JPH0729240Y2 - Diesel engine for cogeneration - Google Patents

Diesel engine for cogeneration

Info

Publication number
JPH0729240Y2
JPH0729240Y2 JP1987039932U JP3993287U JPH0729240Y2 JP H0729240 Y2 JPH0729240 Y2 JP H0729240Y2 JP 1987039932 U JP1987039932 U JP 1987039932U JP 3993287 U JP3993287 U JP 3993287U JP H0729240 Y2 JPH0729240 Y2 JP H0729240Y2
Authority
JP
Japan
Prior art keywords
temperature
egr
diesel engine
engine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987039932U
Other languages
Japanese (ja)
Other versions
JPS63147549U (en
Inventor
禎範 永江
邦彦 下田
康雄 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1987039932U priority Critical patent/JPH0729240Y2/en
Publication of JPS63147549U publication Critical patent/JPS63147549U/ja
Application granted granted Critical
Publication of JPH0729240Y2 publication Critical patent/JPH0729240Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はディーゼル機関のコジェネレーションシステム
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cogeneration system for a diesel engine.

〔従来の技術〕[Conventional technology]

第3図は従来形のコジェネレーションディーゼル機関を
示す。ディーゼル機関11は燃料タンク14より燃料15の供
給を受け発電機12を駆動し、出力電気13を発生する。
FIG. 3 shows a conventional cogeneration diesel engine. The diesel engine 11 receives the fuel 15 supplied from the fuel tank 14 and drives the generator 12 to generate output electricity 13.

ディーゼル機関11は同時に冷却水ポンプ21を駆動して冷
却水をディーゼル機関11に供給し、機関各部を冷却して
正常な作動を確保している。機関を冷却して高温となっ
た高温冷却水22は、熱交換器23で外部よりの冷水41と熱
交換され、低温冷却水34となって冷却水ポンプ21に供給
され、以上のサイクルを繰返す。又ディーゼル機関11は
吸気管31を介して外気を吸入し、該機関からの高温の排
気が排気管32から排出される。ここで前述の熱交換器23
で高温となった高温水42は、加熱器43で排気管32の排気
でさらに加熱された後、蓄熱槽44に蓄えられ、高温の熱
水あるいは蒸気45となって各種用途に利用される。
At the same time, the diesel engine 11 drives the cooling water pump 21 to supply the cooling water to the diesel engine 11 to cool each part of the engine to ensure normal operation. The high-temperature cooling water 22 that has become a high temperature by cooling the engine is heat-exchanged with the cold water 41 from the outside by the heat exchanger 23, becomes low-temperature cooling water 34, and is supplied to the cooling-water pump 21, and the above cycle is repeated. . Further, the diesel engine 11 sucks the outside air through the intake pipe 31, and the hot exhaust gas from the engine is discharged through the exhaust pipe 32. Here, the heat exchanger 23
The high-temperature water 42, which has become high in temperature, is further heated by the exhaust of the exhaust pipe 32 by the heater 43, and then stored in the heat storage tank 44, and becomes high-temperature hot water or steam 45 for various purposes.

なお加熱器43には燃料タンク14から燃料16が供給される
補助バーナ51をそなえている。
The heater 43 has an auxiliary burner 51 to which the fuel 16 is supplied from the fuel tank 14.

次に前記従来例の作用について説明する。Next, the operation of the conventional example will be described.

出力電力13が最大のときには機関出力も大きいため、高
温熱水の需要が大きいときでも蓄熱槽44内は所定温度以
上に保持される。
Since the engine output is large when the output power 13 is maximum, the inside of the heat storage tank 44 is maintained at a predetermined temperature or higher even when the demand for high-temperature hot water is large.

