JP2001049480A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JP2001049480A
JP2001049480A JP11226640A JP22664099A JP2001049480A JP 2001049480 A JP2001049480 A JP 2001049480A JP 11226640 A JP11226640 A JP 11226640A JP 22664099 A JP22664099 A JP 22664099A JP 2001049480 A JP2001049480 A JP 2001049480A
Authority
JP
Japan
Prior art keywords
electrode
electrolytic
electrolytic cell
silver
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226640A
Other languages
Japanese (ja)
Inventor
Yasuo Hirose
保男 廣瀬
Yasuhisa Ikeda
泰久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11226640A priority Critical patent/JP2001049480A/en
Publication of JP2001049480A publication Critical patent/JP2001049480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic cell having a function for lowering the silver concentration in an electrolyte by electrolytically reducibly depositing Ag as metal silver in the electrolytic cell for electrolytically oxidatively depositing Ag. SOLUTION: Second main electrodes 6 and auxiliary electrodes 7 are placed in a nitric acid solution containing Ag. Ag is efficiently formed by both as positive electrodes in an electrolytic oxidation stage and silver is deposited as metal by the other as a negative electrode while Ag is formed by either thereof as a positive electrode in an electrolytic reduction stage. Since the presence of nitrous acid to hinder the deposition of silver is suppressed, the silver concentration in the solution may be drastically lowered. The end point of the electrolytic reduction stage is determined by detecting the high potential at which the Ag concentration lowers and finally Ag deposits directly as metal silver.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硝酸銀(以下
「Ag(I)」と略す)を含む硝酸溶液中で電解酸化的
に生成する二価の原子価状態にある銀の化学種(AgN
3 +の化学式を有する錯体であるが、以下「Ag(I
I)」と略す)を媒体として酸化反応を行わせ(以下
「電解酸化工程」と略す)、その後に硝酸溶液中の銀を
電解還元的に析出させて回収する(以下「電解還元工
程」と略す)ために好適な電解槽に係り、特に電解酸化
工程においてAg(II)の生成が容易で副生成物量が
少なく、電解還元工程において硝酸溶液中に残存する銀
濃度を低下させることが可能な電解槽に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a divalent valent silver species (AgN) formed electrolytically in a nitric acid solution containing silver nitrate (hereinafter abbreviated as "Ag (I)").
The complex having the chemical formula of O 3 + is referred to as “Ag (I
I) ") as a medium to carry out an oxidation reaction (hereinafter abbreviated as" electrolytic oxidation step "), and thereafter, silver in the nitric acid solution is electrolytically precipitated and recovered (hereinafter referred to as" electrolytic reduction step "). In particular, the present invention relates to a suitable electrolytic cell, which can easily generate Ag (II) in the electrolytic oxidation step, reduce the amount of by-products, and reduce the concentration of silver remaining in the nitric acid solution in the electrolytic reduction step. It relates to an electrolytic cell.

【0002】[0002]

【従来の技術】AgOを硝酸に溶解して生成するAg
(II)を媒体とした酸化反応は古くから知られている
が、フライシュマン等は銀を含む硝酸溶液中でAg(I
I)の電解酸化的な生成とAg(II)を媒体として酸
化反応について報告している(Fleischman
n, et al, “The kinetics o
fsilver(I)/silver(II) cou
ple at a platinum electro
de in perchloric and nitr
ic acid solution,” J.of A
pplied Electrochemistry,
Vol.1(1971)p. 1−7)。また、陽極と
陰極とをそれぞれ有する電解槽内で、銀を含む硝酸溶液
中で陽極上に電解酸化的に生成するAg(II)を媒体
として難溶性のPuO2 等を酸化して溶解する方法が特
開昭58−176133号公報、特開昭60−6100
9号公報、特開昭60−61010号公報に開示されて
いる。さらに、溶解液に含まれる銀を、電解槽の電極の
極性を変換してなる電極表面または電解容器内に析出さ
せて回収する方法が特開平8−233994号公報に開
示されている。
2. Description of the Related Art Ag produced by dissolving AgO in nitric acid
The oxidation reaction using (II) as a medium has been known for a long time, but Fleischmann et al.
The electrooxidative formation of I) and the oxidation reaction using Ag (II) as a medium have been reported (Fleischman).
n, et al, "The Kinetics o
fsilver (I) / silver (II) cou
ple at a platinum electro
de in perchloric and nitr
ic acid solution, "J. of A
Applied Electrochemistry,
Vol. 1 (1971) p. 1-7). A method of oxidizing and dissolving poorly soluble PuO 2 or the like in a nitric acid solution containing silver using Ag (II) as a medium in a nitric acid solution containing silver in an electrolytic cell having an anode and a cathode respectively. JP-A-58-176133, JP-A-60-6100
No. 9 and JP-A-60-61010. Further, Japanese Patent Application Laid-Open No. Hei 8-233994 discloses a method in which silver contained in a solution is precipitated and recovered on an electrode surface or an electrolytic vessel obtained by changing the polarity of an electrode in an electrolytic cell.

【0003】[0003]

【発明が解決しようとする課題】従来の電解槽は以上の
ように構成されているので、銀の濃度が高いうちは金属
銀の電解還元析出が優先するが、銀の析出電位と硝酸の
還元電位が近いため、銀の濃度が低下すると副反応とし
て亜硝酸の生成が始まる。この亜硝酸が蓄積してくると
金属銀の析出が停止するのみならず、亜硝酸濃度が高く
なるにつれて一旦析出した金属銀が溶解し始め、この銀
の溶解によって、さらに亜硝酸を生成するため電解還元
を継続していても最終的に全ての銀が再溶解してしまう
という課題があった。
Since the conventional electrolytic cell is constructed as described above, the electrolytic reduction deposition of metallic silver takes precedence while the silver concentration is high, but the silver deposition potential and the reduction of nitric acid are reduced. Since the potentials are close to each other, when the silver concentration decreases, the generation of nitrous acid starts as a side reaction. When this nitrous acid accumulates, not only does the precipitation of metallic silver stop, but as the nitrous acid concentration increases, the metallic silver once deposited begins to dissolve, and further dissolution of this silver produces nitrous acid. Even if electrolytic reduction is continued, there is a problem that all silver is finally redissolved.

【0004】本発明の目的は、電解酸化的にAg(I
I)を生成させるための電解槽の中で、電解還元的に金
属銀として析出させ、電解液中の銀濃度を低下させるた
めの機能を有する電解槽を提供することにある。
[0004] It is an object of the present invention to electrolytically oxidize Ag (I
It is an object of the present invention to provide an electrolytic cell having a function of reducing silver concentration in an electrolytic solution by electrolytically precipitating it as metallic silver in an electrolytic cell for producing I).

【0005】本発明の他の目的は、電解槽の中で電解酸
化的にAg(II)を生成するための電流効率が高い電
解槽を提供することにある。
Another object of the present invention is to provide an electrolytic cell having a high current efficiency for producing Ag (II) by electrolytic oxidation in the electrolytic cell.

【0006】本発明の他の目的は、核分裂性物質の取り
扱いに係わり臨界形状管理を可能とする直径が限定され
た幾何学的形状の中で電解槽を容易に提供することにあ
る。
It is another object of the present invention to easily provide an electrolytic cell in a geometric shape with a limited diameter that allows for critical shape control in the handling of fissile material.

【0007】[0007]

【課題を解決するための手段】この発明に係る電解槽
は、隔膜を隔てて相対してそれぞれ負極と正極となる一
対の主電極からなる電解槽において、正極となる主電極
と同じ電解液中に極性を切り替えられる一つの副電極を
設置し、正極となる主電極上でAg(II)を生成させ
る傍ら副電極の極性を負極とすることによって副電極の
表面に電解還元的に銀を金属として析出させるものであ
る。
According to the present invention, there is provided an electrolytic cell comprising a pair of main electrodes serving as a negative electrode and a positive electrode opposed to each other with a diaphragm in the same electrolytic solution as the main electrode serving as a positive electrode. A single sub-electrode whose polarity can be switched is installed, and Ag (II) is generated on the main electrode serving as the positive electrode, and silver is electrolytically reduced on the surface of the sub-electrode by setting the polarity of the sub-electrode to the negative electrode. Is deposited.

【0008】この発明に係る電解槽は、一つの副電極が
正極となる主電極と同じ電気化学的触媒物質で構成され
ていることにより、副電極の極性を正極とした場合に副
電極の表面において正極となる主電極と同じようにAg
(II)を生成させるものである。
In the electrolytic cell according to the present invention, since one sub-electrode is made of the same electrochemical catalytic substance as the main electrode serving as a positive electrode, the surface of the sub-electrode is used when the polarity of the sub-electrode is positive. In the same manner as the main electrode serving as the positive electrode
(II).

