JP2001043740A - Overhead transmission line - Google Patents

Overhead transmission line

Info

Publication number
JP2001043740A
JP2001043740A JP11213627A JP21362799A JP2001043740A JP 2001043740 A JP2001043740 A JP 2001043740A JP 11213627 A JP11213627 A JP 11213627A JP 21362799 A JP21362799 A JP 21362799A JP 2001043740 A JP2001043740 A JP 2001043740A
Authority
JP
Japan
Prior art keywords
wire
aluminum
transmission line
steel
twisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11213627A
Other languages
Japanese (ja)
Inventor
Kazuo Yokoyama
一雄 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP11213627A priority Critical patent/JP2001043740A/en
Publication of JP2001043740A publication Critical patent/JP2001043740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overhead transmission line that can effectively realize suppression of looseness, has no difficulty regarding manufacturing of electric wire, does not break the twisting state of a strand during a stringing work or the like, and is moreover inexpensive. SOLUTION: Six aluminum strands 12, for example, formed by concentrically twisting aluminum wires 3 around central steel strands (tension member strands) 2 are twisted with twisting factor not less than 0.7% to constitute this overhead transmission line 11. Thus, the equivalent effect that secures sufficient excess length for the aluminum wires 3 is provided, the steel strands 2 carry almost all the tension, the aluminum wires 3 are hardly acted by the tension. Therefore, a stringing design can be achieved using elastic coefficient and linear expansion coefficient of the steel strands, and looseness can be greatly suppressed comparing with a conventional steel core aluminum strand formed by concentrically simply twisting an aluminum wire around steel strands.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋼心アルミ撚線
(ACSR)等の架空送電線に関し、特に弛度の抑制を
図った架空送電線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overhead power transmission line such as a steel core aluminum stranded wire (ACSR), and more particularly to an overhead power transmission line in which sag is suppressed.

【0002】[0002]

【従来の技術】図8に示すように、複数本の亜鉛メッキ
鋼線1を撚り合わせた亜鉛メッキ鋼撚線2をテンション
メンバとして中心に配置し、その外周に導電路であるア
ルミ線(アルミ素線)3を同心撚りで撚り合わせて同心
のアルミ撚線層(アルミ撚線を4で示す)を形成した複
合撚線である鋼心アルミ撚線(ACSR)からなる架空
送電線5は、軽量でありかつ高張力を容易に実現できる
ことから、架空送電線として一般的に広く採用されてい
る。
2. Description of the Related Art As shown in FIG. 8, a galvanized steel wire 2 in which a plurality of galvanized steel wires 1 are twisted is disposed at the center as a tension member, and an aluminum wire (aluminum wire) serving as a conductive path is provided on the outer periphery thereof. An overhead power transmission line 5 composed of a steel core aluminum stranded wire (ACSR), which is a composite stranded wire formed by concentrically twisting element wires 3 by concentric twisting to form a concentric aluminum stranded layer (the aluminum stranded wire is indicated by 4), Since they are lightweight and can easily achieve high tension, they are generally widely used as overhead power transmission lines.

【0003】図8の一般的な架空送電線5では、素線径
に応じて表1のごとき特性を有するアルミ線3および亜
鉛メッキ鋼線1を使用し、撚り込み率として亜鉛メッキ
鋼線1は0.5%程度(ただしその中心線は0%)、ア
ルミ線3は同心撚りの層位置に応じて1.4%〜2.7
%程度の値を採用しており、同心撚りで撚り合わせるこ
とでACSRを構成している。同時に、撚り合わせは、
亜鉛メッキ鋼撚線2の中心線からその外周の亜鉛メッキ
鋼線層(図示例では1層)およびアルミ線層(図示例で
は2層)が各層毎に撚り方向が異なる交互撚りとされて
いる。なお、1本の亜鉛メッキ鋼素線とその外周に撚り
合わされた6本のアルミ素線とで構成されるACSRの
場合には、亜鉛メッキ鋼素線およびアルミ素線の各々の
撚り込み率は0%および1.4%が一般に採用されてい
る。
[0003] In a general overhead transmission line 5 shown in Fig. 8, an aluminum wire 3 and a galvanized steel wire 1 having characteristics as shown in Table 1 are used in accordance with the wire diameter, and the galvanized steel wire 1 is used as a twisting rate. Is about 0.5% (the center line is 0%), and the aluminum wire 3 is 1.4% to 2.7% depending on the concentric twisted layer position.
% Is adopted, and the ACSR is configured by twisting with concentric twist. At the same time, twisting
A galvanized steel wire layer (one layer in the illustrated example) and an aluminum wire layer (two layers in the illustrated example) on the outer periphery from the center line of the galvanized steel stranded wire 2 are alternately twisted in different twisting directions for each layer. . In the case of an ACSR composed of one galvanized steel strand and six aluminum strands twisted around its periphery, the twisting ratio of each of the galvanized steel strand and the aluminum strand is 0% and 1.4% are commonly employed.