ところが出力電力の需要が少なく、高温熱水45の需要が
大きい場合には、ディーゼル機関11の出力が小さいた
め、該機関より流出する冷却水温が低下するとともに、
加熱器43に供給される排気温度も低下するため、蓄熱槽
44内の高温熱水45の温度が低下し不具合を生じる。従っ
てこのような場合には従来例では補助バーナ51に点火
し、加熱器43内の温度を上昇させ、所定温度の高温熱水
45を得るようにしている。
However, when the demand for output power is low and the demand for high-temperature hot water 45 is high, the output of the diesel engine 11 is low, and the temperature of the cooling water flowing out from the engine decreases,
Since the temperature of the exhaust gas supplied to the heater 43 also drops, a heat storage tank
The temperature of the high-temperature hot water 45 in 44 drops, causing a problem. Therefore, in such a case, in the conventional example, the auxiliary burner 51 is ignited, the temperature in the heater 43 is increased, and high temperature hot water of a predetermined temperature is heated.
Trying to get 45.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

以上のように従来システムでは低負荷時補助バーナ51の
点火に失敗した場合には、加熱器43が爆発する危険性が
あり、また燃料タンク14から補助バーナ51までの燃料配
管にも火災発生のおそれがある。またこれらの危険性を
減らすため、各種の安全装置を必要とし、システム価格
の上昇をまねいている。さらに最近では排気中の有害物
質特に窒素酸化物(NOx)の排出に対してその法的規制
も厳しくなりつつあり、その対策が要求されている。
As described above, in the conventional system, if the ignition of the auxiliary burner 51 at low load fails, there is a risk of the heater 43 exploding, and a fire may occur in the fuel pipe from the fuel tank 14 to the auxiliary burner 51. There is a risk. Moreover, in order to reduce these risks, various safety devices are required, leading to an increase in system price. Furthermore, recently, the legal regulations for the emission of harmful substances in exhaust gas, especially nitrogen oxides (NOx), are becoming stricter, and the countermeasures are required.

本考案の目的は前記問題点を解消し、補助バーナーを不
要とすることにより爆発の可能性や危険性を大巾に減少
させるとともに、EGR効果により排気中のNOxを減らすこ
とのできるコジェネレーション用ディーゼル機関を提供
するにある。
The purpose of the present invention is to eliminate the above-mentioned problems and to greatly reduce the possibility and danger of explosion by eliminating the need for an auxiliary burner, and to reduce the NOx in the exhaust gas by the EGR effect. In providing diesel engine.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の発電機を駆動するコジェネレーション用ディー
ゼル機関は、第1図のように冷水をEGR用の排気ガスと
熱交換した後引続き機関冷却用温水と熱交換したもの、
あるいは第2図のように第1図とは熱交換する順序を前
後させたものに対して、さらに大気に放出される排気ガ
スで加熱して得た熱水あるいは蒸気を他に利用するシス
テムにおいて、熱水あるいは蒸気をためておく蓄熱槽に
温度センサを設け、その出力信号を制御器を介してEGR
弁に送り、該弁の開閉により機関に再循環されるEGR排
気ガス量をコントロールするようにしたのがその特徴で
ある。
The cogeneration diesel engine that drives the generator of the present invention is one in which cold water is heat-exchanged with exhaust gas for EGR and then heat-exchanged with engine cooling hot water, as shown in FIG.
Alternatively, as shown in FIG. 2, in a system in which the order of heat exchange is changed from that in FIG. A temperature sensor is installed in the heat storage tank that stores hot water or steam, and its output signal is sent to the EGR via the controller.
The feature is that the amount of EGR exhaust gas sent to a valve and recirculated to the engine by opening / closing the valve is controlled.

〔作用〕[Action]

出力電力が小さく高温熱水の使用量が多いため蓄熱槽の
高温熱水の温度が低下したときには、EGR弁の開度を大
きくしてEGRガス量を増大させると、吸気温度の上昇及
び燃焼期間の延長により排気温度の上昇が実現される。
これにより補助バーナなしで所定温度の高温熱水が得ら
れる。
When the temperature of the high-temperature hot water in the heat storage tank decreases because the output power is small and the amount of high-temperature hot water used is large, the intake air temperature rises and the combustion period increases when the EGR valve opening is increased to increase the EGR gas amount. The exhaust temperature can be increased by extending the temperature.
As a result, high temperature hot water having a predetermined temperature can be obtained without an auxiliary burner.