【0009】この発明に係る電解槽は、隔膜を隔てて相
対し、相互に極性が変換できる一対の主電極と、主電極
の一つと同じ電解液中にあり、主電極と同じ電気化学的
触媒物質で構成され、常に正極である一つの副電極とか
らなることにより、極性を変換して負極となった主電極
の表面に電解還元的に銀を金属として析出させ、同時に
正極である副電極の表面においてAg(II)を生成さ
せるものである。
An electrolytic cell according to the present invention comprises a pair of main electrodes which are opposed to each other with a diaphragm therebetween and whose polarity can be mutually converted, and which is in the same electrolytic solution as one of the main electrodes and has the same electrochemical catalyst as the main electrode. It is composed of a substance and consists of one sub-electrode that is always a positive electrode, which converts polarity and deposits silver as a metal on the surface of a main electrode that has become a negative electrode, and at the same time, has a sub-electrode that is a positive electrode Ag (II) is generated on the surface of

【0010】この発明に係る電解槽は、請求項1または
請求項2の発明の特徴を備えると共に、隔膜は円筒形容
器であって、円筒形の電解槽容器の中心に位置し、負極
となる主電極は隔膜の内側に、正極となる主電極は隔膜
の外側に各々設けられ、極性を切り替えられる一つの副
電極は正極となる主電極と電解槽容器内表面との間にあ
ることにより、直径が限定された円筒形の幾何学的形状
の中で電解槽を構成させるものである。
An electrolytic cell according to the present invention has the features of the first or second aspect, and the diaphragm is a cylindrical container, which is located at the center of the cylindrical electrolytic container and serves as a negative electrode. The main electrode is provided inside the diaphragm, the main electrode serving as the positive electrode is provided outside the diaphragm, and one sub-electrode whose polarity can be switched is between the main electrode serving as the positive electrode and the inner surface of the electrolytic cell container, The electrolytic cell is configured in a cylindrical geometric shape with a limited diameter.

【0011】この発明に係る電解槽は、請求項1または
請求項2の発明の特徴を備えると共に、隔膜が円筒形容
器であって、円筒形の電解槽容器の中心に位置し、負極
となる主電極は隔膜の内側に、正極となる主電極は隔膜
の外側に各々設けられ、極性を切り替えられる一つの副
電極は電解槽容器の内表面で構成することにより、直径
が限定された円筒形の幾何学的形状の中で電解槽を容易
に構成させるものである。
[0011] The electrolytic cell according to the present invention has the features of the first or second aspect of the present invention, and the diaphragm is a cylindrical container, which is located at the center of the cylindrical electrolytic cell container and serves as a negative electrode. The main electrode is provided inside the diaphragm, the main electrode serving as the positive electrode is provided outside the diaphragm, and one sub-electrode whose polarity can be switched is constituted by the inner surface of the electrolytic cell container, so that the cylindrical shape is limited in diameter. In this case, the electrolytic cell can be easily configured in the above geometrical shape.

【0012】この発明に係る電解槽は、請求項3の発明
の特徴を備えると共に、隔膜が円筒形容器であって、円
筒形の電解槽容器の中心に位置し、隔膜の外側にある主
電極と同じ電解液中にあり、常に正極である一つの副電
極が主電極と電解槽容器内表面との間にあるものであ
る。
An electrolytic cell according to the present invention has the features of the third aspect of the present invention, and further comprises a cylindrical container having a cylindrical membrane, and a main electrode located at the center of the cylindrical electrolytic cell container and outside the diaphragm. One sub-electrode, which is in the same electrolytic solution and is always a positive electrode, is between the main electrode and the inner surface of the electrolytic cell container.

【0013】この発明に係る電解槽は、請求項3の発明
の特徴を備えると共に、隔膜が円筒形容器であって、円
筒形の電解槽容器の中心に位置し、隔膜の外側にある主
電極と同じ電解液中にあり、常に正極である一つの副電
極が電解槽容器の内表面で構成することにより、直径が
限定された円筒形の幾何学的形状の中で電解槽を容易に
構成させるものである。
The electrolytic cell according to the present invention has the features of the third aspect of the present invention, and further comprises a cylindrical container having a diaphragm, which is located at the center of the cylindrical electrolytic container and which is located outside the diaphragm. One sub-electrode, which is always in the same electrolyte as the positive electrode and is always the positive electrode, is formed on the inner surface of the electrolytic cell container, making it easy to configure the electrolytic cell in a cylindrical geometry with a limited diameter It is to let.

【0014】[0014]

【発明の実施の形態】実施の形態1.図1を用いて、本
発明の実施の形態1による電解槽を以下に説明する。実
施の形態1による電解槽は、ガラス製である電解槽容器
1の中に多孔性焼結セラミック筒状容器である隔膜2で
隔離された第1電解液3の1L及び第2電解液4の1L
を有する。図示されていないが、電解液3,4はそれぞ
れ外部の電解液循環槽からポンプを経て電解槽容器1に
循環される。第1電解液3は循環容積が5L、濃度が6
Mの硝酸溶液である。第2電解液4は電解酸化工程にお
いて循環容積が5L、濃度が0.1Mの硝酸銀を含む濃
度が6Mの硝酸溶液であり、電解還元工程において循環
容積が10L、濃度が0.05Mの硝酸銀を含む濃度が
3Mの硝酸溶液である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 The electrolytic cell according to Embodiment 1 of the present invention will be described below with reference to FIG. The electrolytic cell according to the first embodiment includes an electrolytic cell container 1 made of glass and 1L of a first electrolytic solution 3 and a second electrolytic solution 4 separated by a diaphragm 2 which is a porous sintered ceramic cylindrical container. 1L
Having. Although not shown, the electrolytic solutions 3 and 4 are circulated from the external electrolytic solution circulating tank to the electrolytic cell container 1 via a pump. The first electrolyte 3 has a circulation volume of 5 L and a concentration of 6
M nitric acid solution. The second electrolytic solution 4 is a nitric acid solution having a circulation volume of 5 L and a concentration of 6 M containing silver nitrate having a concentration of 0.1 M in the electrolytic oxidation step. A nitric acid solution containing 3M concentration.

【0015】第1電解液3内に設置される第1主電極5
はチタンエキスパンドメッシュで筒状に製作され、有効
表面積は450cm2 である。第2電解液4内に設置さ
れる第2主電極6はチタンエキスパンドメッシュで筒状
に製作され、有効表面積は750cm2 である。副電極
7はチタンエキスパンドメッシュで筒状に製作され、有
効表面積は950cm2 であり、目的に応じて白金メッ
キされる。また、副電極7は第1主電極5又は第2主電
極6と接続される。主電極5,6間の隔膜2を介しての
電気抵抗は0.07Ωであり、第2主電極6と副電極7
との間の電気抵抗は0.03Ωである。
First main electrode 5 installed in first electrolytic solution 3
Is manufactured in a cylindrical shape with a titanium expanded mesh and has an effective surface area of 450 cm 2 . The second main electrode 6 installed in the second electrolytic solution 4 is made of a titanium expanded mesh in a cylindrical shape, and has an effective surface area of 750 cm 2 . The sub-electrode 7 is made of a titanium expanded mesh in a cylindrical shape, has an effective surface area of 950 cm 2 , and is plated with platinum according to the purpose. The sub-electrode 7 is connected to the first main electrode 5 or the second main electrode 6. The electrical resistance between the main electrodes 5 and 6 via the diaphragm 2 is 0.07Ω, and the second main electrode 6 and the sub-electrode 7
Is 0.03Ω.

【0016】具体例1−1 本具体例において、第2主電極6は白金メッキされてい
るが、副電極7は白金メッキされていない。第1主電極
5は必ずしも白金メッキされている必要はない。電解酸
化工程において、第1主電極5を負極とし、第2主電極
6を正極とし、副電極7を第2主電極6と接続して正極
として正負電極間に13.4Aの直流電流を流すと電極
端子間電圧は1.9Vとなる。これにより、第1電解液
3から酸化窒素が発生し、正極となる第2主電極6の表
面に黒褐色のAg(II)が生成した。このとき、副電
極7の表面において電解反応は起こらなかった。また、
Ag(II)飽和濃度に達するまでの電解酸化における
電流効率は70%であった。
Specific Example 1-1 In this specific example, the second main electrode 6 is plated with platinum, but the sub-electrode 7 is not plated with platinum. The first main electrode 5 does not necessarily need to be plated with platinum. In the electrolytic oxidation step, the first main electrode 5 is used as a negative electrode, the second main electrode 6 is used as a positive electrode, the sub-electrode 7 is connected to the second main electrode 6, and a DC current of 13.4 A flows between the positive and negative electrodes as a positive electrode. And the voltage between the electrode terminals is 1.9V. As a result, nitrogen oxide was generated from the first electrolytic solution 3, and black-brown Ag (II) was generated on the surface of the second main electrode 6 serving as a positive electrode. At this time, no electrolytic reaction occurred on the surface of the sub-electrode 7. Also,
The current efficiency in the electrolytic oxidation until reaching the Ag (II) saturation concentration was 70%.

【0017】電解還元工程において、主電極の極性は保
持し、副電極7を第1主電極5と接続して極性を負極と
したところ電極端子間電圧は2.6Vとなり、第2電解
液4中にAg(II)が残留して褐色が残ったままで副
電極7に金属銀の結晶が析出した。このとき、第2主電
極6の表面で生成する黒褐色のAg(II)の量は時間
経過につれて低下し、第2電解液4の全銀濃度が10%
になり着色も希薄となった時点で電極端子電圧が急激に
3.2Vにまで増加した。これに伴って副電極7に黒色
で非結晶質の金属銀が析出し第2電解液4の全銀濃度は
1%以下に低下した。
In the electrolytic reduction step, the polarity of the main electrode is maintained, and the sub-electrode 7 is connected to the first main electrode 5 to make the polarity negative. When the voltage between the electrode terminals becomes 2.6 V, the second electrolyte 4 Ag (II) remained therein, and brown silver remained on the sub-electrode 7 to precipitate metallic silver crystals. At this time, the amount of black-brown Ag (II) generated on the surface of the second main electrode 6 decreases with time, and the total silver concentration of the second electrolytic solution 4 becomes 10%.
And when the coloring became weak, the electrode terminal voltage rapidly increased to 3.2 V. Along with this, black amorphous metal silver was deposited on the sub-electrode 7, and the total silver concentration of the second electrolytic solution 4 was reduced to 1% or less.