【表1】 [Table 1]

【0004】上記の撚り込み率とは、撚線における各素
線の実長を計算するに当たり、撚線中心軸の長さに付加
されるべき割合であり、撚り込み率Kは、次式で表され
る。 K=(x−L)/L =(√(P+πD’)−P)/P =√(1+π・(D’/P))−1 但し L:撚線中心軸の長さ x:撚線を構成する素線の長さ D’:ピッチダイヤメータ(層心径) D:撚線の外径 P:撚線のピッチ
[0004] The above-mentioned twisting rate is a ratio to be added to the length of the center axis of the stranded wire when calculating the actual length of each strand in the stranded wire. expressed. K = (x−L) / L = (√ (P 2 + π 2 D ′ 2 ) −P) / P = √ (1 + π 2 · (D ′ / P) 2 ) −1, where L is the center axis of the stranded wire. Length x: Length of strand forming stranded wire D ': Pitch Diameter (layer core diameter) D: Outer diameter of stranded wire P: Pitch of stranded wire

【0005】ACSRからなる架空送電線5を架線する
場合、その弛度特性は、アルミ線3および亜鉛メッキ鋼
線1のそれぞれの弾性係数および線膨張係数に当該断面
積を加味した下記式により算出された等価弾性係数Eお
よび等価線膨張係数αを使用して設計されている。 E=(Ea×Aa+Es×As)/(Aa+As) α=(αa×Ea×Aa+αs×Es×As)/(Ea
×Aa+Es×As) 但し、E:ACSRの等価弾性係数 α:ACSRの等価線膨張係数 Ea:アルミ線の弾性係数 Es:亜鉛メッキ鋼線の弾性係数 Aa:ACSRのアルミ線の断面積合計 As:ACSRの亜鉛メッキ鋼線の断面積合計 αa:アルミ線の線膨張係数 αs:亜鉛メッキ鋼線の線膨張係数 この種の架空送電線5は例えば図2に示すような「荷重
−伸び特性」を示し、架線時温度領域においては等価弾
性係数の特性を有している。また、等価弾性係数および
等価線膨張係数を使用した弛度設計においては、ACS
Rの「弛度−温度特性」は図3中に破線(ACSR41
0mm)で示す通りであり、電線温度に比例して弛度
が増大することになる。
[0005] When the overhead transmission line 5 made of ACSR is wired, the sag characteristic is calculated by the following equation in which the cross-sectional area is added to the respective elastic coefficients and linear expansion coefficients of the aluminum wire 3 and the galvanized steel wire 1. It is designed using the equivalent elastic modulus E and the equivalent linear expansion coefficient α. E = (Ea × Aa + Es × As) / (Aa + As) α = (αa × Ea × Aa + αs × Es × As) / (Ea
× Aa + Es × As) where E: Equivalent elastic modulus of ACSR A: Equivalent linear expansion coefficient of ACSR Ea: Elastic modulus of aluminum wire Es: Elastic modulus of galvanized steel wire Aa: Total cross-sectional area of ACSR aluminum wire As: ASR: Total cross-sectional area of galvanized steel wire αa: Coefficient of linear expansion of aluminum wire αs: Coefficient of linear expansion of galvanized steel wire This type of overhead transmission line 5 has a “load-elongation characteristic” as shown in FIG. As shown in the figure, the wire has a characteristic of an equivalent elastic modulus in the temperature range at the time of the overhead wire. In the sag design using the equivalent elastic modulus and the equivalent linear expansion coefficient, ACS
The “sag-temperature characteristic” of R is indicated by a broken line (ACSR41) in FIG.
0 mm 2 ), and the sag increases in proportion to the wire temperature.