〔実施例〕〔Example〕

以下第1〜2図を参照し本考案の一実施例について説明
する。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は第1実施例のブロック図である。11はディーゼ
ル機関、12は発電機、14は燃料タンク、63は蓄熱槽、64
は熱水、71は温度センサ、73は制御器、101はEGR弁、2
3,62,102は熱交換器である。ディーゼル機関11には燃料
タンク14より燃料15が供給されており吸気管31より外気
を吸入し排気管32aより排気ガスを排出し、又高温冷却
水管22はエンジン冷却水熱交換器23で冷却された後低温
冷却水となって水ポンプ21に供給され、さらに該水ポン
プを介して機関11内に送水されその循環が行われる。
FIG. 1 is a block diagram of the first embodiment. 11 is a diesel engine, 12 is a generator, 14 is a fuel tank, 63 is a heat storage tank, 64
Is hot water, 71 is a temperature sensor, 73 is a controller, 101 is an EGR valve, 2
3,62,102 are heat exchangers. Fuel 15 is supplied from the fuel tank 14 to the diesel engine 11, outside air is taken in through the intake pipe 31, exhaust gas is discharged through the exhaust pipe 32a, and the high temperature cooling water pipe 22 is cooled by the engine cooling water heat exchanger 23. After that, low-temperature cooling water is supplied to the water pump 21, and is further supplied to the engine 11 via the water pump to be circulated.

排気管32aは分岐して、一方は排気管32bからEGR弁101を
介してEGRガス熱交換器102に接続され、EGR管32eは吸気
管31とつながっている。他方排気管32cは補助バーナを
もたない加熱器62へ接続され、排気管32dより大気へ解
放されている。蓄熱槽63には温度センサ71が取り付けら
れ、その出力信号72は制御器73へ入力される。制御器73
はEGR弁101の開度を制御する制御信号74を出力する。
The exhaust pipe 32a is branched, and one of them is connected to the EGR gas heat exchanger 102 from the exhaust pipe 32b through the EGR valve 101, and the EGR pipe 32e is connected to the intake pipe 31. On the other hand, the exhaust pipe 32c is connected to the heater 62 which does not have an auxiliary burner, and is open to the atmosphere through the exhaust pipe 32d. A temperature sensor 71 is attached to the heat storage tank 63, and an output signal 72 from the temperature sensor 71 is input to a controller 73. Controller 73
Outputs a control signal 74 for controlling the opening of the EGR valve 101.

次に前記実施例の作用について説明する。Next, the operation of the above embodiment will be described.

出力電力13が最大で高温熱水64の使用量が最大の場合に
は、EGR弁101は制御信号74によりある程度開いて排気ガ
スの一部をEGRガス熱交換器102で冷却された後、吸気に
混合させディーゼル機関内に再循環させて、排気中の有
害なNOxを減少させることができる。EGRガス熱交換器10
2に注入された冷水41は、わずかに温度上昇して温水42a
となり、さらにエンジン冷却水熱交換器23で機関11より
の高温冷却水22と熱交換され温水42bとなる。この温水4
2bは次いで加熱器62で排気管32cの排気でさらに加熱さ
れた後蓄熱槽63に蓄えられ、高温の熱水あるいは蒸気64
となって各種の用途に利用される。なお機関よりの前記
高温冷却水22は、熱交換器23で冷却された後低温冷却水
24となり、冷却水ポンプ21を介して機関11に供給され、
機関11の正常な運転が確保される。
When the output power 13 is the maximum and the usage amount of the high-temperature hot water 64 is the maximum, the EGR valve 101 is opened to some extent by the control signal 74 and a part of the exhaust gas is cooled by the EGR gas heat exchanger 102, and then the intake air Can be mixed with and recirculated in the diesel engine to reduce harmful NOx in the exhaust. EGR gas heat exchanger 10
The cold water 41 injected into the 2 rises slightly in temperature and the hot water 42a
Further, heat is exchanged with the high temperature cooling water 22 from the engine 11 in the engine cooling water heat exchanger 23 to become hot water 42b. This warm water 4
2b is further heated in the heater 62 by the exhaust gas of the exhaust pipe 32c, and then stored in the heat storage tank 63, where hot water or steam 64
And used for various purposes. Note that the high-temperature cooling water 22 from the engine is low-temperature cooling water after being cooled by the heat exchanger 23.
24, and is supplied to the engine 11 via the cooling water pump 21,
Normal operation of the engine 11 is ensured.