【0018】さらに電解を継続すると第2電解液3の中
で亜硝酸が生成し始め、亜硝酸濃度が高くなるにつれて
銀の再溶解が進行するため、第2電解液4中の銀濃度が
低下した時点で第2電解液の循環を停止し、電解を停止
した。すると、電極上に析出した金属銀の脱落・溶解が
始まり、15分程度で完全に脱落・溶解する。第2電解
液4の液量は全循環量の10%であるため、最終的に第
2電解液4の銀濃度は0.5Mに達し、硝酸濃度は約
2.5Mに低下する。銀の濃度が高くなった第2電解液
4は適当な濃度の硝酸と混合して、次の電解酸化工程バ
ッチの第2電解液4を調製する。本具体例において、第
2電解液4に含まれる銀を金属として副電極7に析出す
るために必要とした電気量は理論電気量の1.7倍であ
った。
When the electrolysis is further continued, nitrous acid starts to be generated in the second electrolytic solution 3, and as the concentration of nitrous acid increases, silver re-dissolution proceeds, so that the silver concentration in the second electrolytic solution 4 decreases. At this point, the circulation of the second electrolytic solution was stopped, and the electrolysis was stopped. Then, the metallic silver deposited on the electrode begins to fall off and dissolve, and completely falls off and dissolves in about 15 minutes. Since the liquid amount of the second electrolytic solution 4 is 10% of the total circulation amount, the silver concentration of the second electrolytic solution 4 finally reaches 0.5 M and the nitric acid concentration decreases to about 2.5 M. The second electrolytic solution 4 having the increased silver concentration is mixed with nitric acid of an appropriate concentration to prepare a second electrolytic solution 4 for the next electrolytic oxidation step batch. In this specific example, the amount of electricity required to deposit silver contained in the second electrolytic solution 4 as a metal on the sub-electrode 7 was 1.7 times the theoretical amount of electricity.

【0019】本具体例によれば、以下の効果を得ること
ができる。電解酸化工程においては正極となり、電解還
元工程においては負極となる副電極を置くことにより、
電解酸化工程を阻害することなく、電解還元工程で電解
液中の銀濃度を低下させることができる。電解還元工程
の終期における電極電圧の変化から最適な終了時点を判
断できる。
According to this embodiment, the following effects can be obtained. By placing a sub-electrode that becomes a positive electrode in the electrolytic oxidation step and a negative electrode in the electrolytic reduction step,
The silver concentration in the electrolytic solution can be reduced in the electrolytic reduction step without inhibiting the electrolytic oxidation step. The optimal end point can be determined from the change in the electrode voltage at the end of the electrolytic reduction step.

【0020】具体例1−2 本具体例においては副電極7が第2主電極6と同じよう
に白金メッキされている。第1主電極5は必ずしも白金
メッキする必要はない。電解酸化工程において、第1主
電極5を負極とし、第2主電極6を正極とし、副電極7
を第2主電極6と接続して正極として正負電極間に1
3.4Aの直流電流を流すと電極端子間電圧は1.9V
となった。このとき、第1電解液3からは酸化窒素が発
生し、正極となる第2主電極6の表面で黒褐色のAg
(II)が生成した。また、副電極7の表面においても
比較的少ないが黒褐色のAg(II)が生成した。Ag
(II)飽和濃度に達するまでの電解酸化における電流
効率は具体例1−1より高く80%になった。
Specific Example 1-2 In this specific example, the sub-electrode 7 is plated with platinum in the same manner as the second main electrode 6. The first main electrode 5 does not necessarily need to be plated with platinum. In the electrolytic oxidation step, the first main electrode 5 is used as a negative electrode, the second main electrode 6 is used as a positive electrode,
Is connected to the second main electrode 6 so as to serve as a positive electrode,
When a DC current of 3.4 A flows, the voltage between the electrode terminals is 1.9 V
It became. At this time, nitric oxide is generated from the first electrolytic solution 3, and black-brown Ag is formed on the surface of the second main electrode 6 serving as a positive electrode.
(II) was produced. In addition, a relatively small amount of black-brown Ag (II) was also formed on the surface of the sub-electrode 7. Ag
(II) The current efficiency in the electrolytic oxidation until reaching the saturation concentration was higher than that of the specific example 1-1 and was 80%.

【0021】電解還元工程において、主電極の極性を保
持し、副電極7を第1主電極5と接続して極性を負極と
したところ電極端子間電圧は2.4Vとなり、第2電解
液4中にAg(II)が残留して褐色が残ったままで副
電極7に金属銀の結晶が析出した。第2主電極6の表面
で生成する黒褐色のAg(II)の量は時間経過につれ
て低下し、第2電解液4の全銀濃度が10%になり着色
も希薄となった時点で電極端子電圧が急激に3.0Vに
まで増加する。これに伴って副電極7に黒色で非結晶質
の金属銀が析出し第2電解液4の全銀濃度は1%以下に
低下した。
In the electrolytic reduction step, when the polarity of the main electrode is maintained and the sub-electrode 7 is connected to the first main electrode 5 to make the polarity negative, the voltage between the electrode terminals becomes 2.4 V and the second electrolyte 4 Ag (II) remained therein, and brown silver remained on the sub-electrode 7 to precipitate metallic silver crystals. The amount of black-brown Ag (II) generated on the surface of the second main electrode 6 decreases with the passage of time, and when the total silver concentration of the second electrolytic solution 4 becomes 10% and the coloring becomes weak, the electrode terminal voltage is reduced. Rapidly increases to 3.0V. Along with this, black amorphous metal silver was deposited on the sub-electrode 7, and the total silver concentration of the second electrolytic solution 4 was reduced to 1% or less.

【0022】さらに電解を継続すると第2電解液4の中
で亜硝酸が生成し始め、亜硝酸濃度が高くなるにつれて
銀の再溶解が進行するので、第2電解液4中の銀濃度が
低下した時点で第2電解液の循環を停止し、電解を停止
すると電極上に析出した金属銀の脱落・溶解が始まり、
15分程度で完全に脱落・溶解する。第2電解液4の液
量は全循環量の10%であるため、最終的に第2電解液
の銀濃度は0.5Mに達し、硝酸濃度は約2.5Mに低
下する。銀の濃度が高くなった第2電解液4は適当な濃
度の硝酸と混合して次の電解酸化工程バッチの第2電解
液4を調製する。本具体例において、第2電解液4に含
まれる銀を金属として副電極7に析出させるために必要
とした電気量は理論電気量の1.7倍であった。
When the electrolysis is further continued, nitrous acid starts to be generated in the second electrolytic solution 4, and as the nitrite concentration increases, silver re-dissolution proceeds, so that the silver concentration in the second electrolytic solution 4 decreases. At this point, the circulation of the second electrolytic solution is stopped, and when the electrolysis is stopped, the metallic silver deposited on the electrodes starts to fall off and dissolve,
It completely falls off and dissolves in about 15 minutes. Since the amount of the second electrolytic solution 4 is 10% of the total circulation amount, the silver concentration of the second electrolytic solution finally reaches 0.5 M and the nitric acid concentration decreases to about 2.5 M. The second electrolytic solution 4 having a higher silver concentration is mixed with nitric acid at an appropriate concentration to prepare a second electrolytic solution 4 for the next electrolytic oxidation step batch. In this specific example, the amount of electricity required to deposit silver contained in the second electrolytic solution 4 as a metal on the sub-electrode 7 was 1.7 times the theoretical amount of electricity.

【0023】本具体例によれば、具体例1−1の効果に
加えて以下の効果を得ることができる。副電極7が電解
酸化工程に寄与し、Ag(II)生成の電流効率を向上
させることができる。電解還元工程における銀の析出電
位が低下し、電力消費量が低下する。
According to this embodiment, the following effects can be obtained in addition to the effects of the embodiment 1-1. The sub-electrode 7 contributes to the electrolytic oxidation step, and can improve the current efficiency of Ag (II) generation. The deposition potential of silver in the electrolytic reduction step decreases, and the power consumption decreases.

【0024】具体例1−3 本具体例においては全ての電極が白金メッキされてい
る。電解酸化工程において、第1主電極5を負極とし、
第2主電極6を正極とし、副電極7を第2主電極6と接
続して正極として正負電極間に13.4Aの直流電流を
流すと電極端子間電圧は1.9Vとなった。このとき、
第1電解液3からは酸化窒素が発生し、正極となる第2
主電極6の表面で黒褐色のAg(II)が生成した。ま
た、副電極7の表面においても比較的少ないが黒褐色の
Ag(II)が生成した。Ag(II)飽和濃度に達す
るまでの電解酸化における電流効率は具体例1−2と等
しく高く80%になった。
Embodiment 1-3 In this embodiment, all the electrodes are plated with platinum. In the electrolytic oxidation step, the first main electrode 5 is used as a negative electrode,
When the second main electrode 6 was used as a positive electrode and the sub-electrode 7 was connected to the second main electrode 6 and a DC current of 13.4 A was passed between the positive and negative electrodes as a positive electrode, the voltage between the electrode terminals became 1.9 V. At this time,
Nitrogen oxide is generated from the first electrolytic solution 3, and the second
Black-brown Ag (II) was formed on the surface of the main electrode 6. In addition, a relatively small amount of black-brown Ag (II) was also formed on the surface of the sub-electrode 7. The current efficiency in the electrolytic oxidation until reaching the saturated concentration of Ag (II) was as high as that of Example 1-2 and was 80%.