【0006】上記のACSRからなる架空送電線5で
は、これを架設した時、電線の張力が亜鉛メッキ鋼撚線
(以下単に鋼撚線という)2とその外周のアルミ撚線4
の両方に作用するため、電線全体としての等価弾性係数
や等価線膨張係数は、上記の通り両者の複合撚線として
の値を示し、そのため架設時の弛度が大きいばかりでな
く、着氷雪や風圧等による荷重の変化および温度変化に
挙づく弛度の変動も大きくなる。このため、相間または
回線間の距離を大きく取る必要が生じ、鉄塔を含めた送
電線路全体が大型化するという問題がある。
In the overhead power transmission line 5 made of the above-mentioned ACSR, when the overhead transmission line 5 is installed, the tension of the electric wire is set to a galvanized steel stranded wire (hereinafter simply referred to as a steel stranded wire) 2 and an aluminum stranded wire 4 on its outer periphery.
As described above, the equivalent elastic modulus and equivalent linear expansion coefficient of the entire wire show the value as a composite stranded wire of both, as described above, so that not only the sag during installation is large, but also Fluctuations in the sag resulting from changes in load and temperature due to wind pressure and the like also increase. For this reason, it is necessary to increase the distance between phases or lines, and there is a problem that the entire transmission line including the tower becomes large.

【0007】上記のように弛度が大きくなる原因は、鋼
撚線2とその外周のアルミ撚線4の両方に張力が作用す
ることにあるので、弛度を抑制するために、電線の張力
のほとんどが鋼撚線2に作用しアルミ撚線4には作用し
ない構造とすることが考えられる。このような考えによ
る弛度抑制型の架空送電線として、例えば実開昭50−
21683号公報開示の如き鋼撚線の外側にアルミ撚線
層を長さ全体にわたってルーズに被せて両者を機械的に
分離するようにした所謂ルーズ型の架空送電線が開発さ
れている。
[0007] The cause of the increase in the sag as described above is that tension acts on both the steel stranded wire 2 and the aluminum stranded wire 4 on the outer periphery thereof. It is conceivable to adopt a structure in which most of the components act on the steel stranded wire 2 and do not act on the aluminum stranded wire 4. As a sag suppressing type overhead transmission line based on this idea, for example,
A so-called loose-type overhead transmission line has been developed in which an aluminum stranded wire layer is loosely covered over the entire length of a steel stranded wire and mechanically separated from each other as disclosed in Japanese Patent No. 21683.

【0008】また、テンションメンバとして亜鉛メッキ
鋼線1に代えて、線膨張係数が格段に小さいインバ線を
使用した弛度抑制型の架空送電線も知られている。
Further, a sag-suppression type overhead transmission line using an invar wire having a significantly smaller linear expansion coefficient in place of the galvanized steel wire 1 as a tension member is also known.

【0009】[0009]

【発明が解決しようとする課題】上記の所謂ルーズ型の
架空送電線では、中心部の鋼撚線の外周にアルミ線をル
ーズに撚り合わせることが容易でなく、製造技術面で多
大の困難がある。また、テンションメンバとしてインバ
線を用いる架空送電線は、インバ線が高価なので、製品
コストが著しく高くなる難点がある。
In the above-mentioned so-called loose type overhead power transmission line, it is not easy to loosely twist an aluminum wire around the outer periphery of a steel stranded wire at the center, and there is a great difficulty in manufacturing technology. is there. Further, an overhead transmission line using an invar wire as a tension member has a disadvantage that the cost of the product is extremely high because the invar wire is expensive.

【0010】ところで、図8の構造のACSR型の架空
送電線において、鋼撚線2のみに電線張力のほとんどを
作用させる方法として、アルミ撚線4の撚り込み率を十
分大きくすることが考えられる。すなわち、アルミ撚線
4の撚り込み率が鋼撚線2の撚り込み率より十分大きい
と、アルミ線3の実長が鋼線1の実長より十分長く、電
線全体が伸びた時の、アルミ線3の伸び率(伸び歪)が
鋼線1の伸び率(伸び歪)より十分小さいものとなるの
で、上記の通り、アルミ撚線4の撚り込み率を十分大き
くすることで、電線張力を鋼撚線2がほとんど受けるよ
うにすることができる。
By the way, in the ACSR type overhead transmission line having the structure shown in FIG. 8, as a method of applying most of the wire tension to only the steel stranded wire 2, it is conceivable to increase the twisting rate of the aluminum stranded wire 4 sufficiently. . That is, if the twist rate of the aluminum stranded wire 4 is sufficiently larger than the twist rate of the steel stranded wire 2, the actual length of the aluminum wire 3 is sufficiently longer than the actual length of the steel wire 1, and the Since the elongation rate (elongation strain) of the wire 3 is sufficiently smaller than the elongation rate (elongation strain) of the steel wire 1, as described above, by sufficiently increasing the twist rate of the aluminum stranded wire 4, the wire tension can be reduced. The steel strand 2 can be almost received.

