JP2001040131A - Thermoplastic resin foamed product and its production - Google Patents

Thermoplastic resin foamed product and its production

Info

Publication number
JP2001040131A
JP2001040131A JP11213589A JP21358999A JP2001040131A JP 2001040131 A JP2001040131 A JP 2001040131A JP 11213589 A JP11213589 A JP 11213589A JP 21358999 A JP21358999 A JP 21358999A JP 2001040131 A JP2001040131 A JP 2001040131A
Authority
JP
Japan
Prior art keywords
point
temperature
thermoplastic resin
crystalline thermoplastic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11213589A
Other languages
Japanese (ja)
Inventor
Mitsunori Nodono
光紀 野殿
Tatsuma Kuroda
竜磨 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11213589A priority Critical patent/JP2001040131A/en
Priority to EP00106631A priority patent/EP1040902B1/en
Priority to CN00108892.0A priority patent/CN1270968A/en
Priority to DE60031026T priority patent/DE60031026T2/en
Priority to US09/536,802 priority patent/US6399667B1/en
Publication of JP2001040131A publication Critical patent/JP2001040131A/en
Priority to US10/094,801 priority patent/US6596783B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide thermoplastic resin foamed products having fine cells at a high expansion ratio and excellent fabricability, and their production process. SOLUTION: Thermoplastic resin foamed products are composed of a crystalline thermoplastic resin which has one or more endothermic peaks in the endothermic curve measured by a differential scanning calorimeter(DSC) at a rate of raising temperature of 10 deg.C/min and a temperature width of >=15 deg.C which is represented by a length of segment DE when the highest peak point among the endothermic peaks is regarded as point A; the point at which a perpendicular line from point A to the temperature axis intersects the base line of the endothermic curve is regarded as point B; the point at which segment AB of said perpendicular line is interiorly divided at a ratio of 9:1 is regarded as point C; and the points at which lines passing therethrough and parallel to the temperature axis intersect the endothermic curve at the sides of the lowest temperature and the highest temperature, respectively, are regarded as point D and point E, respectively, and have an average cell diameter of not greater than 10 μm, and an expansion ratio of 2 to 40 times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高発泡倍率で微細
気泡を有し、二次加工性に優れた熱可塑性樹脂発泡体お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin foam having fine cells at a high expansion ratio and excellent in secondary workability, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、超臨界状態の不活性物質(二酸化
炭素や窒素など)を用いて微細気泡を有する樹脂発泡体
を製造する超臨界発泡法が開発された(例えばマテリア
ル アンド マニュファクチャリング プロセス(Mate
rials & Manufacturing Processes)、4(2)、2
53−262(1989)や米国特許第5160674
号などを参照)。しかしながら、これらの文献の教示に
従って得られる樹脂発泡体は、微細気泡を有するものの
発泡倍率が低いために軽量性が十分ではなく、二次加工
性も十分ではない。
2. Description of the Related Art In recent years, a supercritical foaming method for producing a resin foam having fine cells using a supercritical inert substance (such as carbon dioxide or nitrogen) has been developed (for example, a material and manufacturing process). (Mate
rials & Manufacturing Processes), 4 (2), 2
53-262 (1989) and US Pat. No. 5,160,674.
Issue). However, resin foams obtained according to the teachings of these documents, although having fine cells, are insufficient in lightness due to low expansion ratio and insufficient in secondary workability.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、微細気
泡を有しつつも高発泡倍率であって軽量性に優れ、しか
も二次加工性に優れた熱可塑性樹脂の発泡体を開発すべ
く鋭意検討を重ねた結果、示差走査熱量計(DSC)を
用いて測定した吸熱曲線が特定の条件を満たす結晶性熱
可塑性樹脂を用いることにより、上記要求を満たす樹脂
発泡体が得られることを見出し、本発明を完成した。
DISCLOSURE OF THE INVENTION The present inventors have developed a thermoplastic resin foam having fine bubbles, high expansion ratio, excellent lightness, and excellent secondary workability. As a result of intensive studies, it has been found that by using a crystalline thermoplastic resin whose endothermic curve measured using a differential scanning calorimeter (DSC) satisfies specific conditions, a resin foam satisfying the above requirements can be obtained. Heading, the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、結
晶性熱可塑性樹脂からなり、該結晶性熱可塑性樹脂の示
差走査熱量計(DSC)を用いて10℃/minの昇温
速度で測定したときの吸熱曲線が一つ以上の吸熱ピーク
を有し、且つ該一つ以上の吸熱ピークのうち最高ピーク
点をA、点Aから温度軸に下した垂線が吸熱曲線のベー
スラインと交差する点をB、上記垂線の線分ABを9:
1に内分する点をCとし、このCを通る温度軸に平行な
直線が最も低温側で吸熱曲線と交差する点をD、最も高
温側で交差する点をEとしたとき、線分DEの長さで示
される温度幅が20℃以上であり、かつ平均気泡径が1
0μm以下、発泡倍率が2倍以上40倍以下であること
を特徴とする結晶性樹脂発泡体を提供する。上記構成の
樹脂発泡体は、軽量性に優れ、かつ真空成形などの二次
加工に対して優れた適性を有するものである。また、本
発明は、示差走査熱量計(DSC)を用いて10℃/m
inの昇温速度で測定したときの吸熱曲線が一つ以上の
吸熱ピークを有し、且つ該一つ以上の吸熱ピークのうち
最高ピーク点をA、点Aから温度軸に下した垂線が吸熱
曲線のベースラインと交差する点をB、上記垂線の線分
ABを9:1に内分する点をCとし、このCを通る温度
軸に平行な直線が最も低温側で吸熱曲線と交差する点を
D、最も高温側で交差する点をEとしたとき、線分DE
の長さで示される温度幅が20℃以上である結晶性熱可
塑性樹脂に、これに含浸させるべき物質の臨界圧力以上
の加圧下で該物質の流体を含浸させる工程、および該物
質を含浸させた前記結晶性熱可塑性樹脂を前記加圧状態
から開放する工程とからなることを特徴とする熱可塑性
樹脂発泡体の製造方法を提供する。上記構成の方法によ
れば、高発泡倍率で微細気泡を有し、軽量性に優れ、か
つ二次加工性にも優れた樹脂発泡体を製造することがで
きる。
That is, the present invention comprises a crystalline thermoplastic resin, which is measured at a rate of 10 ° C./min using a differential scanning calorimeter (DSC) of the crystalline thermoplastic resin. When the endothermic curve has one or more endothermic peaks, and the highest peak point among the one or more endothermic peaks is A, a perpendicular line from the point A to the temperature axis intersects the baseline of the endothermic curve. The point is B, and the perpendicular line segment AB is 9:
When a point that internally divides into 1 is C, a point where a straight line parallel to the temperature axis passing through C intersects the endothermic curve on the lowest temperature side is D, and a point that intersects on the highest temperature side is E, a line segment DE Is not less than 20 ° C. and the average cell diameter is 1
A crystalline resin foam characterized by having a foaming ratio of 0 μm or less and an expansion ratio of 2 times or more and 40 times or less. The resin foam having the above configuration has excellent lightness and excellent suitability for secondary processing such as vacuum forming. In addition, the present invention uses a differential scanning calorimeter (DSC) at 10 ° C./m
The endothermic curve measured at a temperature rise rate of in has one or more endothermic peaks, and the highest peak among the one or more endothermic peaks is A, and a perpendicular line from the point A to the temperature axis is an endothermic curve. A point that intersects the curve's base line is B, and a point that internally divides the perpendicular line segment AB at 9: 1 is C. A straight line parallel to the temperature axis passing through C intersects the endothermic curve at the lowest temperature side. When the point is D and the point that intersects on the hottest side is E, the line segment DE
Impregnating a crystalline thermoplastic resin having a temperature width represented by the length of not less than 20 ° C. with a fluid of the substance under a pressure equal to or higher than the critical pressure of the substance to be impregnated, and impregnating the substance with the fluid And releasing the crystalline thermoplastic resin from the pressurized state. According to the method having the above configuration, it is possible to produce a resin foam having high expansion ratio, fine cells, excellent lightness, and excellent secondary workability.