【0025】電解還元工程において、主電極の極性を変
換して第1主電極5を正極とし、第2主電極6と副電極
7を負極としたところ電極端子間電圧は2.4Vとな
り、第2電解液3中にAg(II)が残留して褐色が残
ったままで第2主電極6と副電極7金属銀の結晶が析出
した。しかし、第2電解液3中のAg(I)濃度が30
%に低下した時点でAg(II)の褐色が失われると同
時に亜硝酸が生成した。この亜硝酸濃度が高まるにつれ
てAg(I)濃度の低下が停止し、以降は第2電解液3
中のAg(I)濃度が上昇し、最終的に初期濃度に達し
て第2電解液3から酸化窒素を発生するようになった。
主電極の極性を再び変換して第1主電極5を負極とし、
第2主電極6と副電極7を正極としたところ電極端子間
電圧は過渡的な変化を経過して1.9Vに戻り、第2電
解液4中の亜硝酸がなくなった時点で再びAg(II)
の褐色が戻った。
In the electrolytic reduction step, when the polarity of the main electrode is changed to make the first main electrode 5 a positive electrode and the second main electrode 6 and the sub-electrode 7 a negative electrode, the voltage between the electrode terminals becomes 2.4 V. (2) Ag (II) remained in the electrolytic solution 3 and the second main electrode 6 and the sub-electrode 7 precipitated metal silver crystals with the brown color remaining. However, the Ag (I) concentration in the second electrolyte 3 is 30
% Nitrite was formed at the same time as the brown color of Ag (II) was lost. As the nitrite concentration increases, the decrease in the Ag (I) concentration stops, and thereafter, the second electrolyte 3
The Ag (I) concentration in the solution increased, and finally reached the initial concentration, whereby nitric oxide was generated from the second electrolytic solution 3.
The polarity of the main electrode is converted again to make the first main electrode 5 a negative electrode,
When the second main electrode 6 and the sub-electrode 7 were used as positive electrodes, the voltage between the electrode terminals returned to 1.9 V after a transient change, and when the nitrous acid in the second electrolytic solution 4 disappeared, Ag ( II)
The brown color has returned.

【0026】主電極の極性を再三変換して第1主電極5
と副電極7を正極とし、第2主電極6を負極としたとこ
ろ電極端子間電圧は2.4Vとなり、第2電解液3中に
Ag(II)が残留して褐色が残ったままで第2主電極
6に金属銀の結晶が析出した。副電極7の表面で生成す
る黒褐色のAg(II)の量は時間経過につれて低下
し、第2電解液4の全銀濃度が10%になり着色も希薄
となった時点で電極端子電圧が急激に3.0Vにまで増
加する。これに伴って第2主電極6表面に黒色で非結晶
質の金属銀が析出し第2電解液4の全銀濃度は1%以下
に低下した。
The polarity of the main electrode is converted again and the first main electrode 5
When the secondary electrode 7 was used as a positive electrode and the second main electrode 6 was used as a negative electrode, the voltage between the electrode terminals was 2.4 V, and Ag (II) remained in the second electrolyte 3 and the second electrolyte remained brown. Crystals of metallic silver were deposited on the main electrode 6. The amount of black-brown Ag (II) generated on the surface of the sub-electrode 7 decreases with time, and the electrode terminal voltage sharply increases when the total silver concentration of the second electrolytic solution 4 becomes 10% and the color becomes thin. To 3.0V. Accompanying this, black amorphous metal silver was deposited on the surface of the second main electrode 6, and the total silver concentration of the second electrolytic solution 4 was reduced to 1% or less.

【0027】さらに電解を継続すると第2電解液4の中
で亜硝酸が生成し始め、亜硝酸濃度が高くなるにつれて
銀の再溶解が進行するので、第2電解液4中の銀濃度が
低下した時点で第2電解液4の循環を停止し、電解を停
止すると電極上に析出した金属銀の脱落・溶解が始ま
り、15分程度で完全に脱落・溶解する。第2電解液4
の液量は全循環量の10%であるため、最終的に第2電
解液の銀濃度は0.5Mに達し、硝酸濃度は約2.5M
に低下する。
When the electrolysis is further continued, nitrous acid starts to be generated in the second electrolytic solution 4, and as the nitrous acid concentration increases, silver re-dissolution proceeds, so that the silver concentration in the second electrolytic solution 4 decreases. At this point, the circulation of the second electrolytic solution 4 is stopped, and when the electrolysis is stopped, the metallic silver deposited on the electrode starts falling off and dissolving, and completely falls off and dissolves in about 15 minutes. Second electrolyte 4
Is 10% of the total circulation volume, so that the silver concentration of the second electrolyte eventually reaches 0.5 M and the nitric acid concentration is about 2.5 M
To decline.

【0028】銀の濃度が高くなった第2電解液4は適当
な濃度の硝酸と混合して次の電解酸化工程バッチの第2
電解液4を調製する。本具体例において、第2電解液4
に含まれる銀を金属として副電極7に析出するために必
要とした電気量は理論電気量の1.2倍であった。
The second electrolytic solution 4 having an increased silver concentration is mixed with nitric acid of an appropriate concentration and mixed with the second electrolytic solution in the second electrolytic oxidation step batch.
An electrolyte 4 is prepared. In this specific example, the second electrolyte 4
The amount of electricity required to deposit the silver contained in the sub-electrode 7 as a metal was 1.2 times the theoretical amount of electricity.

【0029】本具体例によれば、以下の効果を得ること
ができる。電解酸化工程と主電極の極性を逆転した電解
還元工程を通じて常に正極となり、電気化学反応に寄与
する副電極を置くことにより、電解酸化工程の効率を高
め、電解還元工程で電解液中にAg(II)を存在せし
めて銀の析出を妨害する亜硝酸の生成を抑制し、電解液
中の銀濃度を低下させることができる。電解還元工程の
終期における電極電圧の変化から最適な終了時点を判断
できる。
According to this embodiment, the following effects can be obtained. Through the electrolytic oxidation step and the electrolytic reduction step in which the polarity of the main electrode is reversed, the cathode always becomes a positive electrode, and by placing a sub-electrode that contributes to the electrochemical reaction, the efficiency of the electrolytic oxidation step is increased. In the electrolytic reduction step, Ag ( In the presence of II), the generation of nitrous acid which hinders the precipitation of silver can be suppressed, and the silver concentration in the electrolytic solution can be reduced. The optimal end point can be determined from the change in the electrode voltage at the end of the electrolytic reduction step.

【0030】具体例1−1、具体例1−2と比較して電
解還元工程における電流効率を1.4倍向上させること
ができる。
The current efficiency in the electrolytic reduction step can be improved by 1.4 times as compared with the specific examples 1-1 and 1-2.

【0031】実施の形態2.図2を用いて、本発明の実
施の形態2による電解槽を以下に説明する。実施の形態
2による電解槽は、チタン製である電解槽容器1の中に
多孔性焼結セラミック筒状容器である隔膜2で隔離され
た第1電解液3の1L及び第2電解液4の1Lを有す
る。図示されていないが、電解液はそれぞれ外部の電解
液循環槽からポンプを経て電解槽容器1に循環される。
第1電解液3は循環容積が5L、濃度が6Mの硝酸溶液
であり、第2電解液4は電解酸化工程において循環容積
が5L、濃度が0.1Mの硝酸銀を含む濃度が6Mの硝
酸溶液であり、電解還元工程において循環容積が10
L、濃度が0.05Mの硝酸銀を含む濃度が3Mの硝酸
溶液である。
Embodiment 2 An electrolytic cell according to Embodiment 2 of the present invention will be described below with reference to FIG. The electrolytic cell according to the second embodiment is composed of 1 L of the first electrolytic solution 3 and 2 L of the second electrolytic solution 4 separated by a diaphragm 2 which is a porous sintered ceramic cylindrical container in an electrolytic cell container 1 made of titanium. Has 1L. Although not shown, the electrolytic solution is circulated from the external electrolytic solution circulating tank to the electrolytic cell container 1 via a pump.
The first electrolyte 3 is a nitric acid solution having a circulation volume of 5 L and a concentration of 6 M, and the second electrolyte 4 is a nitric acid solution having a circulation volume of 5 L and a concentration of 6 M containing silver nitrate having a concentration of 0.1 M in the electrolytic oxidation step. And the circulation volume is 10 in the electrolytic reduction step.
L, a 3M nitric acid solution containing 0.05M silver nitrate.

【0032】第1電解液3内に設置される第1主電極5
はチタンエキスパンドメッシュで筒状に製作され、有効
表面積は450cm2 である。第2電解液4内に設置さ
れる第2主電極6はチタンエキスパンドメッシュで筒状
に製作され、有効表面積は750cm2 であり、目的に
応じて白金メッキされる。副電極7は電解槽容器1の内
面で構成され、有効内表面積は950cm2 で、目的に
応じて白金メッキされ、第1主電極5又は第2主電極6
と接続される。主電極5,6間の隔膜を介しての電気抵
抗は0.07Ωであり、第2主電極6と副電極7の間の
電気抵抗は0.03Ωであった。
First main electrode 5 installed in first electrolytic solution 3
Is manufactured in a cylindrical shape with a titanium expanded mesh and has an effective surface area of 450 cm 2 . The second main electrode 6 installed in the second electrolyte 4 is made of a titanium expanded mesh in a cylindrical shape, has an effective surface area of 750 cm 2 , and is plated with platinum according to the purpose. The sub-electrode 7 is constituted by the inner surface of the electrolytic cell container 1, has an effective inner surface area of 950 cm 2 , is platinum-plated according to the purpose, and has the first main electrode 5 or the second main electrode 6.
Connected to The electric resistance across the diaphragm between the main electrodes 5 and 6 was 0.07Ω, and the electric resistance between the second main electrode 6 and the sub-electrode 7 was 0.03Ω.