次に出力電力13の需要が小さく高温熱水の需要が大きい
場合には蓄熱槽63内の熱水温度が低下する。この温度低
下を温度センサ71の出力信号74によりEGR弁101は大きく
開かれる。よって再循環されるEGRガス量が増加し、機
関の排気温度が上昇し、加熱器62に導かれる排気管32c
の排気温度が高くなる。即ち、ディーゼル機関において
は、ピストンストローク相当の給気を燃焼に供せしめて
いる。EGR量を増加することは給気中の新気の量を減少
させることとなり、空気過剰率が下がる。該空気過剰率
の低下は燃焼期間の延長を招き、排気始めまでのピスト
ンによるガスの膨張量を少なくせしめ、ガス温度が充分
に低下しないまま排気されることとなり、排気温度が高
くなる。これにより、出力電力13の需要が小さく高温熱
水64の需要が大きい場合にも、高温熱水64の温度は所定
の値が維持される。
Next, when the demand for the output power 13 is small and the demand for high-temperature hot water is large, the hot water temperature in the heat storage tank 63 decreases. The output signal 74 of the temperature sensor 71 causes the EGR valve 101 to be largely opened to reduce the temperature. Therefore, the amount of recirculated EGR gas increases, the exhaust temperature of the engine rises, and the exhaust pipe 32c is guided to the heater 62.
Exhaust temperature becomes high. That is, in the diesel engine, the supply air corresponding to the piston stroke is used for combustion. Increasing the EGR amount reduces the amount of fresh air in the supply air, and the excess air ratio decreases. The reduction of the excess air ratio leads to the extension of the combustion period, reduces the amount of expansion of the gas by the piston until the beginning of exhaust, and the gas is exhausted without the gas temperature decreasing sufficiently, and the exhaust temperature rises. Accordingly, even when the demand for the output power 13 is small and the demand for the high-temperature hot water 64 is large, the temperature of the high-temperature hot water 64 is maintained at a predetermined value.

第2図は本考案の第2実施例を示す。排気管32a,32b,32
c,32d,EGR管32e,EGR弁101,EGRガス熱交換器102の配置は
第1実施例と同じであるが冷水41の注入系路が第1実施
例と異っている。この第2実施例では、冷水はエンジン
冷却水熱交換器23において機関11よりの高温冷却水22で
いくらか温度上昇がはかられた後温水42aとなり、熱交
換器102でさらにEGR排気ガスと熱交換ののち温水42bと
なって加熱器62及び蓄熱槽63へとおくられる。蓄熱槽63
内での熱水温度保持の作動機能については、第1実施例
と同じである。
FIG. 2 shows a second embodiment of the present invention. Exhaust pipe 32a, 32b, 32
The arrangement of c, 32d, EGR pipe 32e, EGR valve 101, and EGR gas heat exchanger 102 is the same as that of the first embodiment, but the injection system passage of the cold water 41 is different from that of the first embodiment. In this second embodiment, the cold water becomes hot water 42a after the temperature of the engine cooling water heat exchanger 23 has been somewhat raised by the high temperature cooling water 22 from the engine 11, and the heat exchanger 102 further heats the EGR exhaust gas and heat. After replacement, the hot water 42b is sent to the heater 62 and the heat storage tank 63. Heat storage tank 63
The operation function of maintaining the hot water temperature inside is the same as that of the first embodiment.

なお先に熱交換23で冷却された機関の高温冷却水22は、
熱交換の後低温冷却水24となって冷却水ポンプ21を介し
て機関に供給され、機関の正常な運転に寄与される。
In addition, the high-temperature cooling water 22 of the engine, which was previously cooled by the heat exchange 23,
After heat exchange, the low-temperature cooling water 24 is supplied to the engine via the cooling water pump 21 and contributes to the normal operation of the engine.