【0005】[0005]

【発明の実施の形態】本発明では、示差走査熱量計(D
SC)を用いて10℃/minの昇温速度で測定したと
きの吸熱曲線が一つ以上の吸熱ピークを有し、且つ該一
つ以上の吸熱ピークのうち最高ピーク点をA、点Aから
温度軸に下した垂線が吸熱曲線のベースラインと交差す
る点をB、上記垂線の線分ABを9:1に内分する点を
Cとし、このCを通る温度軸に平行な直線が最も低温側
で吸熱曲線と交差する点をD、最も高温側で交差する点
をEとしたとき、線分DEの長さで示される温度幅が2
0℃以上である結晶性熱可塑性樹脂が使用される。線分
DEに対応する温度幅は、25℃以上100℃以下であ
ることがより好ましく、30℃以上100℃以下である
ことが更に好ましい。結晶性熱可塑性樹脂のDSCによ
る吸熱曲線の例(模式図)を図1に示す。本発明で使用
する結晶性熱可塑性樹脂は、示差走査熱量計(DSC)
を用いて測定した吸熱曲線が上記条件を満たすならば、
その種類は特に限定されず、その好ましい例としては、
ポリオレフィン系樹脂(ポリエチレン系樹脂やポリプロ
ピレン系樹脂等)、ポリアミド系樹脂、ポリエチレンテ
レフタレート系樹脂、シンジオタクチックポリスチレン
系樹脂、ポリビニルアルコール系樹脂等が挙げられる。
中でもポリオレフィン系樹脂が好ましく用いられる。結
晶性熱可塑性樹脂は、1種類のみを用いてもよく、また
2種以上を併用してもよい。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a differential scanning calorimeter (D
SC), the endothermic curve measured at a heating rate of 10 ° C./min has one or more endothermic peaks, and the highest peak point among the one or more endothermic peaks is A, The point at which the perpendicular drawn to the temperature axis intersects the base line of the endothermic curve is B, and the point at which the line segment AB of the perpendicular is internally divided at 9: 1 is C. The straight line parallel to the temperature axis passing through C is the most. Assuming that a point that intersects the endothermic curve on the low temperature side is D and a point that intersects on the hottest side is E, the temperature width indicated by the length of the line segment DE is
A crystalline thermoplastic resin having a temperature of 0 ° C. or higher is used. The temperature width corresponding to the line segment DE is more preferably 25 ° C or more and 100 ° C or less, and still more preferably 30 ° C or more and 100 ° C or less. FIG. 1 shows an example (schematic diagram) of an endothermic curve by DSC of the crystalline thermoplastic resin. The crystalline thermoplastic resin used in the present invention is a differential scanning calorimeter (DSC).
If the endothermic curve measured using
The type is not particularly limited, and preferred examples thereof include:
Examples include polyolefin-based resins (polyethylene-based resins and polypropylene-based resins), polyamide-based resins, polyethylene terephthalate-based resins, syndiotactic polystyrene-based resins, and polyvinyl alcohol-based resins.
Among them, polyolefin resins are preferably used. As the crystalline thermoplastic resin, only one type may be used, or two or more types may be used in combination.

【0006】ポリエチレン系樹脂としては、低密度ポリ
エチレン(LDPE)、高密度ポリエチレン(HDP
E)、直鎖状低密度ポリエチレン(LLDPE)、エチ
レン/α−オレフィン共重合体などが挙げられる。
[0006] Polyethylene resins include low density polyethylene (LDPE) and high density polyethylene (HDP).
E), linear low-density polyethylene (LLDPE), ethylene / α-olefin copolymer, and the like.