【0033】具体例2−1 本具体例においては電解槽容器1の内面で構成される副
電極7が第2主電極6と同じように白金メッキされてい
る。第1主電極5は必ずしも白金メッキを必要としな
い。電解酸化工程において、第1主電極5を負極とし、
第2主電極6を正極とし、副電極7を第2主電極6と接
続して正極として正負電極間に13.4Aの直流電流を
流すと電極端子間電圧は1.9Vとなった。このとき、
第1電解液3からは酸化窒素が発生し、第2電解液4中
においてはAg(II)が生成し、Ag(II)飽和濃
度に達するまでの電解酸化における電流効率は80%に
なった。
Specific Example 2-1 In this specific example, the sub-electrode 7 formed on the inner surface of the electrolytic cell container 1 is plated with platinum in the same manner as the second main electrode 6. The first main electrode 5 does not necessarily require platinum plating. In the electrolytic oxidation step, the first main electrode 5 is used as a negative electrode,
When the second main electrode 6 was used as a positive electrode and the sub-electrode 7 was connected to the second main electrode 6 and a DC current of 13.4 A was passed between the positive and negative electrodes as a positive electrode, the voltage between the electrode terminals became 1.9 V. At this time,
Nitrogen oxide was generated from the first electrolytic solution 3, Ag (II) was generated in the second electrolytic solution 4, and the current efficiency in electrolytic oxidation until the saturated concentration of Ag (II) reached 80%. .

【0034】電解還元工程において、主電極の極性を保
持し、電解槽容器8を第1主電極5と接続して極性を負
極としたところ電極端子間電圧は2.4Vとなり、第2
電解液3中にAg(II)が残留したままでAg(I)
濃度が低下した。第2電解液4中のAg(II)濃度は
時間経過につれて低下し、第2電解液4の全銀濃度が1
0%になった時点で電極端子電圧が急激に3.0Vにま
で増加するに伴って全銀濃度は1%以下に低下した。
In the electrolytic reduction step, when the polarity of the main electrode is maintained and the electrolytic cell vessel 8 is connected to the first main electrode 5 to make the polarity negative, the voltage between the electrode terminals becomes 2.4 V and the second
Ag (I) with Ag (II) remaining in electrolyte 3
The concentration has dropped. The Ag (II) concentration in the second electrolytic solution 4 decreases with time, and the total silver concentration of the second electrolytic solution 4 becomes 1
At 0%, the total silver concentration was reduced to 1% or less as the electrode terminal voltage rapidly increased to 3.0V.

【0035】さらに電解を継続すると第2電解液4の中
で亜硝酸が生成し始め、亜硝酸濃度が高くなるにつれて
銀の再溶解が進行するので、第2電解液4中の銀濃度が
低下した時点で第2電解液4の循環を停止し、電解を停
止すると電極上に析出した金属銀の脱落・溶解が始ま
り、15分程度で完全に脱落・溶解する。第2電解液4
の液量は全循環量の10%であるため、最終的に第2電
解液4の銀濃度は0.5Mに達し、硝酸濃度は約2.5
Mに低下する。
When the electrolysis is further continued, nitrous acid starts to be generated in the second electrolytic solution 4, and as the nitrite concentration increases, silver re-dissolution proceeds, so that the silver concentration in the second electrolytic solution 4 decreases. At this point, the circulation of the second electrolytic solution 4 is stopped, and when the electrolysis is stopped, the metallic silver deposited on the electrode starts falling off and dissolving, and completely falls off and dissolves in about 15 minutes. Second electrolyte 4
Is 10% of the total circulation amount, so that the silver concentration of the second electrolytic solution 4 finally reaches 0.5 M and the nitric acid concentration is about 2.5
M.

【0036】銀の濃度が高くなった第2電解液4は適当
な濃度の硝酸と混合して次の電解酸化工程バッチの第2
電解液4を調製する。本具体例において、第2電解液4
に含まれる銀を金属として副電極7に析出して除去する
ために必要とした電気量は理論電気量の1.7倍であっ
た。
The second electrolytic solution 4 having an increased silver concentration is mixed with nitric acid of an appropriate concentration and mixed with the second electrolytic solution in the second electrolytic oxidation step batch.
An electrolyte 4 is prepared. In this specific example, the second electrolyte 4
The amount of electricity required for depositing and removing silver contained in the sub-electrode 7 as a metal was 1.7 times the theoretical amount of electricity.

【0037】本具体例によれば、具体例1−1及び具体
例1−2の効果に加えて以下の効果を得ることができ
る。核分裂性物質の取り扱いに係わり臨界形状管理を可
能とする、直径が限定された円筒形の幾何学的形状の中
で電解槽を容易に構成させることができる。
According to this example, the following effects can be obtained in addition to the effects of the examples 1-1 and 1-2. The electrolytic cell can be easily configured in a cylindrical geometry with a limited diameter, which allows for critical shape management in relation to the handling of fissile material.

【0038】具体例2−2 本具体例においては第1主電極5、第2主電極6並びに
電解槽容器1の内面で構成される副電極7が全て白金メ
ッキされている。電解酸化工程において、第1主電極5
を負極とし、第2主電極6を正極とし、副電極7を第2
主電極6と接続して正極として正負電極間に13.4A
の直流電流を流すと電極端子間電圧は1.9Vとなり、
第1電解液3からは酸化窒素を発生し、第2電解液4中
ではAg(II)を生成した。Ag(II)飽和濃度に
達するまでの電解酸化における電流効率は80%になっ
た。電解還元工程において、主電極の極性を変換して第
1主電極5を正極とし、第2主電極6と副電極7を接続
して共に負極としたところ電極端子間電圧は2.4Vと
なり、第2電解液4中にAg(II)が残留したままで
Ag(I)濃度が低下した。
Specific Example 2-2 In this specific example, the first main electrode 5, the second main electrode 6, and the sub-electrode 7 formed on the inner surface of the electrolytic cell container 1 are all plated with platinum. In the electrolytic oxidation step, the first main electrode 5
Is a negative electrode, the second main electrode 6 is a positive electrode, and the sub-electrode 7 is a second
13.4 A between positive and negative electrodes as positive electrode connected to main electrode 6
When a DC current of? Is applied, the voltage between the electrode terminals becomes 1.9 V,
Nitrogen oxide was generated from the first electrolytic solution 3, and Ag (II) was generated in the second electrolytic solution 4. The current efficiency in electrolytic oxidation until the Ag (II) saturation concentration was reached was 80%. In the electrolytic reduction step, the polarity of the main electrode is changed to make the first main electrode 5 a positive electrode, and the second main electrode 6 and the sub-electrode 7 are connected to form a negative electrode. Ag (I) concentration decreased while Ag (II) remained in second electrolytic solution 4.

【0039】第2電解液4中のAg(II)濃度は時間
経過につれて低下し、第2電解液4の全銀濃度が10%
になった時点で電極端子電圧が急激に3.0Vにまで増
加するに伴って全銀濃度は1%以下に低下した。さらに
電解を継続すると第2電解液4の中で亜硝酸が生成し始
め、亜硝酸濃度が高くなるにつれて銀の再溶解が進行す
るので、第2電解液4中の銀濃度が低下した時点で第2
電解液4の循環を停止し、電解を停止すると電極上に析
出した金属銀の脱落・溶解が始まり、15分程度で完全
に脱落・溶解する。第2電解液4の液量は全循環量の1
0%であるため、最終的に第2電解液の銀濃度は0.5
Mに達し、硝酸濃度は約2.5Mに低下する。銀の濃度
が高くなった第2電解液4は適当な濃度の硝酸と混合し
て次の電解酸化工程バッチの第2電解液4を調製する。
本具体例において、第2電解液4に含まれる銀を金属と
して副電極7に析出して除去するために必要とした電気
量は理論電気量の1.2倍であった。
The Ag (II) concentration in the second electrolytic solution 4 decreases with time, and the total silver concentration of the second electrolytic solution 4 becomes 10%.
At this point, the total silver concentration decreased to 1% or less as the electrode terminal voltage rapidly increased to 3.0 V. When the electrolysis is further continued, nitrous acid starts to be generated in the second electrolytic solution 4, and as the nitrite concentration increases, the silver re-dissolution proceeds, so that when the silver concentration in the second electrolytic solution 4 decreases, Second
When the circulation of the electrolytic solution 4 is stopped and the electrolysis is stopped, the metallic silver deposited on the electrode begins to fall off and dissolve, and completely falls off and dissolves in about 15 minutes. The amount of the second electrolyte 4 is 1 of the total circulation amount.
Since it is 0%, the silver concentration of the second electrolyte finally becomes 0.5%.
M and the nitric acid concentration drops to about 2.5M. The second electrolytic solution 4 having an increased silver concentration is mixed with nitric acid of an appropriate concentration to prepare a second electrolytic solution 4 for the next electrolytic oxidation step batch.
In this specific example, the amount of electricity required to precipitate and remove silver contained in the second electrolytic solution 4 as a metal on the sub-electrode 7 was 1.2 times the theoretical amount of electricity.