【0011】しかし、図8のようにアルミ線3を鋼撚線
2の外周に同心撚りで撚り合わせた構造でアルミ撚線4
の撚り込み率を大きくする場合、アルミ線3に張力がほ
とんど作用しない程度にその撚り込み率を大きくしよう
とすれば、撚線としての安定した撚り状態を保ちにくく
なるという問題が生じる。撚り込み率が大き過ぎると、
例えば架線工事において架空送電線5を金車に通過させ
る際に生じる押圧力により、アルミ撚線4の撚り状態が
崩れる(例えば笑いが生じる等)等の問題が生じる。
However, as shown in FIG. 8, the aluminum wire 3 is concentrically twisted around the outer periphery of the steel wire 2 so that the aluminum wire 4
When the twist rate is increased to such an extent that the tension hardly acts on the aluminum wire 3, there is a problem that it is difficult to maintain a stable twist state as the twisted wire. If the twist rate is too large,
For example, a pressing force generated when the overhead power transmission line 5 is passed through the metal wagon in the overhead wire construction causes a problem such that the twisted state of the aluminum stranded wire 4 is broken (for example, laughter occurs).

【0012】本発明は上記事情に鑑みてなされたもの
で、弛度の抑制を実現できるとともに、電線製造技術上
の困難がなく、また、架線工事等の際にアルミ撚線の撚
り状態が崩れる問題も発生せず、しかも安価に製造する
ことができる架空送電線を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to suppress the sag and realize no difficulty in the electric wire manufacturing technology, and the twisted state of the aluminum stranded wire is broken at the time of overhead wire construction or the like. An object of the present invention is to provide an overhead transmission line that does not cause any problem and can be manufactured at low cost.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の架空送電線は、中心のテンションメンバ撚線の周囲
に、アルミ線を同心撚りで撚り合わせてなる複数本のア
ルミ撚線を、0.7%以上の撚り込み率で撚り合わせた
ことを特徴とする。
The overhead transmission line according to the present invention for solving the above-mentioned problems comprises a plurality of aluminum stranded wires formed by concentrically twisting aluminum wires around a center tension member stranded wire. It is characterized by being twisted at a twist rate of 0.7% or more.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図7を参照して説明する。図1は本発明の一実施形態
の鋼心アルミ撚線からなる架空送電線11の横断面図で
あり、例えば7本の亜鉛メッキ鋼線1を撚り合わせた亜
鉛メッキ鋼撚線2をテンションメンバとして中心に配置
し、この亜鉛メッキ鋼撚線(以下単に鋼撚線と略す)2
の周囲に、例えば7本の硬アルミ線等のアルミ線(アル
ミ素線)3を同心撚りで撚り合わせてなる例えば6本の
アルミ撚線12を、0.7%以上の撚り込み率で撚り合
わせた構造である。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS. FIG. 1 is a cross-sectional view of an overhead transmission line 11 made of a steel core aluminum stranded wire according to an embodiment of the present invention. For example, a galvanized steel stranded wire 2 obtained by twisting seven galvanized steel wires 1 is used as a tension member. This galvanized steel stranded wire (hereinafter simply abbreviated as steel stranded wire) 2
, For example, six aluminum stranded wires 12 formed by concentrically twisting aluminum wires (aluminum wires) 3 such as seven hard aluminum wires, etc., at a twist rate of 0.7% or more. It is a combined structure.

【0015】一般に、架空送電線の架線設計において
は、電線に次のような各種伸びが発生することを考慮す
る。すなわち、 弾性伸び 0.3%〜0.5%(電線の最大使用張力相当の張力伸び) 初期伸び 0・01%(撚り締り伸び) クリープ伸び 0・01% 回転伸び0.02%(電線延線時の電線回転に伴う伸び) 金車通過伸び 0.1%(電線延線時の金車通過に伴う伸び) 架線時温度から低温域になった場合の線膨張係数の補正伸び 0.3% 上記の〜の各種伸びの総和Sは、S=0.47%〜
0.67%である。
In general, in the design of overhead power transmission lines, the following various types of elongation of the electric wires are considered. That is, elastic elongation 0.3% to 0.5% (tension elongation corresponding to the maximum working tension of the electric wire) Initial elongation 0.01% (twist tightening elongation) Creep elongation 0.01% Rotational elongation 0.02% (electric wire elongation) Elongation due to rotation of electric wire during wire) Elongation by wheel drive 0.1% (Elongation due to the passage of wire wheel when wire is extended) Corrected elongation of linear expansion coefficient when temperature falls from temperature during overhead wire to low temperature 0.3 % The sum S of the various elongations above is S = 0.47% ~
0.67%.