【0007】ポリプロピレン系樹脂としては、プロピレ
ンの単独重合体、あるいはプロピレンモノマー単位を5
0モル%以上含むプロピレン共重合体を例示できる。該
プロピレン共重合体としては、プロピレンと、エチレン
および/またはα−オレフィン(プロピレンを除く)と
の二元または三元共重合体が好ましい。前記α−オレフ
ィンとしては、例えば、1−ブテン、4−メチルペンテ
ン−1、1−オクテン、1−ヘキセン等の炭素数4以上
の直鎖または分岐のα−オレフィンを例示でき、プロピ
レンとの共重合性の観点から、炭素数10以下の直鎖ま
たは分岐のα−オレフィンが好ましい。樹脂発泡体の強
度の観点からはプロピレンの単独重合体が好ましく、樹
脂発泡体の柔軟性や透明性の観点からは、プロピレン共
重合体が好ましい。プロピレン共重合体を用いる場合
は、共重合体中のプロピレン以外のモノマー単位含有量
としては、エチレンの場合は10重量%以下、α−オレ
フィンの場合は30重量%以下が好ましい。また微細気
泡を有し機械的強度に優れる樹脂発泡体が得られる点
で、プロピレン単独重合体と、プロピレン/エチレン共
重合体またはプロピレン/α−オレフィン共重合体との
混合物も好ましい。かかる混合物を用いる場合は、別々
に製造したプロピレン単独重合体とプロピレン共重合体
とを混練機等で混練して得られた樹脂組成物を用いても
よいし、プロピレンの単独重合を行なった後、続けてプ
ロピレンと共重合性モノマー(エチレン、またはプロピ
レン以外のα−オレフィン)とを共重合して得られた樹
脂組成物を用いてもよい。もちろん後者の樹脂組成物と
プロピレン単独重合体またはプロピレン/エチレン共重
合体、プロピレン/α−オレフィン共重合体等とを混合
して用いてもよい。
As the polypropylene resin, a propylene homopolymer or a propylene monomer unit of 5
A propylene copolymer containing 0 mol% or more can be exemplified. As the propylene copolymer, a binary or ternary copolymer of propylene and ethylene and / or an α-olefin (excluding propylene) is preferable. Examples of the α-olefin include linear or branched α-olefins having 4 or more carbon atoms, such as 1-butene, 4-methylpentene-1, 1-octene and 1-hexene. From the viewpoint of polymerizability, a linear or branched α-olefin having 10 or less carbon atoms is preferable. From the viewpoint of the strength of the resin foam, a propylene homopolymer is preferable, and from the viewpoint of the flexibility and transparency of the resin foam, a propylene copolymer is preferable. When a propylene copolymer is used, the content of monomer units other than propylene in the copolymer is preferably 10% by weight or less for ethylene and 30% by weight or less for α-olefin. In addition, a mixture of a propylene homopolymer and a propylene / ethylene copolymer or a propylene / α-olefin copolymer is also preferable in that a resin foam having fine bubbles and excellent mechanical strength can be obtained. When such a mixture is used, a resin composition obtained by kneading a separately produced propylene homopolymer and a propylene copolymer with a kneader or the like may be used, or after performing propylene homopolymerization. Subsequently, a resin composition obtained by copolymerizing propylene with a copolymerizable monomer (ethylene or an α-olefin other than propylene) may be used. Of course, the latter resin composition may be mixed with a propylene homopolymer, a propylene / ethylene copolymer, a propylene / α-olefin copolymer, or the like.

【0008】また、ポリプロピレン系樹脂としては、特
開昭62−121704号公報に記載の低レベルの電子
線架橋によって長鎖分岐が導入されたポリプロピレン系
樹脂も好ましく用いられる。更に、超高分子量成分が導
入されたポリプロピレン系樹脂も好ましく用いられ、そ
の好ましい例としては、第一段階でプロピレンを主成分
とするモノマーを重合して超高分子量成分である極限粘
度が5dl/g以上の結晶性ポリプロピレン系重合体
(I)を製造し、第二段階以降でプロピレンを主成分と
するモノマーを重合して極限粘度が3dl/g未満の結
晶性ポリプロピレン系重合体(II)を連続的に製造し
て得られる重合体が挙げられる。かかる超高分子量成分
が導入されたポリプロピレン系樹脂において、溶融粘度
の観点から、前記重合体(I)の含量が0.05重量%
以上35重量%未満、樹脂全体の極限粘度が3dl/g
未満、Mw/Mnが10未満であるポリプロピレン系樹
脂が特に好ましい。
Further, as the polypropylene-based resin, a polypropylene-based resin having a long-chain branch introduced by low-level electron beam crosslinking described in JP-A-62-121704 is also preferably used. Further, a polypropylene resin into which an ultrahigh molecular weight component is introduced is also preferably used. As a preferable example, in the first stage, a monomer having propylene as a main component is polymerized to have an intrinsic viscosity of 5 dl / g or more of a crystalline polypropylene polymer (I) is produced, and a monomer having propylene as a main component is polymerized in the second and subsequent steps to obtain a crystalline polypropylene polymer (II) having an intrinsic viscosity of less than 3 dl / g. Polymers obtained by continuous production are exemplified. In the polypropylene resin into which the ultrahigh molecular weight component is introduced, the content of the polymer (I) is 0.05% by weight from the viewpoint of melt viscosity.
Not more than 35% by weight, the intrinsic viscosity of the entire resin is 3 dl / g
And Mw / Mn of less than 10 are particularly preferred.

【0009】結晶性熱可塑性樹脂のメルトフローレート
(MFR)は、樹脂発泡体製造時の加工性の点からは
0.1g/10分以上が好ましく、発泡時の破泡の防止
と樹脂発泡体の二次加工性の点からは50g/10分以
下であることが好ましい。
The melt flow rate (MFR) of the crystalline thermoplastic resin is preferably 0.1 g / 10 min or more from the viewpoint of processability during the production of the resin foam. From the viewpoint of the secondary workability, it is preferably 50 g / 10 minutes or less.

【0010】本発明の樹脂発泡体は、平均気泡径が10
μm以下、好ましくは0.01〜1μmであり、発泡倍
率が2倍以上40倍以下、好ましくは10倍以上30倍
以下である。平均気泡径および/または発泡倍率が上記
範囲外となると、樹脂発泡体は軽量性と機械的強度に同
時に優れるものにならない。
The resin foam of the present invention has an average cell diameter of 10
μm or less, preferably 0.01 to 1 μm, and the expansion ratio is 2 to 40 times, preferably 10 to 30 times. When the average cell diameter and / or the expansion ratio are out of the above ranges, the resin foam does not simultaneously have excellent lightness and mechanical strength.

【0011】本発明の樹脂発泡体を製造するに当たり、
結晶性熱可塑性樹脂を所望により各種添加剤の共存下に
溶融混練し、更に発泡操作に付す。溶融混練には、単軸
あるいは二軸押出機、バンバリー型混練機を用いること
ができる。
In producing the resin foam of the present invention,
The crystalline thermoplastic resin is melt-kneaded in the presence of various additives, if desired, and then subjected to a foaming operation. For the melt-kneading, a single-screw or twin-screw extruder or a Banbury-type kneader can be used.