【0040】本具体例によれば、具体例1−3の効果に
加えて以下の効果を得ることができる。核分裂性物質の
取り扱いに係わり臨界形状管理を可能とする、直径が限
定された円筒形の幾何学的形状の中で電解槽を容易に構
成させることができる。電解還元工程における電流効率
を具体例2−1と比較して1.4倍向上させることがで
きる。
According to this embodiment, the following effects can be obtained in addition to the effects of the embodiments 1-3. The electrolytic cell can be easily configured in a cylindrical geometry with a limited diameter, which allows for critical shape management in relation to the handling of fissile material. The current efficiency in the electrolytic reduction step can be improved by a factor of 1.4 as compared with the specific example 2-1.

【0041】[0041]

【発明の効果】以上のように、この発明によれば、隔膜
を隔てて相対してそれぞれ負極と正極となる一対の主電
極からなる電解槽において、正極となる主電極と同じ電
解液中に極性を切り替えられる一つの副電極を設置し、
正極となる主電極上でAg(II)を生成させる傍ら副
電極の極性を負極とすることによって副電極の表面に電
解還元的に銀を金属として析出させるので、電解酸化工
程において副電極を正極とすることによって電解酸化工
程を阻害せず、電解還元工程においては負極にすること
によって銀を金属として析出させることができる。具体
的説明すると、電解酸化工程において、正極となる主電
極は電気化学的触媒物質としては白金を保持しているこ
とがAg(I)をAg(II)に電解酸化するために特
に有効である。副電極が電気化学的触媒物質を保持して
いないバルブ金属であれば、通常の電位の範囲で正極と
なった場合には不働体化してAg(I)の酸化はおろか
酸素の発生にも寄与することはないが、硝酸電解液中で
負極となった場合には白金よりやや高い過電圧の下に硝
酸還元反応や銀析出反応に寄与する。そこで、請求項1
の発明は副電極の極性を負極とすることによって副電極
の表面に電解還元的に銀を金属として析出させ、同時に
正極となっている主電極の表面において電解液中でAg
(I)が存在している限り電解酸化的にAg(I)を酸
化してAg(II)を生成させるものである。
As described above, according to the present invention, in an electrolytic cell comprising a pair of main electrodes serving as a negative electrode and a positive electrode facing each other across a diaphragm, the same electrolytic solution as the main electrode serving as a positive electrode is used. Install one sub-electrode that can switch polarity,
Since Ag (II) is generated on the main electrode serving as the positive electrode, silver is electrolytically reduced and silver is deposited on the surface of the sub-electrode by setting the polarity of the sub-electrode to the negative electrode. By doing so, silver can be deposited as a metal by using a negative electrode in the electrolytic reduction step without hindering the electrolytic oxidation step. More specifically, in the electrolytic oxidation step, it is particularly effective that the main electrode serving as the positive electrode holds platinum as an electrochemical catalyst material in order to electrolytically oxidize Ag (I) to Ag (II). . If the sub-electrode is a valve metal that does not hold an electrochemical catalytic substance, when it becomes a positive electrode in the normal potential range, it becomes passivated and contributes not only to oxidation of Ag (I) but also to generation of oxygen However, when a negative electrode is formed in a nitric acid electrolyte, it contributes to a nitrate reduction reaction and a silver precipitation reaction under an overvoltage slightly higher than that of platinum. Therefore, claim 1
In the invention of the present invention, the polarity of the sub-electrode is set to a negative electrode, and silver is electrolytically reduced to deposit silver as a metal on the surface of the sub-electrode.
As long as (I) is present, Ag (I) is oxidized electrolytically to produce Ag (II).

【0042】また、電解液中に正極となる主電極が存在
することにより、電解液中に銀が存在する限りAg(I
I)を存在せしめて金属銀の析出を阻害する亜硝酸の存
在を妨げ、結果的に電解液中の銀濃度を著しく低下させ
ることが可能となる。つまり、Ag(II)の生成速度
はAg(I)の濃度に比例し、Ag(II)はAg(I
I)濃度の二乗に比例しAg(I)濃度に反比例する速
度で水と反応して酸素を発生し、Ag(I)に戻るので
Ag(I)濃度に対するAg(II)飽和濃度の比率は
50%を超えることはない。Ag(I)濃度が低下する
につれてAg(II)濃度も低下し、全Ag濃度が低下
する。Ag(II)の存在はAg(I)を負極となる副
電極に金属銀として析出させる電解還元反応を阻害する
ことなく、むしろ負極となる副電極で副反応として生成
する亜硝酸と反応し、亜硝酸の蓄積を防止して電解液の
銀濃度が極限に低下するまで銀の析出・除去を継続させ
る。
Further, since the main electrode serving as a positive electrode is present in the electrolytic solution, Ag (I) is used as long as silver is present in the electrolytic solution.
The presence of I) prevents the presence of nitrous acid, which inhibits the deposition of metallic silver, and consequently makes it possible to significantly reduce the silver concentration in the electrolytic solution. That is, the production rate of Ag (II) is proportional to the concentration of Ag (I), and Ag (II) is converted to Ag (I).
I) reacts with water at a rate proportional to the square of the concentration and inversely proportional to the Ag (I) concentration to generate oxygen, and returns to Ag (I); therefore, the ratio of the Ag (II) saturated concentration to the Ag (I) concentration is Should not exceed 50%. As the Ag (I) concentration decreases, the Ag (II) concentration also decreases, and the total Ag concentration decreases. The presence of Ag (II) does not hinder the electrolytic reduction reaction of depositing Ag (I) as metallic silver on the sub-electrode serving as the negative electrode, but rather reacts with nitrous acid generated as a side reaction at the sub-electrode serving as the negative electrode, Preventing the accumulation of nitrous acid and continuing the deposition and removal of silver until the silver concentration of the electrolytic solution is extremely reduced.

【0043】さらに、電解還元工程の最終段階では電位
の変動があり最適な終了時期を判断することができる効
果がある。Ag(II)はAgNO3 +錯体であると知ら
れているが、Ag(I)濃度が最終的に低下するとAg
NO3 +錯体がAg(I)よりやや貴側の析出電位におい
て直接金属銀に還元して副電極上に析出する。電解液中
にAg(II)が存在しなくなると副電極上で硝酸の還
元反応が起こり、亜硝酸が生成して一旦析出した金属銀
は溶解を開始する。従って、AgNO3 +錯体が直接金属
銀に還元して副電極上に析出するやや貴側の析出電位が
現れた時点を目安にして電解還元を停止することによっ
て電解液中の銀濃度を最も低くすることができる。一対
の主電極の間には正極となる主電極と副電極の間の電解
液より約2倍高いオーム抵抗を有する隔膜があり、副電
極に流れて電解還元に寄与する電気量は正極となる主電
極に流れて電解酸化に寄与する電気量の約2/3であ
る。
Further, there is the effect that the potential is fluctuated in the final stage of the electrolytic reduction step, and the optimal end time can be determined. Ag (II) is known to be an AgNO 3 + complex, but when the Ag (I) concentration eventually decreases, Ag (II) is
The NO 3 + complex is directly reduced to metallic silver at a deposition potential slightly more noble than Ag (I) and is deposited on the sub-electrode. When Ag (II) is no longer present in the electrolyte, a reduction reaction of nitric acid occurs on the sub-electrode, nitrous acid is generated, and the once precipitated metallic silver starts to dissolve. Therefore, the AgNO 3 + complex is directly reduced to metallic silver and deposited on the sub-electrode, and the electrolytic reduction is stopped at the time when the noble-side deposition potential appears as a guide to reduce the silver concentration in the electrolytic solution to the lowest. can do. Between the pair of main electrodes, there is a diaphragm having an ohmic resistance about twice as high as the electrolyte between the main electrode and the sub-electrode, which is a positive electrode, and the amount of electricity flowing to the sub-electrode and contributing to electrolytic reduction becomes a positive electrode This is about 2/3 of the amount of electricity flowing to the main electrode and contributing to electrolytic oxidation.

【0044】この発明によれば、一つの副電極が正極と
なる主電極と同じ電気化学的触媒物質で構成されている
ことにより、副電極の極性を正極とした場合に前記副電
極の表面において前記正極となる主電極と同じようにA
g(II)を生成させるので、請求項1の発明によって
得られる効果を生じると共に、副電極が正極となる主電
極と同じ電気化学的触媒物質で構成されるため、電解酸
化工程においてAg(II)の生成に寄与し、結果的に
Ag(II)の生成に係わる電流効率を高める効果があ
る。つまり、副電極が同じ電解液中にある主電極と同一
の電気化学的触媒物質で構成されているために、主電極
と副電極が同時に正極となった場合に副電極の表面にお
いてもAg(I)のAg(II)への酸化反応が起こり
電流が流れるため主電極における電流密度が低下してA
g(II)生成に係わる電流効率が高くなる。この結
果、電解酸化工程において必要なAg(II)量を生成
するために消費される電気量が低減され、また、Ag
(I)をAg(II)に電解酸化するために有効である
白金のような電気化学的触媒物質は電解還元反応の過電
圧を低下させて消費電力が低減される。
According to the present invention, since one sub-electrode is made of the same electrochemical catalytic substance as the main electrode serving as the positive electrode, when the polarity of the sub-electrode is the positive electrode, A is the same as the main electrode serving as the positive electrode.
Since g (II) is produced, the effect obtained by the invention of claim 1 is produced, and since the sub-electrode is made of the same electrochemical catalyst material as the main electrode serving as the positive electrode, Ag (II) is used in the electrolytic oxidation step. ), And consequently has the effect of increasing the current efficiency associated with the generation of Ag (II). That is, since the sub-electrode is made of the same electrochemical catalyst substance as the main electrode in the same electrolytic solution, when the main electrode and the sub-electrode simultaneously become the positive electrode, Ag ( Oxidation reaction of I) to Ag (II) occurs and current flows, so that the current density at the main electrode decreases and A
The current efficiency related to g (II) generation increases. As a result, the amount of electricity consumed to generate the required amount of Ag (II) in the electrolytic oxidation step is reduced, and the amount of Ag (II) is reduced.
An electrochemical catalytic substance such as platinum, which is effective for electrolytic oxidation of (I) to Ag (II), reduces the overvoltage of the electrolytic reduction reaction and reduces power consumption.