【0016】一方、架空送電線ではなく特殊な配電線と
して、図1に示したものと概ね同様な構造(但し、アル
ミ撚線は3〜4本)の電線に被覆を施したものがある
が、この種の配電線では、アルミ撚線を0.3%〜0.
5%の撚り込み率で亜鉛メッキ鋼撚線の周囲に撚り合わ
せるのが通常である。このような通常の撚り込み率の配
電線は、通常の等価弾性係数および等価線膨張係数が適
用されるものであるが、そこで、このような配電線の通
常の撚り込み率0.3%〜0.5%に、上述の各種伸び
の総和S=0.47%〜0.67%を加えた撚り込み
率、すなわち、0.77%〜1.17%の撚り込み率で
撚り合わせると、アルミ線3には、上記の各種伸びの総
和Sの余長を確保するのと同等な効果が得られ、亜鉛メ
ッキ鋼撚線2がほとんどの張力を分担することとなる。
ただし、撚り込み率を1.17%より大きく設定して
も、アルミ線3の余長がさらに長くなるのと同等であ
り、亜鉛メッキ鋼撚線2の分担がさらに大きくなる。し
たがって、本発明では上述の通り、アルミ撚線の撚り込
み率を0.77%以上とするものである。
On the other hand, as a special distribution line instead of an overhead transmission line, there is a distribution line obtained by coating a wire having a structure substantially similar to that shown in FIG. 1 (however, three to four aluminum stranded wires). In this type of distribution line, the aluminum stranded wire is 0.3% to 0.1%.
It is normal to twist around the galvanized steel stranded wire at a twist rate of 5%. For a distribution line having such a normal twisting rate, a normal equivalent elastic modulus and an equivalent linear expansion coefficient are applied. Therefore, the normal twisting rate of such a distribution line is 0.3% to 0.3%. Twisting at a twist rate of 0.5% plus the sum S of the various elongations described above of 0.47% to 0.67%, that is, a twist rate of 0.77% to 1.17%, An effect equivalent to securing the total length S of the various elongations described above is obtained for the aluminum wire 3, and the galvanized steel stranded wire 2 shares most of the tension.
However, even if the twisting ratio is set to be larger than 1.17%, the remaining length of the aluminum wire 3 is equivalent to further increase, and the sharing of the galvanized steel stranded wire 2 is further increased. Therefore, in the present invention, as described above, the twist rate of the aluminum stranded wire is set to 0.77% or more.

【0017】上記のように、亜鉛メッキ鋼撚線2がほと
んどの張力を分担することから、架線設計においては亜
鉛メッキ鋼撚線の弾性係数および線膨張係数を適用で
き、したがって、従来構造のACSRに比べ大幅に弛度
を抑制することができる。
As described above, since the galvanized steel stranded wire 2 shares most of the tension, the elastic modulus and linear expansion coefficient of the galvanized steel stranded wire can be applied to the overhead wire design, and therefore, the conventional structure of the ACSR The sag can be greatly suppressed as compared with.

【0018】上記のACSRからなる架空送電線11の
具体的な弛度特性を図3に実線(ACSR404m
)で示す。このACSR404mmは、図1に示
した構造の本発明一実施形態の電線(HAl7/3.5
mm×6ケ+St7/3.5mm)であり、荷重条件等
は全て、同図中に破線で示した従来構造のACSR41
0mm(HA26/4.5mm+St7/3.5m
m)の場合と同一である。従来構造のACSR410m
に比べて弛度を30%〜40%低減することができ
る。なお、アルミ撚線3自身の撚り合わせは通常の撚り
込み率(例えば1.4%等)でよい。
FIG. 3 shows a specific sag characteristic of the overhead transmission line 11 composed of the above-mentioned ACSR (solid line ACSR404m).
m 2 ). The ACSR 404 mm 2 is a wire (HAl7 / 3.5) of the embodiment of the present invention having the structure shown in FIG.
mm × 6 pcs + St7 / 3.5 mm), and all the load conditions and the like are shown by the broken line in FIG.
0mm 2 (HA26 / 4.5mm + St7 / 3.5m
m). ACSR410m of conventional structure
sag to can be reduced by 30% to 40% as compared to m 2. The twist of the aluminum stranded wire 3 itself may be a normal twist rate (for example, 1.4% or the like).