【0012】本発明の樹脂発泡体は、示差走査熱量計
(DSC)を用いて測定した吸熱曲線が前記条件を満た
す結晶性熱可塑性樹脂に、これに含浸させるべき物質の
臨界圧力以上の加圧下で該物質の流体を含浸させる工程
(以下、含浸工程)、および該物質を含浸させた前記結
晶性熱可塑性樹脂を前記加圧状態から開放する工程(以
下、圧力開放工程)とからなる方法により製造すること
ができる。前記特定の結晶性熱可塑性樹脂を使用するこ
とにより、従来製造することができなかった微細気泡を
有する高発泡倍率の樹脂発泡体を製造することが可能と
なる。なお、以下の説明においては、主に本発明の方法
を回分方式で行う態様について述べるが、本発明の方法
には、例えば含浸工程および圧力開放工程を単軸あるい
は多軸押出機を用いて連続的に行う連続方式を適用する
こともできる。
[0012] The resin foam of the present invention can be obtained by subjecting a crystalline thermoplastic resin whose endothermic curve measured by a differential scanning calorimeter (DSC) to satisfy the above conditions to a pressure higher than the critical pressure of a substance to be impregnated into the crystalline thermoplastic resin. A step of impregnating the substance with a fluid (hereinafter, impregnating step), and a step of releasing the crystalline thermoplastic resin impregnated with the substance from the pressurized state (hereinafter, pressure releasing step). Can be manufactured. By using the specific crystalline thermoplastic resin, it becomes possible to manufacture a resin foam having a high expansion ratio and having fine cells which could not be manufactured conventionally. In the following description, an embodiment in which the method of the present invention is mainly performed in a batch mode will be described. However, in the method of the present invention, for example, the impregnation step and the pressure release step are performed continuously using a single-screw or multi-screw extruder. It is also possible to apply a continuous method that is performed periodically.

【0013】含浸工程では、前記結晶性熱可塑性樹脂
に、これに含浸させるべき物質(含浸物質)の臨界圧力
以上の加圧下において該含浸物質の流体(すなわち、液
体または超臨界流体)を含浸させる。好ましく用いられ
る物質としては、常温常圧下で気体状の物質、例えばブ
タン、ペンタン等の有機化合物、あるいは二酸化炭素、
空気、水素、窒素、ネオン、アルゴン等の無機化合物が
挙げられる。前記含浸物質は、2種以上の混合物であっ
てもよい。扱い易さの観点からは、二酸化炭素、空気、
窒素、ネオン、アルゴン等の不活性物質が好ましい。特
に、経済性および安全性の観点から、二酸化炭素好まし
く用いられる。
In the impregnation step, the crystalline thermoplastic resin is impregnated with a fluid of the impregnating substance (ie, liquid or supercritical fluid) under a pressure equal to or higher than the critical pressure of the substance to be impregnated (impregnating substance). . As the substance preferably used, a gaseous substance at normal temperature and normal pressure, for example, an organic compound such as butane and pentane, or carbon dioxide,
Examples include inorganic compounds such as air, hydrogen, nitrogen, neon, and argon. The impregnated material may be a mixture of two or more. In terms of ease of handling, carbon dioxide, air,
Inert substances such as nitrogen, neon and argon are preferred. Particularly, carbon dioxide is preferably used from the viewpoint of economy and safety.

【0014】前記含浸物質の結晶性熱可塑性樹脂への含
浸量は、その含浸物質の種類、目的とする樹脂発泡体の
発泡倍率、気泡密度等に応じて適宜設定され、含浸量の
下限は、通常は十分な発泡倍率で微細気泡が形成される
だけの量である。含浸量の上限は特にないが、通常は含
浸物質の結晶性熱可塑性樹脂に対する飽和溶解量または
それに近い量である。含浸量は、必ずしも飽和溶解量に
達する必要はない。例えばポリオレフィン系樹脂を主成
分とする結晶性熱可塑性樹脂に二酸化炭素を含浸させる
場合の好ましい含浸量は、前記樹脂100重量部に対し
て、0.1重量部以上20重量部以下の範囲、より好ま
しくは0.1〜15重量部の範囲である。
The amount of the impregnating substance impregnated into the crystalline thermoplastic resin is appropriately set according to the type of the impregnating substance, the expansion ratio of the target resin foam, the cell density, and the like. Usually, the amount is such that fine bubbles are formed at a sufficient expansion ratio. Although there is no particular upper limit for the amount of impregnation, it is usually an amount of saturated dissolution of the impregnated substance in the crystalline thermoplastic resin or an amount close thereto. The impregnation amount does not necessarily have to reach the saturation dissolution amount. For example, a preferred amount of impregnation when carbon dioxide is impregnated into a crystalline thermoplastic resin containing a polyolefin resin as a main component is in the range of 0.1 to 20 parts by weight, based on 100 parts by weight of the resin. Preferably it is in the range of 0.1 to 15 parts by weight.

【0015】含浸物質を結晶性熱可塑性樹脂に含浸させ
る際の圧力(以下、含浸圧力)、温度、および含浸に要
する時間等は所望の含浸量により異なる。例えば、臨界
圧力が約7.5MPaである二酸化炭素を結晶性熱可塑
性樹脂に含浸させる場合、含浸圧力はこの臨界圧力以上
であればよいが、10MPa以上が好ましい。また含浸
圧力の上限値は装置等の能力に依存するが、通常は50
MPa程度である。
The pressure (hereinafter referred to as impregnation pressure), temperature and time required for impregnation of the crystalline thermoplastic resin with the impregnated substance vary depending on the desired impregnation amount. For example, when the crystalline thermoplastic resin is impregnated with carbon dioxide having a critical pressure of about 7.5 MPa, the impregnating pressure may be at least this critical pressure, but is preferably at least 10 MPa. Although the upper limit of the impregnation pressure depends on the capacity of the apparatus and the like, it is usually 50.
It is on the order of MPa.

【0016】含浸物質を結晶性熱可塑性樹脂に含浸させ
る際の温度(以下、含浸温度)は、該含浸物質が液体ま
たは超臨界流体となる温度であり、該含浸物質の臨界温
度以上であることが好ましい。含浸温度の上限値は使用
する結晶性熱可塑性樹脂が分解しない温度であればよ
く、通常は300℃以下である。臨界温度が約31℃で
ある二酸化炭素を用いる場合、含浸温度はこの臨界温度
以上であることが好ましく、特に、結晶性熱可塑性樹脂
への二酸化炭素の浸透速度と生産性の観点から60℃以
上が好ましく、また、結晶性熱可塑性樹脂への溶解量の
観点から230℃以下が好ましい。
The temperature at which the impregnated substance is impregnated into the crystalline thermoplastic resin (hereinafter referred to as impregnation temperature) is a temperature at which the impregnated substance becomes a liquid or a supercritical fluid, and is not lower than the critical temperature of the impregnated substance. Is preferred. The upper limit of the impregnation temperature may be any temperature at which the crystalline thermoplastic resin used does not decompose, and is usually 300 ° C. or lower. When carbon dioxide having a critical temperature of about 31 ° C. is used, the impregnation temperature is preferably equal to or higher than the critical temperature, and in particular, is preferably 60 ° C. or higher from the viewpoint of the rate of penetration of carbon dioxide into the crystalline thermoplastic resin and productivity. It is preferably 230 ° C. or lower from the viewpoint of the amount of dissolution in the crystalline thermoplastic resin.