【0045】この発明によれば、隔膜を隔てて相対し、
相互に極性が変換できる一対の主電極と、主電極の一つ
と同じ電解液中にあり、主電極と同じ電気化学的触媒物
質で構成され、常に正極である一つの副電極とからなる
ことにより、硝酸銀を含む硝酸溶液中で極性を変換して
負極となった主電極の表面に電解還元的に銀を金属とし
て析出させ、同時に正極である副電極の表面において電
解酸化的にAg(I)を酸化してAg(II)を生成さ
せるので、一対の主電極の極性を相互に変換するが主電
極と同じ電気化学的触媒物質で構成される副電極は常に
正極に保つため、電解酸化工程と電解還元工程を通して
請求項1及び請求項2の発明によって得られる効果を生
じると共に、負極となる主電極における金属銀を析出に
係わる電流効率を高める効果がある。この場合に全ての
電極がAg(I)を酸化してAg(II)を生成するた
めに有効な電気化学的触媒物質(白金など)で構成され
ている必要がある。Ag(I)とAg(II)が共存す
る電解液中で負極表面に金属銀が析出するのは段落00
の発明と同じである。一対の主電極の間には負極となる
主電極と副電極の間の電解液より約2倍高いオーム抵抗
を有する隔膜があり、副電極に流れて電解酸化に寄与す
る電気量は負極に流れて電解還元に寄与する電気量の約
2/3である。
According to the present invention, opposing each other across the diaphragm,
By having a pair of main electrodes whose polarity can be mutually converted and one sub-electrode that is in the same electrolytic solution as one of the main electrodes, is composed of the same electrochemical catalyst substance as the main electrode, and is always a positive electrode In a nitric acid solution containing silver nitrate, the polarity is converted and silver is electrolytically reduced and silver is deposited as a metal on the surface of the main electrode which has become the negative electrode. At the same time, Ag (I) is electrolytically oxidized on the surface of the sub-electrode which is the positive electrode. Is oxidized to produce Ag (II), so that the polarities of the pair of main electrodes are mutually converted, but the sub-electrode made of the same electrochemical catalyst material as the main electrode is always kept at the positive electrode. In addition to the effects obtained by the first and second aspects of the present invention through the electrolytic reduction step, the present invention has the effect of increasing the current efficiency relating to the deposition of metallic silver on the main electrode serving as the negative electrode. In this case, all the electrodes need to be made of an electrochemical catalyst material (such as platinum) effective for oxidizing Ag (I) to produce Ag (II). In the electrolyte in which Ag (I) and Ag (II) coexist, the deposition of metallic silver on the negative electrode surface is described in paragraph 00.
It is the same as the invention of the above. Between the pair of main electrodes, there is a diaphragm having an ohmic resistance that is about twice higher than the electrolyte between the main electrode and the sub-electrode, which is the negative electrode. About 2/3 of the amount of electricity that contributes to electrolytic reduction.

【0046】この発明によれば、隔膜は円筒形容器であ
って、円筒形の電解槽容器の中心に位置し、負極となる
主電極は隔膜の内側に、正極となる主電極は隔膜の外側
に各々設けられ、極性を切り替えられる一つの副電極は
正極となる主電極と前記電解槽容器内表面との間にある
ことにより、直径が限定された円筒形の幾何学的形状の
中で電解槽を構成させるので、電解酸化工程と電解還元
工程を通して請求項1及び請求項2の発明によって得ら
れる効果を生じると共に、核分裂性物質の取り扱いに係
わり臨界形状管理を可能とする、直径が限定された円筒
形の幾何学的形状の中で電解槽を構成させることができ
る効果がある。また、同心円状に構成される電解槽にお
いて銀を析出させる副電極の表面積を最も大きくするこ
とができる効果がある。
According to the present invention, the diaphragm is a cylindrical container, and is located at the center of the cylindrical electrolytic cell container. The main electrode serving as the negative electrode is inside the diaphragm and the main electrode serving as the positive electrode is outside the diaphragm. Each of the sub-electrodes, each of which can be switched in polarity, is located between the main electrode serving as a positive electrode and the inner surface of the electrolytic cell vessel, so that the electrolytic solution can be formed in a cylindrical geometric shape having a limited diameter. Since the tank is constituted, the effects obtained by the inventions of claim 1 and claim 2 are produced through the electrolytic oxidation step and the electrolytic reduction step, and the diameter is limited to enable the critical shape control related to the handling of fissile material. There is an effect that the electrolytic cell can be configured in a cylindrical geometric shape. Also, there is an effect that the surface area of the sub-electrode for depositing silver in the concentric electrolytic cell can be maximized.

【0047】この発明によれば、隔膜が円筒形容器であ
って、円筒形の電解槽容器の中心に位置し、負極となる
主電極は隔膜の内側に、正極となる主電極は隔膜の外側
に各々設けられ、極性を切り替えられる一つの副電極は
電解槽容器の内表面で構成することにより、直径が限定
された円筒形の幾何学的形状の中で電解槽を容易に構成
させるので、電解酸化工程と電解還元工程を通して請求
項1及び請求項2の発明によって得られる効果を生じる
と共に、核分裂性物質の取り扱いに係わり臨界形状管理
を可能とする、直径が限定された円筒形の幾何学的形状
の中で電解槽を容易に構成させることができる効果があ
る。さらに、限定された空間内で副電極の配置を必要と
しない。この場合、電解槽の容器の材質は高酸化性の電
解液中で耐食性のあるバルブ金属(Ti,Zr,Nb,
Ta等)で構成し、このようなバルブ金属は負極として
は電解還元的反応に寄与するが、通常の電位における正
極としては不働体化して電解酸化的反応に寄与しない。
バルブ金属の表面に正極と同じ電気化学的触媒物質を付
着させた場合にのみ正極と同じ電解酸化的反応に寄与す
ることができるのである。
According to the present invention, the diaphragm is a cylindrical container, and the diaphragm is located at the center of the cylindrical electrolytic cell container. The main electrode serving as the negative electrode is inside the diaphragm and the main electrode serving as the positive electrode is outside the diaphragm. Each of the sub-electrodes, each of which is provided with a switchable polarity, is formed on the inner surface of the electrolytic cell container, so that the electrolytic cell can be easily configured in a cylindrical geometric shape having a limited diameter. Cylindrical geometry with a limited diameter that produces the effects obtained by the inventions of claims 1 and 2 through an electrolytic oxidation step and an electrolytic reduction step, and enables critical shape control related to the handling of fissile material. There is an effect that the electrolytic cell can be easily configured in the target shape. Further, the arrangement of the sub-electrode in a limited space is not required. In this case, the material of the container of the electrolytic cell is made of a valve metal (Ti, Zr, Nb,
Ta or the like, and such a valve metal contributes to the electrolytic reduction reaction as a negative electrode, but becomes passive as a positive electrode at a normal potential and does not contribute to the electrolytic oxidation reaction.
Only when the same electrochemical catalytic substance as the positive electrode is attached to the surface of the valve metal, it can contribute to the same electrolytic oxidation reaction as the positive electrode.

【0048】この発明によれば、隔膜が円筒形容器であ
って、円筒形の電解槽容器の中心に位置し、隔膜の外側
にある主電極と同じ電解液中にあり、常に正極である一
つの副電極が主電極と電解槽容器内表面との間にあるの
で、電解酸化工程と電解還元工程を通して請求項1、請
求項2及び請求項3の発明によって得られる効果を生じ
ると共に、核分裂性物質の取り扱いに係わり臨界形状管
理を可能とする、直径が限定された円筒形の幾何学的形
状の中で電解槽を構成させることができる効果がある。
According to the present invention, the diaphragm is a cylindrical container, is located at the center of the cylindrical electrolytic cell container, is in the same electrolytic solution as the main electrode outside the diaphragm, and is always the positive electrode. Since the two sub-electrodes are located between the main electrode and the inner surface of the electrolytic cell vessel, the effects obtained by the inventions of claims 1, 2 and 3 can be obtained through the electrolytic oxidation step and the electrolytic reduction step, and the fissile There is an effect that the electrolytic cell can be configured in a cylindrical geometric shape having a limited diameter, which enables critical shape management in relation to handling of a substance.