【0019】なお、本発明の架空送電線におけるテンシ
ョンメンバ撚線は、実施形態の亜鉛メッキ鋼撚線2に代
えて、特強アルミ覆鋼撚線、超特強亜鉛メッキ鋼撚線、
アルミ覆鋼撚線および特強アルミ覆鋼撚線等を使用する
ことができる。また、アルミ線(アルミ素線)3として
は、実施形態の硬アルミ素線に代えて、軟アルミ素線、
耐熱アルミ合金素線等も同様に使用することができる。
The tension member stranded wire of the overhead transmission line according to the present invention is not limited to the galvanized steel stranded wire 2 of the embodiment, but may be a reinforced aluminum covered steel stranded wire, an ultra-extra strong galvanized steel stranded wire,
Aluminum coated steel stranded wire and special aluminum coated steel stranded wire can be used. As the aluminum wire (aluminum wire) 3, a soft aluminum wire, instead of the hard aluminum wire of the embodiment,
Heat-resistant aluminum alloy wires and the like can be used in the same manner.

【0020】上記のACSRからなる架空送電線11
は、アルミ撚線12を鋼撚線2の周囲に6本撚り合わせ
ているが、アルミ撚線12の数は、図4に示すように4
本、あるいは図5に示すように5本等とすることも可能
であり、特に限定されない。また、亜鉛メッキ鋼撚線2
およびアルミ撚線12の撚線構成は実施形態の7ヶ撚り
の外、19ヶ撚りも適用できる。また、実施形態では、
アルミ線(アルミ素線)として丸素線の場合を示した
が、成形アルミ素線を使用することにより電線の外径を
縮小すると、風圧荷重を減らす上で有効である。
The overhead transmission line 11 composed of the above-mentioned ACSR
In FIG. 4, six aluminum stranded wires 12 are twisted around the steel stranded wire 2, and the number of the aluminum stranded wires 12 is 4 as shown in FIG.
It is also possible to use five books or five books as shown in FIG. 5, and there is no particular limitation. Also, galvanized steel stranded wire 2
The twisted wire configuration of the aluminum twisted wire 12 can be applied to 19 twists in addition to the 7 twists of the embodiment. In the embodiment,
Although the case where the aluminum wire (aluminum wire) is a round wire is shown, reducing the outer diameter of the wire by using a molded aluminum wire is effective in reducing the wind pressure load.

【0021】また、テンションメンバ撚線として、図6
に示すように、扇形鋼線21aをアルミ21bで被覆し
たアルミ覆扇形鋼線21を中心のアルミ覆円形鋼線22
の外周に撚り合わせた構造のテンションメンバ撚線
2’、あるいは図7に示すように、円形鋼線23aを持
つアルミ覆成形鋼線23を中心のアルミ覆円形鋼線20
の外周に撚りわせた構造のテンションメンバ撚線2”を
用いると、外径を縮小する上で有効である。また、テン
ションメンバ撚線として、亜鉛メッキインバ撚線および
アルミ覆インバ撚線を使用することもでき、その場合に
はその線膨張係数の低さから最大限の弛度抑制を実現で
きる。なお、インバは、線膨張係数が鋼の1/3である
Fe(鉄)とNi(ニッケル)36%の合金である。
As the tension member twisted wire, FIG.
As shown in the figure, an aluminum-covered circular steel wire 22 centered on an aluminum-covered fan-shaped steel wire 21 in which a sector-shaped steel wire 21a is covered with aluminum 21b.
7, a tension member stranded wire 2 'having a structure twisted around the outer periphery of the aluminum-coated circular steel wire 20 having a circular steel wire 23a as shown in FIG.
The use of a tension member twisted wire 2 "having a structure twisted around the outer periphery of the wire is effective in reducing the outer diameter. In addition, as a tension member twisted wire, a galvanized invar twisted wire and an aluminum-covered invar twisted wire are used. In this case, the maximum degree of sag can be suppressed because of the low coefficient of linear expansion.Invar is made of Fe (iron) and Ni (nickel) whose linear expansion coefficient is 1/3 of steel. ) 36% alloy.