【0017】含浸物質を結晶性熱可塑性樹脂に含浸させ
るのに費やす時間(以下、含浸時間)は、含浸物質の結
晶性熱可塑性樹脂への浸透速度により異なり、上記含浸
圧力と含浸温度に依存する。含浸操作を継続すると含浸
量は通常飽和溶解量まで増加するが、含浸時間は、通常
は長くとも含浸物質の含浸量が飽和溶解量に達するまで
の時間に設定され、通常は数時間までである。生産性の
観点からは含浸時間は短いほど好ましく、必ずしも飽和
溶解量に達するまで含浸させる必要はない。例えば超臨
界状態の二酸化炭素の場合の含浸時間は、通常は数分か
ら5時間程度であり、生産性と含浸量のバランスの観点
からは数分程度から3時間程度が好ましい。
The time required to impregnate the crystalline thermoplastic resin with the impregnated substance (hereinafter referred to as impregnation time) depends on the rate of penetration of the impregnated substance into the crystalline thermoplastic resin, and depends on the impregnation pressure and the impregnation temperature. . When the impregnation operation is continued, the impregnation amount usually increases up to the saturation dissolution amount, but the impregnation time is usually set to the time until the impregnation amount of the impregnating substance reaches the saturation dissolution amount at most, and is usually up to several hours. . From the viewpoint of productivity, the shorter the impregnation time is, the more preferable it is. It is not always necessary to impregnate until the saturation amount is reached. For example, the impregnation time in the case of carbon dioxide in a supercritical state is usually about several minutes to about 5 hours, and is preferably about several minutes to about 3 hours from the viewpoint of the balance between productivity and impregnation amount.

【0018】本発明の方法では、前記含浸工程に引き続
いて、含浸物質が含浸した結晶性熱可塑性を前記加圧状
態から開放する工程(圧力開放工程)が行われる。圧力
開放工程において、加圧状態から開放された結晶性熱可
塑性樹脂の内部で発泡が起こる。圧力開放工程の後に結
晶性熱可塑性樹脂を更に加熱してもよい。前記圧力開放
工程において、加圧状態からの開放はできるだけ短時間
で行うのが好ましい。この操作が緩慢に行われると、所
望の気泡密度を有する発泡体が得られないこともある。
通常は、含浸圧力から常圧付近まで瞬間的に圧力を開放
する。ここで、「圧力を瞬間的に開放する」とは、でき
るだけ短時間に含浸圧力から常圧付近まで圧力を低下さ
せることを意味する。含浸物質の含浸に用いた容器の容
量、排ガス管の太さ等にもよるが、含浸圧力から常圧付
近までの圧力低下時間は、通常は10秒間未満であり、
約3秒間以下が好ましい。
In the method of the present invention, subsequent to the impregnation step, a step of releasing the crystalline thermoplastic impregnated with the impregnating substance from the pressurized state (pressure release step) is performed. In the pressure release step, foaming occurs inside the crystalline thermoplastic resin released from the pressurized state. After the pressure release step, the crystalline thermoplastic resin may be further heated. In the pressure release step, the release from the pressurized state is preferably performed in as short a time as possible. If this operation is performed slowly, a foam having a desired cell density may not be obtained.
Normally, the pressure is released instantaneously from the impregnation pressure to around normal pressure. Here, "to release the pressure momentarily" means to reduce the pressure from the impregnation pressure to near normal pressure in as short a time as possible. Depending on the capacity of the container used for impregnation of the impregnating substance, the thickness of the exhaust gas pipe, the pressure drop time from the impregnation pressure to around normal pressure is usually less than 10 seconds,
Preferably less than about 3 seconds.

【0019】上記圧力開放工程における圧力の急激な開
放は、含浸工程よりも高い温度で行ってもよいし、含浸
工程よりも低い温度で行ってもよく、あるいは含浸工程
と同じ温度で行なってもよい。より微細な気泡径と高い
気泡密度を達成するために、含浸工程よりも低い温度で
含浸工程の圧力開放を行なうことが好ましい。
The rapid release of the pressure in the pressure release step may be performed at a higher temperature than the impregnation step, at a lower temperature than the impregnation step, or at the same temperature as the impregnation step. Good. In order to achieve a finer cell diameter and a higher cell density, it is preferable to release the pressure in the impregnation step at a lower temperature than in the impregnation step.

【0020】例えば、含浸工程を含浸物質の臨界温度以
上かつ結晶性熱可塑性樹脂の融点以下の温度で行い、圧
力開放工程において、含浸工程の温度よりも高い温度、
例えば結晶性熱可塑性樹脂の融点以上の温度で圧力を急
激に開放することにより気泡核を生成、成長させ、圧力
の急激な開放による温度低下を利用して気泡核の成長を
適度に制御することにより発泡体を得ることができる。
また、含浸工程において結晶性熱可塑性樹脂をその融点
以上とし、圧力開放工程において該結晶性熱可塑性樹脂
を一旦含浸工程よりも低い温度、例えば結晶性熱可塑性
樹脂の融点以下の温度まで冷却し、その後に圧力を急激
に開放して気泡核を生成させ、更に該気泡核を適度に成
長させて発泡体を得ることもできる。更には、含浸工程
で温度を結晶性熱可塑性樹脂の融点以下とし、その温度
で圧力開放工程を行なってもよい。より微細な気泡径と
高い気泡密度を得るためには、含浸工程よりも低い温度
で圧力の開放を行なうことが好ましい。
For example, the impregnating step is performed at a temperature not lower than the critical temperature of the impregnating substance and not higher than the melting point of the crystalline thermoplastic resin.
For example, generating and growing cell nuclei by rapidly releasing pressure at a temperature equal to or higher than the melting point of the crystalline thermoplastic resin, and appropriately controlling the growth of cell nuclei by utilizing the temperature drop caused by the rapid release of pressure. By the above, a foam can be obtained.
Further, the crystalline thermoplastic resin in the impregnation step and its melting point or higher, in the pressure release step the crystalline thermoplastic resin is once lower than the temperature of the impregnation step, for example, cooled to a temperature below the melting point of the crystalline thermoplastic resin, Thereafter, the pressure can be suddenly released to generate cell nuclei, and the cell nuclei can be grown appropriately to obtain a foam. Further, in the impregnation step, the temperature may be lower than the melting point of the crystalline thermoplastic resin, and the pressure release step may be performed at that temperature. In order to obtain a finer cell diameter and a higher cell density, it is preferable to release the pressure at a lower temperature than in the impregnation step.