〔考案の効果〕[Effect of device]

以上のように、本考案によれば、出力電力が小さく高温
熱水の使用量が多いため蓄熱槽の高温熱水の温度が低下
したときには、EGR弁の開度を大きくしてEGRガス量を増
大させると、吸気温度の上昇及び燃焼期間の延長により
排気温度の上昇が実現される。これにより補助バーナな
しで所定温度の高温熱水を得ることができる、従って、
本考案のコジェネレーションシステムを採用することに
より、加熱器に設けられていた補助バーナを省略するこ
とが可能となり、爆発等の危険性を大幅に減らすことが
できる。
As described above, according to the present invention, since the output power is small and the amount of high-temperature hot water used is large, when the temperature of the high-temperature hot water in the heat storage tank decreases, the EGR valve opening is increased to reduce the EGR gas amount. When it is increased, the exhaust gas temperature is increased by increasing the intake air temperature and extending the combustion period. This makes it possible to obtain high-temperature hot water of a predetermined temperature without an auxiliary burner, therefore
By adopting the cogeneration system of the present invention, the auxiliary burner provided in the heater can be omitted, and the risk of explosion or the like can be greatly reduced.

また本考案はEGR効果により排気中の有害排出物であるN
Oxを減らすことが可能となり公害防止の効果が大であ
る。
In addition, the present invention is a harmful emission in the exhaust due to the EGR effect.
Ox can be reduced and the effect of pollution prevention is great.

【図面の簡単な説明】[Brief description of drawings]

第1〜2図は本考案に係るもので、第1図は第1実施例
の全体ブロック図、第2図は第2実施例の第1図応当
図、第3図は従来例の第1図応当図である。 11……ディーゼル機関、12……発電機、22……冷却温
水、32c……排気ガス、32e……EGR管、41……冷水、23
……エンジン冷却水熱交換器、62……加熱器、102……E
GRガス熱交換器、63……蓄熱槽、64……熱水あるいは蒸
気、71……温度センサ、73……制御器、101……EGR弁。
1 and 2 relate to the present invention. FIG. 1 is an overall block diagram of the first embodiment, FIG. 2 is a corresponding diagram of FIG. 1 of the second embodiment, and FIG. FIG. 11 …… Diesel engine, 12 …… Generator, 22 …… Cooling hot water, 32c …… Exhaust gas, 32e …… EGR pipe, 41 …… Cold water, 23
…… Engine cooling water heat exchanger, 62 …… Heating device, 102 …… E
GR gas heat exchanger, 63 …… heat storage tank, 64 …… hot water or steam, 71 …… temperature sensor, 73 …… controller, 101 …… EGR valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−226257(JP,A) 特開 昭54−156919(JP,A) 実公 昭61−15427(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 59-226257 (JP, A) JP 54-156919 (JP, A) JP 61-15427 (JP, Y2)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ディーゼル機関で発電機等の被駆動機械を
駆動するとともにディーゼル機関の廃熱を回収するシス
テムを備えたコジェネレーションシステムにおいて、排
気管路から分岐されて吸気管路に接続されEGR弁を有す
るEGR管路に設けられEGR排気ガスと外部より導入された
冷水とを熱交換するEGRガス熱交換器、並びに前記冷水
とエンジン冷却後の高温冷却水とを熱交換するエンジン
冷却水熱交換器を備えた第1の加熱手段と、前記EGRガ
ス熱交換器またはエンジン冷却水熱交換器から送出され
た加熱冷水をさらに排気で加熱する第2の加熱手段と、
該第2の加熱手段にて昇温せしめられた熱水あるいは蒸
気を蓄積する蓄熱槽と、該蓄熱槽内の温度を検出する温
度センサと、該温度センサよりの温度検出信号に基づき
前記EGR弁の開度を調整する制御器とを有してなるコジ
ェネレーション用ディーゼル機関。
Claim: What is claimed is: 1. A cogeneration system equipped with a system for driving a driven machine such as a generator with a diesel engine and recovering waste heat of the diesel engine, which is branched from an exhaust pipe line and connected to an intake pipe line. EGR gas heat exchanger provided in an EGR pipe having a valve for exchanging heat between EGR exhaust gas and cold water introduced from the outside, and engine cooling water heat for exchanging heat between the cold water and high temperature cooling water after engine cooling First heating means having an exchanger, and second heating means for further heating the heated cold water sent from the EGR gas heat exchanger or the engine cooling water heat exchanger with exhaust gas,
A heat storage tank for storing hot water or steam heated by the second heating means, a temperature sensor for detecting the temperature in the heat storage tank, and the EGR valve based on a temperature detection signal from the temperature sensor. A diesel engine for cogeneration, which has a controller for adjusting the opening of the diesel engine.
JP1987039932U 1987-03-20 1987-03-20 Diesel engine for cogeneration Expired - Lifetime JPH0729240Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987039932U JPH0729240Y2 (en) 1987-03-20 1987-03-20 Diesel engine for cogeneration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987039932U JPH0729240Y2 (en) 1987-03-20 1987-03-20 Diesel engine for cogeneration