【0022】[0022]

【発明の効果】本発明の架空送電線は、中心のテンショ
ンメンバ撚線の周囲に、アルミ線を同心撚りで撚り合わ
せてなる複数本のアルミ撚線を、0.7%以上の撚り込
み率で撚り合わせているので、電線に作用する張力のほ
とんどをテンションメンバ撚線に分担させることがで
き、したがって、架線設計を亜鉛メッキ鋼線等のテンシ
ョンメンバ撚線の弾性係数および線膨張係数により行う
ことができ、鋼撚線の周囲にアルミ線を単に同心撚りで
撚り合わせた従来の鋼心アルミ撚線と比べて、大幅に弛
度を抑制することが可能となった。
According to the overhead transmission line of the present invention, a twist ratio of 0.7% or more of a plurality of aluminum twisted wires formed by concentrically twisting aluminum wires around a central tension member twisted wire. Most of the tension acting on the electric wire can be shared by the tension member twisted wires, and thus the overhead wire design is performed by the elastic coefficient and the linear expansion coefficient of the tension member twisted wires such as galvanized steel wires. This makes it possible to greatly reduce the sag compared to a conventional steel core aluminum stranded wire in which an aluminum wire is simply twisted concentrically around a steel stranded wire.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の鋼心アルミ撚線(ACS
R)からなる架空送電線の横断面図である。
FIG. 1 is a steel core aluminum stranded wire (ACS) according to an embodiment of the present invention.
It is a cross section of an overhead transmission line consisting of R).

【図2】図1の鋼心アルミ撚線の荷重−伸び特性図であ
る。
FIG. 2 is a load-elongation characteristic diagram of the steel core aluminum stranded wire of FIG.

【図3】本発明および従来の鋼心アルミ撚線の弛度特性
を示す図であり、実線が本発明の鋼心アルミ撚線からな
る架空送電線、破線が従来の鋼心アルミ撚線である。
FIG. 3 is a diagram showing the sag characteristics of the present invention and a conventional steel core aluminum stranded wire, wherein a solid line is an overhead transmission line made of the steel core aluminum stranded wire of the present invention, and a broken line is a conventional steel core aluminum stranded wire. is there.

【図4】本発明の他の実施形態の鋼心アルミ撚線からな
る架空送電線の横断面図であり、アルミ撚線の本数を4
本とした場合のものである。
FIG. 4 is a cross-sectional view of an overhead transmission line made of a steel core aluminum stranded wire according to another embodiment of the present invention, in which the number of aluminum stranded wires is four.
It is a book.

【図5】本発明のさらに他の実施形態の鋼心アルミ撚線
からなる架空送電線の横断面図であり、アルミ撚線の本
数を5本とした場合のものである。
FIG. 5 is a cross-sectional view of an overhead transmission line made of a steel core aluminum stranded wire according to still another embodiment of the present invention, in which the number of aluminum stranded wires is five.

【図6】本発明の架空送電線におけるテンションメンバ
撚線の他の実施形態を示す横断面図である。
FIG. 6 is a cross-sectional view showing another embodiment of the tension member twisted wire in the overhead transmission line of the present invention.

【図7】本発明の架空送電線におけるテンションメンバ
撚線のさらに他の実施形態を示す横断面図である。
FIG. 7 is a transverse sectional view showing still another embodiment of the tension member twisted wire in the overhead transmission line of the present invention.

【図8】従来の鋼心アルミ撚線の断面図である。FIG. 8 is a cross-sectional view of a conventional steel core aluminum stranded wire.

【符号の説明】[Explanation of symbols]

1 亜鉛メッキ鋼線 2 亜鉛メッキ鋼撚線(テンションメンバ撚線) 2’ アルミ覆扇形鋼撚線(テンションメンバ撚線) 2” アルミ覆成形鋼撚線(テンションメンバ撚線) 3 アルミ線 11 架空送電線 12 アルミ撚線 DESCRIPTION OF SYMBOLS 1 Galvanized steel wire 2 Galvanized steel twisted wire (tension member twisted wire) 2 'Aluminum covered fan-shaped steel twisted wire (tension member twisted wire) 2 "Aluminum covered molded steel twisted wire (tension member twisted wire) 3 Aluminum wire 11 Fictitious Transmission line 12 Aluminum stranded wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中心のテンションメンバ撚線の周囲に、
アルミ線を同心撚りで撚り合わせてなる複数本のアルミ
撚線を、0.7%以上の撚り込み率で撚り合わせたこと
を特徴とする架空送電線。
1. Around the center tension member stranded wire,
An overhead power transmission line characterized in that a plurality of aluminum wires, which are obtained by twisting aluminum wires by concentric twisting, are twisted at a twist rate of 0.7% or more.
JP11213627A 1999-07-28 1999-07-28 Overhead transmission line Pending JP2001043740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11213627A JP2001043740A (en) 1999-07-28 1999-07-28 Overhead transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11213627A JP2001043740A (en) 1999-07-28 1999-07-28 Overhead transmission line