【0021】破泡をできるだけ抑制するためには、圧力
開放時の結晶性熱可塑性樹脂の温度は、その樹脂の融点
以下が好ましく、微細な気泡径と高い気泡密度を達成す
るためには、(結晶性熱可塑性樹脂の融点−100℃)
以上、結晶性熱可塑性樹脂の融点以下の範囲が好まし
く、(結晶性熱可塑性樹脂の融点−50℃)以上、結晶
性熱可塑性樹脂の融点以下の範囲が特に好ましい。圧力
を開放するときの温度は必ずしも一定である必要はな
く、通常は圧力開放と共に温度低下が起こる。この温度
の低下を必ずしも制御する必要はないが、気泡密度の制
御の観点からは、温度の低下を制御する方が好ましい。
In order to suppress bubble breakage as much as possible, the temperature of the crystalline thermoplastic resin when the pressure is released is preferably equal to or lower than the melting point of the resin, and in order to achieve a fine bubble diameter and a high bubble density, Melting point of crystalline thermoplastic resin-100 ° C)
As described above, the range of not more than the melting point of the crystalline thermoplastic resin is preferable, and the range of not less than (the melting point of the crystalline thermoplastic resin−50 ° C.) and not more than the melting point of the crystalline thermoplastic resin is particularly preferable. The temperature at the time of releasing the pressure does not necessarily have to be constant, and usually, the temperature decreases with the release of the pressure. Although it is not always necessary to control the temperature drop, it is preferable to control the temperature drop from the viewpoint of controlling the bubble density.

【0022】また、気泡密度をより適切に制御するため
に圧力開放工程において、気泡核を生成させる過程に続
いて行われる気泡核を成長させる過程、および気泡の成
長を停止させる過程の両過程の温度、時間を更に制御す
ることが好ましい。
In order to more appropriately control the bubble density, in the pressure release step, both the step of growing the bubble nuclei, which is performed subsequent to the step of generating the bubble nuclei, and the step of stopping the growth of the bubbles are performed. It is preferable to further control the temperature and time.

【0023】上記気泡核成長の過程において、気泡核を
成長させる温度は、破泡をできるだけ抑制するために、
結晶性熱可塑性樹脂の結晶化温度以上、融点以下の範囲
内に制御することが好ましい。また気泡核を成長させる
時間は、所望の気泡密度に応じて適宜設定されるが、通
常は20秒〜30秒である。
In the above-described bubble nucleus growth process, the temperature at which the bubble nuclei are grown is controlled in order to suppress bubble break as much as possible.
It is preferable to control the temperature within a range from the crystallization temperature of the crystalline thermoplastic resin to the melting point or less. The time for growing the bubble nuclei is appropriately set according to the desired bubble density, and is usually 20 seconds to 30 seconds.

【0024】気泡の過度の成長による破泡を抑制するた
めに、気泡核成長の過程の温度と共に、気泡の成長停止
の過程の温度をも制御することが好ましい。気泡の成長
を止める時の温度は、結晶性熱可塑性樹脂の結晶化温度
以下が好ましく、発泡体全体が結晶化温度以下になるま
で十分に冷却することが好ましい。
In order to suppress bubble breakage due to excessive growth of bubbles, it is preferable to control not only the temperature of the bubble nucleus growth process but also the temperature of the bubble growth stop process. The temperature at which the growth of the bubbles is stopped is preferably equal to or lower than the crystallization temperature of the crystalline thermoplastic resin, and is preferably sufficiently cooled until the entire foam becomes equal to or lower than the crystallization temperature.

【0025】[0025]

【発明の効果】本発明によれば、高発泡倍率で微細気泡
を有し、軽量性に優れ、二次加工性にも優れた熱可塑性
樹脂発泡体が提供される。この樹脂発泡体は、機械的強
度にも優れており、例えば自動車用材、食品用トレーま
たは容器、建材、緩衝材、断熱材等に好適に用いること
ができる。
According to the present invention, there is provided a thermoplastic resin foam having high expansion ratio, fine cells, excellent lightness, and excellent secondary workability. This resin foam has excellent mechanical strength, and can be suitably used for, for example, automotive materials, food trays or containers, building materials, cushioning materials, heat insulating materials, and the like.

【0026】[0026]

【実施例】以下に本発明を実施例によって更に説明する
が、本発明はかかる実施例に限定されない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0027】示差走査熱量測定(DSC) パーキンエルマー社製のDSC−7型を用い、約10m
gの試料を10℃/minの昇温速度で30℃から20
0℃まで昇温させた後、1分間その温度を保持し、10
℃/minの速度で30℃まで冷却結晶化させ、1分間
その温度を保持し、再び10℃/minの速度で昇温し
て吸熱曲線を記録した。
Differential Scanning Calorimetry (DSC) Using a DSC-7 type manufactured by PerkinElmer, about 10 m
g of the sample at a rate of 10 ° C / min from 30 ° C to 20 ° C.
After the temperature was raised to 0 ° C., the temperature was maintained for one minute,
The crystal was cooled to 30 ° C. at a rate of ° C./min, maintained at that temperature for 1 minute, and heated again at a rate of 10 ° C./min to record an endothermic curve.

【0028】平均気泡径 発泡体を液体窒素で冷却後、剃刀で発泡体を切断しその
断面を走査型電子顕微鏡にて撮影した。倍率は電子顕微
鏡の視野内に約50個程度の気泡が見えるように調節し
た。撮影した発泡体断面の写真より、視野内の各気泡の
最大長さを測定し、更にその平均値を求めて平均気泡径
(2r)とした。
[0028] After cooling the average cell diameter foam in liquid nitrogen, were taken in cross section by cutting the foam with a razor under a scanning electron microscope. The magnification was adjusted so that about 50 bubbles could be seen in the field of view of the electron microscope. The maximum length of each cell in the visual field was measured from the photograph of the photographed cross section of the foam, and the average value was determined to obtain the average cell diameter (2r).

【0029】平均気泡密度 平均気泡径の測定に用いた電子顕微鏡による写真を用い
て発泡体の断面積1cm 2あたりの気泡数(n)を算出
し、それを3/2乗して単位体積当たりの気泡数(N)
を算出した。この気泡数(N)と、上記で求めた平均気
泡径(2r)から結晶性熱可塑性樹脂の単位実体積当た
りの気泡数、すなわち平均気泡密度(単位:個気泡/c
3材料)を求めた。
[0029]Average bubble density Using the electron microscope photograph used to measure the average bubble diameter
1cm cross section of foam TwoCalculate the number of bubbles per unit (n)
Then, it is raised to the power of 3/2 and the number of bubbles per unit volume (N)
Was calculated. The number of air bubbles (N) and the average air
From the bubble diameter (2r) per unit actual volume of the crystalline thermoplastic resin
Number of bubbles, that is, average bubble density (unit: individual bubbles / c
mThreeMaterial).