【0049】この発明によれば、隔膜が円筒形容器であ
って、円筒形の電解槽容器の中心に位置し、隔膜の外側
にある主電極と同じ電解液中にあり、常に正極である一
つの副電極が電解槽容器の内表面で構成することによ
り、円筒形の電解槽の中心から、それぞれ筒状の、相互
に極性を変換できる主電極、隔膜、主電極、常に正極に
保たれる副電極となる電解槽容器表面が同心円状に配置
させることから、電解酸化工程と電解還元工程を通して
請求項1、請求項2及び請求項3の発明によって得られ
る効果を生じると共に、核分裂性物質の取り扱いに係わ
り臨界形状管理を可能とする、直径が限定された円筒形
の幾何学的形状の中で電解槽を容易に構成することがで
きる効果がある。さらに、限定された空間内で副電極の
配置を必要としない。この場合、電解槽の容器の材質を
高酸化性の電解液中で耐食性のあるバルブ金属(Ti,
Zr,Nb,Ta等)で構成する。これらバルブ金属は
通常の電位における正極としては不働体化して電解酸化
的反応に寄与しないが、バルブ金属の表面に主電極と同
じ電気化学的触媒物質を付着させた場合にのみ正極とし
て電解酸化的反応に寄与することができるのである。
According to the present invention, the diaphragm is a cylindrical container, which is located at the center of the cylindrical electrolytic cell container, is in the same electrolytic solution as the main electrode outside the diaphragm, and is always the positive electrode. The two sub-electrodes are formed on the inner surface of the electrolytic cell container, so that the main electrode, the diaphragm, and the main electrode, which are mutually cylindrical and can exchange polarities, are always kept at the positive electrode from the center of the cylindrical electrolytic cell. Since the surface of the electrolytic cell container serving as the sub-electrode is arranged concentrically, the effects obtained by the inventions of claims 1, 2 and 3 are produced through the electrolytic oxidation step and the electrolytic reduction step, and the fissile substance is removed. There is an effect that the electrolytic cell can be easily configured in a cylindrical geometric shape with a limited diameter, which enables critical shape management related to handling. Further, the arrangement of the sub-electrode in a limited space is not required. In this case, the material of the container of the electrolytic cell is made of a corrosion-resistant valve metal (Ti,
Zr, Nb, Ta, etc.). These valve metals passivate as a positive electrode at normal potential and do not contribute to the electro-oxidative reaction, but only when the same electrochemical catalytic substance as the main electrode is attached to the surface of the valve metal, the electro-oxidative It can contribute to the reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による電解槽からなる装
置の構成図である。
FIG. 1 is a configuration diagram of an apparatus including an electrolytic cell according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2による電解槽からなる装
置の構成図である。
FIG. 2 is a configuration diagram of an apparatus including an electrolytic cell according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽容器、2 隔膜、3 第1電解液、4 第2
電解液、5 第1主電極、6 第2主電極、7 副電
極。
1 electrolytic cell container, 2 diaphragm, 3 first electrolytic solution, 4 second
Electrolyte, 5 first main electrode, 6 second main electrode, 7 sub-electrode.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 隔膜を隔てて相対して正極と負極になる
一対の主電極からなる電解槽において、 正極となる主電極と同じ電解液中に極性を切り替えられ
る一つの副電極があることを特徴とする電解槽。
1. An electrolytic cell comprising a pair of main electrodes, which become a positive electrode and a negative electrode facing each other across a diaphragm, has one sub-electrode whose polarity can be switched in the same electrolytic solution as the main electrode which becomes a positive electrode. Characteristic electrolytic cell.
【請求項2】 一つの副電極が同じ電解液中にある主電
極と同一の電気化学的触媒物質で構成されていることを
特徴とする請求項1記載の電解槽。
2. The electrolytic cell according to claim 1, wherein one sub-electrode is made of the same electrochemical catalytic substance as the main electrode in the same electrolytic solution.
【請求項3】 隔膜を隔てて相対し、相互に極性が変換
できる一対の主電極と、主電極の一つと同じ電解液中に
あり、常に正極である一つの副電極とからなり、前記一
対の主電極と前記一つの副電極が同一の電気化学的触媒
物質で構成されていることを特徴とする電解槽。
3. A pair of main electrodes which are opposed to each other across a diaphragm and whose polarities can be mutually converted, and one sub-electrode which is in the same electrolytic solution as one of the main electrodes and is always a positive electrode. Wherein the main electrode and the one sub-electrode are made of the same electrochemical catalyst material.
【請求項4】 隔膜は円筒形容器であって、円筒形の電
解槽容器の中心に位置し、負極となる主電極は前記隔膜
の内側に、正極となる主電極は前記隔膜の外側に各々設
けられ、極性を切り替えられる一つの副電極は前記正極
となる主電極と前記電解槽容器内表面との間にあること
を特徴とする請求項1または請求項2記載の電解槽。
4. The diaphragm is a cylindrical container, and is located at the center of the cylindrical electrolytic cell container. The main electrode serving as a negative electrode is inside the diaphragm and the main electrode serving as a positive electrode is outside the diaphragm. 3. The electrolytic cell according to claim 1, wherein the one sub-electrode provided and whose polarity can be switched is located between the main electrode serving as the positive electrode and the inner surface of the electrolytic cell container. 4.
【請求項5】 隔膜が円筒形容器であって、円筒形の電
解槽容器の中心に位置し、負極となる主電極は前記隔膜
の内側に、正極となる主電極は前記隔膜の外側に各々設
けられ、極性を切り替えられる一つの副電極は前記電解
槽容器の内表面で構成されることを特徴とする請求項1
または請求項2記載の電解槽。
5. The diaphragm is a cylindrical container, and is located at the center of the cylindrical electrolytic cell container. A main electrode serving as a negative electrode is provided inside the diaphragm, and a main electrode serving as a positive electrode is provided outside the diaphragm. The one sub-electrode provided and switchable in polarity is constituted by an inner surface of the electrolytic cell container.
Or the electrolytic cell according to claim 2.
【請求項6】 隔膜が円筒形容器であって、円筒形の電
解槽容器の中心に位置し、前記隔膜の外側にある前記主
電極と同じ電解液中にあり、常に正極である一つの副電
極が前記主電極と前記電解槽容器内表面との間にあるこ
とを特徴とする請求項3記載の電解槽。
6. The diaphragm is a cylindrical container, which is located at the center of the cylindrical electrolytic cell container, is in the same electrolytic solution as the main electrode outside the diaphragm, and always has one sub-electrode which is a positive electrode. The electrolytic cell according to claim 3, wherein an electrode is provided between the main electrode and the inner surface of the electrolytic cell container.
【請求項7】 隔膜が円筒形容器であって、円筒形の電
解槽容器の中心に位置し、前記隔膜の外側にある前記主
電極と同じ電解液中にあり、常に正極である一つの副電
極が前記電解槽容器の内表面で構成されることを特徴と
する請求項3記載の電解槽。
7. A diaphragm, wherein the diaphragm is a cylindrical container, which is located at the center of the cylindrical electrolytic cell container, is in the same electrolyte as the main electrode outside the diaphragm, and is always a positive electrode. The electrolytic cell according to claim 3, wherein an electrode is constituted by an inner surface of the electrolytic cell container.
JP11226640A 1999-08-10 1999-08-10 Electrolytic cell Pending JP2001049480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11226640A JP2001049480A (en) 1999-08-10 1999-08-10 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226640A JP2001049480A (en) 1999-08-10 1999-08-10 Electrolytic cell

Publications (1)

Publication Number Publication Date
JP2001049480A true JP2001049480A (en) 2001-02-20

Family

ID=16848358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226640A Pending JP2001049480A (en) 1999-08-10 1999-08-10 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP2001049480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054982A (en) * 2013-09-11 2015-03-23 アサヒプリテック株式会社 ELECTROLYTIC PURIFICATION APPARATUS OF Ag AND ELECTROLYTIC PURIFICATION METHOD OF Ag USING THE SAME APPARATUS
JP2017155343A (en) * 2017-06-15 2017-09-07 アサヒプリテック株式会社 Ag ELECTROLYTIC REFINING DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054982A (en) * 2013-09-11 2015-03-23 アサヒプリテック株式会社 ELECTROLYTIC PURIFICATION APPARATUS OF Ag AND ELECTROLYTIC PURIFICATION METHOD OF Ag USING THE SAME APPARATUS
JP2017155343A (en) * 2017-06-15 2017-09-07 アサヒプリテック株式会社 Ag ELECTROLYTIC REFINING DEVICE

Similar Documents

Publication Publication Date Title
Wen et al. Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides
EP0455353B1 (en) Cathode element with simultaneously codeposited noble metal/base metal and method for making the same
EP2419382B1 (en) Removal of metals from water
RU2568546C2 (en) Anode for electroextraction and method of electroextraction with its use
Bertoncello et al. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti
JPH0864223A (en) Electrolyte for vanadium redox flow type battery
US4086157A (en) Electrode for electrochemical processes
EP1739208B1 (en) Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
CA1169020A (en) Aqueous electrowinning of metals using fuel oxidizable at the anode
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US4470894A (en) Nickel electrodes for water electrolyzers
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
JP2001049480A (en) Electrolytic cell
Wen et al. The redox behavior of electroless Ni/PTFE deposits in KOH
Hayes et al. The preparation and behaviour of magnetite anodes
JPH06192873A (en) Gas electrode and its preparation
KR100797173B1 (en) Metal oxide electrode catalyst
US5545306A (en) Method of producing an electrolytic electrode
JP3004431B2 (en) Zinc anode active material
Newbery LXXV.—Overvoltage tables. Part I. Cathodic overvoltages
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
CN111559783A (en) Method for preparing novel tin-antimony electrode
JP2014185366A (en) Method and apparatus for platinum recovery
JP2908540B2 (en) Chrome plating method