Publications (1)

Publication Number Publication Date
JP2001043740A true JP2001043740A (en) 2001-02-16

Family

ID=16642297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11213627A Pending JP2001043740A (en) 1999-07-28 1999-07-28 Overhead transmission line

Country Status (1)

Country Link
JP (1) JP2001043740A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502814A (en) * 2004-06-17 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー Cable and manufacturing method thereof
JP2008277295A (en) * 2007-04-26 2008-11-13 Nexans Manufacturing method of insulated conductor of class 5
JP2010225457A (en) * 2009-03-24 2010-10-07 Viscas Corp Low wind pressure wire
WO2011025105A1 (en) * 2009-08-25 2011-03-03 대한전선 주식회사 Method for manufacturing a medium-capacity low-sag overhead electric conductor, and medium-capacity low-sag overhead electric conductor
CN102360599A (en) * 2011-09-19 2012-02-22 中利科技集团股份有限公司 Super soft cable
JP2014030607A (en) * 2012-08-03 2014-02-20 Sumitomo Bakelite Co Ltd Medical device, and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502814A (en) * 2004-06-17 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー Cable and manufacturing method thereof
JP4944020B2 (en) * 2004-06-17 2012-05-30 スリーエム イノベイティブ プロパティズ カンパニー Cable and manufacturing method thereof
US8653370B2 (en) 2004-06-17 2014-02-18 3M Innovative Properties Company Cable and method of making the same
JP2008277295A (en) * 2007-04-26 2008-11-13 Nexans Manufacturing method of insulated conductor of class 5
JP2010225457A (en) * 2009-03-24 2010-10-07 Viscas Corp Low wind pressure wire
WO2011025105A1 (en) * 2009-08-25 2011-03-03 대한전선 주식회사 Method for manufacturing a medium-capacity low-sag overhead electric conductor, and medium-capacity low-sag overhead electric conductor
KR101074847B1 (en) * 2009-08-25 2011-10-19 대한전선 주식회사 Manufacturing Method for the Low-Sag Increased-capacity overhead power transmission cable, and its Low-Sag Increased-capacity overhead power transmission cable
CN102360599A (en) * 2011-09-19 2012-02-22 中利科技集团股份有限公司 Super soft cable
JP2014030607A (en) * 2012-08-03 2014-02-20 Sumitomo Bakelite Co Ltd Medical device, and method for manufacturing the same
US10130794B2 (en) 2012-08-03 2018-11-20 Sumitomo Bakelite Company Limited Medical instrument, and medical-instrument production method

Similar Documents

Publication Publication Date Title
US7228627B1 (en) Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
JP2001291429A (en) Overhead power line and optical fiber composite overhead earth-wire
JP2001043740A (en) Overhead transmission line
CA1045222A (en) Aluminum alloy composite electrical conductor
KR100602291B1 (en) Gap-type overhead transmission line & manufacturing thereof
JP2001101929A (en) Flexible high strength and light weight conductor
KR101549660B1 (en) Overhead Conductor using Ultra High Strength Steel Wire
JPH05230782A (en) Rope for operation
JPH09245527A (en) Element wire for overhead wire and overhead wire using this element wire
JP5177107B2 (en) Twisted wire and flexible cable using the same
JP4639723B2 (en) Twisted wire and flexible cable using the same
JP3434018B2 (en) Wire winding bind
CN212656034U (en) Special steel wire rope for anti-bending anchor cable
JP3271491B2 (en) Optical fiber composite overhead ground wire for overhead distribution line
JP3185349B2 (en) Overhead transmission line
CN211319817U (en) Composite overhead conductor
JPH05186975A (en) Steel cord for tire
JP6895198B1 (en) Stranded conductor
JP3765447B2 (en) Armored cable
JPH076627A (en) Light weight transmission cable
JPH01239708A (en) Aerial wire
JPH0945137A (en) Slackness suppression type overhead bare electric wire
JP2583300B2 (en) Low corona low wind noise wire
JPH0455376Y2 (en)
JP4899463B2 (en) Type breakage prevention type electric wire and overhead wiring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209