【0030】二次加工性 厚みmmの発泡シートを真空成形にて直径15cm、高
さ5cmの容器に成形し、得られた成形体の外観を評価
した。窪み、厚みむら等の外観不良が認められる面積を
全表面積に対する比を求めた。この比の値が高いものほ
ど二次加工性に劣り、値が低いほど二次加工性に優れ
る。
Secondary workability A foam sheet having a thickness of mm was formed into a container having a diameter of 15 cm and a height of 5 cm by vacuum forming, and the appearance of the obtained formed body was evaluated. The ratio of the area where appearance defects such as depressions and uneven thickness were recognized to the total surface area was determined. The higher the value of this ratio, the lower the secondary workability, and the lower the value, the better the secondary workability.

【0031】実施例1 直鎖状低密度ポリエチレン(住友化学工業製 VL20
0;MFR=2g/10分;融点=109℃)を160
℃で3分間余熱した後、1分間プレスし、30℃に保っ
たプレス盤にて5分間冷却することによりシート(厚さ
1.5mm、縦20cm、横20cm)を作成した。使
用したポリエチレンのDSCによる吸熱曲線を図2に示
す。次いで、圧力ゲージと排圧バルブとを備え、予め所
定の温度にまで昇温した耐圧容器内に前記シートを置い
て蓋をした。二酸化炭素を耐圧容器内に圧入してこれを
超臨界状態とし、含浸圧力:20MPa、含浸温度:9
0℃、含浸時間:2時間でシートに含浸させた。なお、
圧力ゲージが所定の含浸圧力となった瞬間を含浸開始点
とし、含浸圧力を維持したまま含浸操作を継続した。所
定の含浸時間が経過した後、耐圧容器から排圧バルブを
経て二酸化炭素を排出し、常圧(約0.1MPa)にな
るまで耐圧容器内の圧力を一気に開放した。圧力開放に
2〜3秒程度要した。圧力開放時の温度は90℃であっ
た。耐圧容器内が常圧となった後、得られた樹脂発泡体
を取り出し、平均気泡径および平均気泡密度を測定し
た。得られた樹脂発泡体を用いて真空成形を行った。結
果を表2に示す。
Example 1 Linear low density polyethylene (VL20 manufactured by Sumitomo Chemical Co., Ltd.)
0; MFR = 2 g / 10 min; melting point = 109 ° C.) to 160
After preheating at 3 ° C. for 3 minutes, the sheet was pressed for 1 minute, and cooled on a press plate kept at 30 ° C. for 5 minutes to prepare a sheet (thickness: 1.5 mm, length: 20 cm, width: 20 cm). FIG. 2 shows an endothermic curve of the used polyethylene by DSC. Next, the sheet was placed in a pressure-resistant container, which was provided with a pressure gauge and an exhaust pressure valve and was previously heated to a predetermined temperature, and was capped. Carbon dioxide is injected into the pressure vessel to make it supercritical, impregnation pressure: 20 MPa, impregnation temperature: 9
The sheet was impregnated at 0 ° C. for 2 hours. In addition,
The moment when the pressure gauge reached the predetermined impregnation pressure was defined as the impregnation start point, and the impregnation operation was continued while maintaining the impregnation pressure. After a lapse of a predetermined impregnation time, carbon dioxide was discharged from the pressure-resistant container via a discharge valve, and the pressure in the pressure-resistant container was released at a stretch until the pressure reached normal pressure (about 0.1 MPa). It took about 2 to 3 seconds to release the pressure. The temperature when the pressure was released was 90 ° C. After the inside of the pressure vessel became normal pressure, the obtained resin foam was taken out, and the average cell diameter and the average cell density were measured. Vacuum molding was performed using the obtained resin foam. Table 2 shows the results.

【0032】比較例1 実施例1で使用した直鎖状低密度ポリエチレンに代え
て、直鎖状低密度ポリエチレン(住友化学工業製 FZ
204―0; MFR=2g/10分; 融点=124
℃)を使用し、含浸条件を表1に示した通りとした以外
は実施例1と同様にして樹脂発泡シートを作成し、更に
真空成形を行った。使用したポリエチレンのDSCによ
る吸熱曲線を図2に示す。評価結果を表2に示す。
Comparative Example 1 A linear low-density polyethylene (FZ manufactured by Sumitomo Chemical Co., Ltd.) was used in place of the linear low-density polyethylene used in Example 1.
204-0; MFR = 2 g / 10 min; melting point = 124
C.), and a resin foam sheet was prepared in the same manner as in Example 1 except that the impregnation conditions were as shown in Table 1, and vacuum forming was further performed. FIG. 2 shows an endothermic curve of the used polyethylene by DSC. Table 2 shows the evaluation results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】結晶性熱可塑性樹脂のDSCによる吸熱曲線の
例(模式図)である。
FIG. 1 is an example (schematic diagram) of an endothermic curve by DSC of a crystalline thermoplastic resin.

【図2】実施例1で使用した直鎖状低密度ポリエチレン
のDSCによる吸熱曲線である。
FIG. 2 is an endothermic curve by DSC of the linear low-density polyethylene used in Example 1.

【図3】比較例1で使用した直鎖状低密度ポリエチレン
のDSCによる吸熱曲線である。
FIG. 3 is an endothermic curve by DSC of the linear low-density polyethylene used in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA17 AA18 AA20 AA24 AA32 AA42 AA50 AA66 BA32 BA33 BA37 BA39 CA34 CA35 CA39 DA02 DA03 4F212 AA08 AB02 AB16 AG01 AG20 UA17 UB01 UC05 UC06 UG02 UN11 UN21 4J002 AA011 BB031 BB111 DA006 DE016 EA016  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4F074 AA17 AA18 AA20 AA24 AA32 AA42 AA50 AA66 BA32 BA33 BA37 BA39 CA34 CA35 CA39 DA02 DA03 4F212 AA08 AB02 AB16 AG01 AG20 UA17 UB01 UC05 UC06 UG02 UN11 UN1 4J003 A01 BB01

Claims (3)

