図3】従来例の系統図。FIG. 3 is a system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 希薄ガスエンジン 2 排熱回収部 3 ボイラ 3 排ガス経路 4 酸化触媒装置 5 調整弁 6 ブロア 7 空気供給管 8a 温度センサ 8b 出口温度センサ 8a 入口温度センサ 9 制御装置 10 消音器 11 手動バタフライ弁 12 バイパス弁 Tb 出口温度 Tb 触媒出口温度 DESCRIPTION OF SYMBOLS 1 Lean gas engine 2 Exhaust heat recovery part 3 Boiler 3 Exhaust gas path 4 Oxidation catalyst device 5 Regulator valve 6 Blower 7 Air supply pipe 8a Temperature sensor 8b Outlet temperature sensor 8a Inlet temperature sensor 9 Control device 10 Silencer 11 Manual butterfly valve 12 Bypass Valve Tb outlet temperature Tb Catalyst outlet temperature

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 英彦 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 3G091 AA06 AA12 AA19 AB02 BA05 BA08 BA10 BA15 BA19 BA36 CA08 CA13 CA23 DA01 DA02 DA03 DB10 EA17 EA18 FB10 HA04 HA36 HA37 HA38 HA42 HB03 HB07 3K065 TA08 TC07 TD05 TK02 TK04 TK06 TL01 TM05 TN01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hidehiko Kobayashi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. (reference) 3G091 AA06 AA12 AA19 AB02 BA05 BA08 BA10 BA15 BA19 BA36 CA08 CA13 CA23 DA01 DA02 DA03 DB10 EA17 EA18 FB10 HA04 HA36 HA37 HA38 HA42 HB03 HB07 3K065 TA08 TC07 TD05 TK02 TK04 TK06 TL01 TM05 TN01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希薄燃焼型ガスエンジンから排熱回収部
に至る排ガス経路中に酸化触媒装置を介装したコージェ
ネレーションシステムにおいて、酸化触媒装置の上流側
の排ガス経路に調整弁を介して冷却用空気供給管を合流
せしめると共に、酸化触媒の温度を検出する温度センサ
を備え、冷却用空気を該温度センサの出力に応じて増減
させながら排ガス経路に合流せしめるようにして成るコ
ージェネレーションシステム。
In a cogeneration system in which an oxidation catalyst device is interposed in an exhaust gas path from a lean burn type gas engine to an exhaust heat recovery unit, cooling is performed through an adjustment valve in an exhaust gas path upstream of the oxidation catalyst device. A cogeneration system comprising a temperature sensor for detecting the temperature of an oxidation catalyst while joining an air supply pipe, and joining the cooling air to the exhaust gas path while increasing or decreasing the cooling air according to the output of the temperature sensor.
JP11227241A 1999-08-11 1999-08-11 Cogeneration system Pending JP2001050109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11227241A JP2001050109A (en) 1999-08-11 1999-08-11 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11227241A JP2001050109A (en) 1999-08-11 1999-08-11 Cogeneration system

Publications (1)

Publication Number Publication Date
JP2001050109A true JP2001050109A (en) 2001-02-23

Family

ID=16857738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227241A Pending JP2001050109A (en) 1999-08-11 1999-08-11 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2001050109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282451A (en) * 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc Hydrogen fuel supply system
KR100919290B1 (en) * 2007-11-12 2009-10-01 한국에너지기술연구원 Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
WO2018070126A1 (en) * 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282451A (en) * 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc Hydrogen fuel supply system
JP4559900B2 (en) * 2005-03-31 2010-10-13 株式会社豊田中央研究所 Hydrogen fuel supply system
KR100919290B1 (en) * 2007-11-12 2009-10-01 한국에너지기술연구원 Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
WO2018070126A1 (en) * 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system

Similar Documents

Publication Publication Date Title
US10830116B2 (en) Exhaust gas system and method for operating an exhaust gas system
US10989084B2 (en) Exhaust gas system with preconditioning
CN110905631B (en) Low-energy-consumption diesel engine tail gas treatment system suitable for high exhaust flow
EP1674681A2 (en) Method for adjusting the temperature of an exhaust gas treatment system for internal combustion engines and engine apparatus
JP2003193832A (en) Exhaust device for heat engine
JP2001239129A (en) Exhaust gas treatment apparatus and operation method therefor
JP2008240557A (en) Energy system
JP2001050109A (en) Cogeneration system
JP4964193B2 (en) Energy system
CN110863885B (en) Ignition unit and low-energy-consumption diesel engine tail gas treatment system based on ignition unit
CN110953040B (en) DPF temperature control system and control method of low-energy-consumption tail gas treatment system
JP5945412B2 (en) Engine system
JP2001200757A (en) Cogeneration system
JP2001021112A (en) Combustion device of fuel cell system
JP4554153B2 (en) Boiler combustion control system
JP2005127137A (en) Egr system of engine
JPH0729240Y2 (en) Diesel engine for cogeneration
JP5363938B2 (en) Energy system
JP5881444B2 (en) Engine system operating method and engine system
CN213235176U (en) Gas machine and post-processing device thereof
WO2011114381A1 (en) Exhaust gas evacuation device for internal combustion engine
WO2024106061A1 (en) Control device for engine electricity generation system
JP4166190B2 (en) Cogeneration system
JP2004308949A (en) Waste heat recovery system
JP3572537B2 (en) Furnace temperature control method of continuous furnace using regenerative radiant tube combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014