Publications (2)

Publication Number Publication Date
JPS63147549U JPS63147549U (en) 1988-09-28
JPH0729240Y2 true JPH0729240Y2 (en) 1995-07-05

Family

ID=30853563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987039932U Expired - Lifetime JPH0729240Y2 (en) 1987-03-20 1987-03-20 Diesel engine for cogeneration

Country Status (1)

Country Link
JP (1) JPH0729240Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021498A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Egr device in engine room

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716164B2 (en) * 1988-10-24 1998-02-18 ダイハツデイーゼル株式会社 Cogeneration equipment
JPH07229450A (en) * 1994-02-21 1995-08-29 Komatsu Ltd Exhaust gas reflux device of diesel engine for congeneration and control method thereof
JP4894733B2 (en) * 2007-11-16 2012-03-14 マツダ株式会社 Cogeneration system using hydrogen engine
WO2016117099A1 (en) * 2015-01-23 2016-07-28 株式会社 日立ハイテクノロジーズ Charged particle beam device, charged particle beam device optical element, and charged particle beam device member production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156919A (en) * 1978-05-31 1979-12-11 Nissan Motor Co Ltd Suction device of diesel engine
JPS59226257A (en) * 1983-06-07 1984-12-19 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Engine-driven hot-water supplying apparatus
JPS60187746A (en) * 1984-03-07 1985-09-25 Hitachi Ltd Waste heat recovering apparatus for power plant utilizing digestive gas
JPS6115427U (en) * 1984-07-02 1986-01-29 三洋電機株式会社 Wind direction adjustment device
JPS61104152A (en) * 1984-10-26 1986-05-22 Fuji Heavy Ind Ltd Intake air preheating device of car engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021498A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Egr device in engine room

Also Published As

Publication number Publication date
JPS63147549U (en) 1988-09-28

Similar Documents

Publication Publication Date Title
US11060497B2 (en) Cold start strategy and system for gasoline direct injection compression ignition engine
KR101007495B1 (en) Controlled temperature combustion engine
US5339632A (en) Method and apparatus for increasing the efficiency of internal combustion engines
US5101801A (en) Method of heating an ic engine
HUT72775A (en) Method of operating an internal combustion engine
US9752514B2 (en) Thermal management system for the feeding of fuel in internal combustion engines
US5029442A (en) Heat feeding apparatus for internal combustion engine having supercharger attached
CN104653305B (en) The control of internal combustion engine of motor vehicle
JPH0729240Y2 (en) Diesel engine for cogeneration
US6047676A (en) Method and device for assisting cold starting of automobiles
JP4115237B2 (en) diesel engine
JP4062285B2 (en) Heat storage system
JPH077573Y2 (en) Intake air heating system for ship engine
US5941220A (en) Motor vehicle with an internal combustion engine with an external exhaust gas recirculation system and heater
JP3005776B2 (en) Exhaust gas recirculation system for diesel engine
JP4256933B2 (en) Motor vehicle having an internal combustion engine having an external exhaust gas recirculation unit and a heating device
US4009701A (en) Internal combustion engine having provisions for heating the fuel-air mixture by means of the exhaust
JPH0336686B2 (en)
JPH0526121A (en) Engine having valve timing variable mechanism
JP3630040B2 (en) Intake heating system
JPS6090962A (en) Hot-water supplying and room heating equipment utilizing waste heat of engine
JPH07103821B2 (en) Exhaust turbocharged internal combustion engine
JPS6388250A (en) Stirling engine
JPS63230953A (en) Cogeneration system for internal combustion engine
US20220298955A1 (en) Power plant and method for operating a power plant