【目的】 【特許請求の範囲】[Purpose] [Claims] 【請求項1】結晶性熱可塑性樹脂からなり、該結晶性熱
可塑性樹脂の示差走査熱量計(DSC)を用いて10℃
/minの昇温速度で測定したときの吸熱曲線が一つ以
上の吸熱ピークを有し、且つ該一つ以上の吸熱ピークの
うち最高ピーク点をA、点Aから温度軸に下した垂線が
吸熱曲線のベースラインと交差する点をB、上記垂線の
線分ABを9:1に内分する点をCとし、このCを通る
温度軸に平行な直線が最も低温側で吸熱曲線と交差する
点をD、最も高温側で交差する点をEとしたとき、線分
DEの長さで示される温度幅が20℃以上であり、かつ
平均気泡径が10μm以下、発泡倍率が2倍以上40倍
以下であることを特徴とする熱可塑性樹脂発泡体。
1. A crystalline thermoplastic resin, wherein the crystalline thermoplastic resin has a temperature of 10 ° C. using a differential scanning calorimeter (DSC).
The endothermic curve measured at a heating rate of / min has one or more endothermic peaks, and the highest peak point among the one or more endothermic peaks is A, and a perpendicular line from the point A to the temperature axis is A point that intersects with the base line of the endothermic curve is B, and a point that internally divides the perpendicular line segment AB at 9: 1 is C. A straight line parallel to the temperature axis passing through C intersects the endothermic curve at the lowest temperature side. D is the point at which the highest temperature intersects, and E is the point where the highest temperature crosses, the temperature width indicated by the length of the line segment DE is 20 ° C. or more, the average cell diameter is 10 μm or less, and the expansion ratio is 2 or more. A thermoplastic resin foam having a size of 40 times or less.
【請求項2】示差走査熱量計(DSC)を用いて10℃
/minの昇温速度で測定したときの吸熱曲線が一つ以
上の吸熱ピークを有し、且つ該一つ以上の吸熱ピークの
うち最高ピーク点をA、点Aから温度軸に下した垂線が
吸熱曲線のベースラインと交差する点をB、上記垂線の
線分ABを9:1に内分する点をCとし、このCを通る
温度軸に平行な直線が最も低温側で吸熱曲線と交差する
点をD、最も高温側で交差する点をEとしたとき、線分
DEの長さで示される温度幅が20℃以上である結晶性
熱可塑性樹脂に、これに含浸させるべき物質の臨界圧力
以上の加圧下で該物質の流体を含浸させる工程、および
該物質を含浸させた前記結晶性熱可塑性樹脂を前記加圧
状態から開放する工程とからなることを特徴とする熱可
塑性樹脂発泡体の製造方法。
2. Use of a differential scanning calorimeter (DSC) at 10 ° C.
The endothermic curve measured at a heating rate of / min has one or more endothermic peaks, and the highest peak point among the one or more endothermic peaks is A, and a perpendicular line from the point A to the temperature axis is A point that intersects with the base line of the endothermic curve is B, and a point that internally divides the perpendicular line segment AB at 9: 1 is C. A straight line parallel to the temperature axis passing through C intersects the endothermic curve at the lowest temperature side. Where D is the point of intersection and E is the point of intersection at the highest temperature, the critical temperature of the material to be impregnated into the crystalline thermoplastic resin having a temperature width indicated by the length of the line segment DE of 20 ° C. or more. A step of impregnating a fluid of the substance under a pressure equal to or higher than a pressure, and a step of releasing the crystalline thermoplastic resin impregnated with the substance from the pressurized state. Manufacturing method.
【請求項3】結晶性熱可塑性樹脂がその融点以下にある
状態で前記加圧状態からの開放工程を行うことを特徴と
する請求項2に記載の方法。
3. The method according to claim 2, wherein the step of releasing from the pressurized state is performed while the crystalline thermoplastic resin is at or below its melting point.
JP11213589A 1999-03-30 1999-07-28 Thermoplastic resin foamed product and its production Pending JP2001040131A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11213589A JP2001040131A (en) 1999-07-28 1999-07-28 Thermoplastic resin foamed product and its production
EP00106631A EP1040902B1 (en) 1999-03-30 2000-03-28 Foamed resin article
CN00108892.0A CN1270968A (en) 1999-03-30 2000-03-28 Process for preparing foam resin product
DE60031026T DE60031026T2 (en) 1999-03-30 2000-03-28 Object made of foamed resin
US09/536,802 US6399667B1 (en) 1999-03-30 2000-03-28 Process for producing foamed resin article
US10/094,801 US6596783B2 (en) 1999-03-30 2002-03-12 Process for producing foamed resin article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11213589A JP2001040131A (en) 1999-07-28 1999-07-28 Thermoplastic resin foamed product and its production

Publications (1)

Publication Number Publication Date
JP2001040131A true JP2001040131A (en) 2001-02-13

Family

ID=16641711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11213589A Pending JP2001040131A (en) 1999-03-30 1999-07-28 Thermoplastic resin foamed product and its production

Country Status (1)

Country Link
JP (1) JP2001040131A (en)

Similar Documents

Publication Publication Date Title
KR960003278B1 (en) Polypropylene foam sheets
CN101469085B (en) Foamed polyolefin resin beads
US8063177B2 (en) Pre-expanded polypropylene resin particle, and method for production thereof
CN114341237B (en) Polypropylene resin foam pellets, process for producing the same, and polypropylene resin foam molded article
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JPH06192460A (en) Expanded polypropylene resin sheet
EP1040902B1 (en) Foamed resin article
Xanthos et al. Parameters affecting extrusion foaming of PET by gas injection
EP3707196B1 (en) Foamed polyethylene article
US6607682B1 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JP5841076B2 (en) Polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molding
JP2001040131A (en) Thermoplastic resin foamed product and its production
JP2000281829A (en) Foamed body
JP2000129028A (en) Polypropylene resin foamed particle and molded product thereof
JP3583543B2 (en) Polypropylene resin foam particles
JP2022152955A (en) Manufacturing method for extruded polypropylene resin foamed particles
JP3717377B2 (en) Non-crosslinked polyethylene resin foam, method for producing the same, and molded article using the same
JP4332938B2 (en) Manufacturing method of resin foam
JP2016006142A (en) Resin composition and foam made thereof
JP3537001B2 (en) Expanded polypropylene resin particles and method for producing the same
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JP3763725B2 (en) Polypropylene resin particles for foaming and method for producing the same
CN115873296A (en) Multilayer foamed particles
EP4079797A1 (en) Multilayer expanded beads and molded article thereof
JP2006028255A (en) Polyolefin-based resin, foamable polyolefin-based resin composition and polyolefin-based resin foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414