JP2001039772A - High strength silicon carbide sintered body and its production - Google Patents

High strength silicon carbide sintered body and its production

Info

Publication number
JP2001039772A
JP2001039772A JP11210366A JP21036699A JP2001039772A JP 2001039772 A JP2001039772 A JP 2001039772A JP 11210366 A JP11210366 A JP 11210366A JP 21036699 A JP21036699 A JP 21036699A JP 2001039772 A JP2001039772 A JP 2001039772A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
sintered body
oxide
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11210366A
Other languages
Japanese (ja)
Other versions
JP3051931B1 (en
Inventor
Yu Shu
游 周
Motohiro Toriyama
素弘 鳥山
Kiyoshi Hirao
喜代司 平尾
Hidehiko Tanaka
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, National Institute for Research in Inorganic Material filed Critical Agency of Industrial Science and Technology
Priority to JP11210366A priority Critical patent/JP3051931B1/en
Application granted granted Critical
Publication of JP3051931B1 publication Critical patent/JP3051931B1/en
Publication of JP2001039772A publication Critical patent/JP2001039772A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength silicon carbide sintered body which is obtained by adding a non-oxide sintering aid capable of accelerating the densification even at a low temp. to be sintered while lowering the sintering temp. of the silicon carbide sintered body and to provide a method for producing the same in a short time by a pulse electric current sintering method. SOLUTION: The high strength silicon carbide sintered body is obtained by adding 1.5 to 10.0 wt.% of a non-oxide sintering aid, in which aluminum carbide and boron carbide are mixed in such a ratio that the most preferable molar ratio of the former to the latter is 2:1, to a fine silicon carbide powder produced by a CVD method or from an organic raw material and having an average particle size of about several tens of nanometer and then sintering the obtained mixture by applying electric pulses. The method for producing the high strength silicon carbide sintered body comprises adding 1.5 to 10.0 wt.% of the non-oxide sintering aid to the fine silicon carbide powder produced by a CVD method or from an organic raw material and having the average particle size of about several tens of nanometer and then sintering the obtained mixture by applying electric pulses at 1,500 to 1,750 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度炭化ケイ素
焼結体とその製造方法に関するものであり、更に詳しく
は、ガソリンエンジン、ディーゼルエンジン等の熱機関
や線引きダイス等の高い強度と耐摩耗性が要求される機
械構造用部材となる炭化ケイ素セラミックス及びその製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength silicon carbide sintered body and a method for producing the same, and more particularly, to a high-strength and wear-resistant heat engine such as a gasoline engine or a diesel engine or a drawing die. TECHNICAL FIELD The present invention relates to a silicon carbide ceramic which is a member for a mechanical structure requiring a property and a method for producing the same.

【0002】[0002]

【従来の技術】従来、炭化ケイ素セラミックスは、例え
ば、炭化ケイ素粉末に、ホウ素と炭素からなる焼結助剤
を加え、アルゴン雰囲気下で、2100℃以上の温度で
焼結されてきた。炭化ケイ素セラミックスは化学的安定
性に優れ、耐摩耗性、高温強度とも優れた構造材料であ
り、発電用ガスタービンなどの材料に用いられている。
炭化ケイ素セラミックスは共有結合性が強く、拡散係数
も小さく難焼結性であるため、純粋な炭化ケイ素粉末の
成形体を加熱しても殆ど焼結しない。そのため、焼結の
際、一般に焼結助剤が添加される。焼結助剤の添加によ
って焼結体は緻密化し、強度向上が実現できる。通常、
焼結はホットプレスによる焼結が行われているが、無加
圧での焼結の検討も行われてきた。無加圧焼結の例とし
ては、ホウ素、炭素を助剤として添加する固相焼結の例
と、アルミナや希土類酸化物を助剤として添加する液相
焼結の例がある。
2. Description of the Related Art Conventionally, silicon carbide ceramics have been sintered at, for example, a temperature of 2100 ° C. or more in an argon atmosphere by adding a sintering aid consisting of boron and carbon to silicon carbide powder. Silicon carbide ceramics are structural materials that are excellent in chemical stability, wear resistance, and high-temperature strength, and are used for materials such as gas turbines for power generation.
Since silicon carbide ceramics have a strong covalent bond, a small diffusion coefficient, and are difficult to sinter, they hardly sinter even when a molded body of pure silicon carbide powder is heated. Therefore, a sintering aid is generally added during sintering. By adding the sintering aid, the sintered body is densified and the strength can be improved. Normal,
Although sintering is performed by hot pressing, sintering without pressure has also been studied. Examples of pressureless sintering include solid phase sintering in which boron and carbon are added as assistants, and liquid phase sintering in which alumina and rare earth oxides are added as assistants.

【0003】また、有機ケイ素化合物の骨格又は側鎖に
金属、又は金属酸化物を導入し、それから炭化ケイ素や
窒化ケイ素などのセラミックスを作製する試みは数多く
ある。例えば、特公昭56−13645では、主な骨格
成分として、SiとBとOを含み、側鎖にCを含む基を
有する有機ケイ素高分子から炭化ケイ素焼結体を作製す
る方法が提案されている。また、特公昭57−3854
9では、有機ケイ素化合物の一種であるポリカルボシラ
ンにB、Al、Fe、又はTiの中から選ばれる少なく
とも一種の元素もしくはそれを含む化合物が化学結合さ
れたものから炭化ケイ素セラミックスを作製する方法が
提案されている。特開昭57−22169では、バナジ
オ−シロキサン結合(V−O−Si)を一部含むポリカ
ルボシランを非酸化物系セラミックス粉末に混合するこ
とによって耐熱性セラミック焼結体を作る方法が提案さ
れている。また、特公昭59−10945では、Siと
BとOを含むセミ無機ポリマーを酸化物、炭化物、窒化
物、ほう化物、ケイ化物などのセラミック粉末と混合す
ることによって、耐熱性セラミック焼結成形体を得る方
法が提案されている。更に特開昭60−151276で
は炭化ケイ素粉末と、ケイ素、炭素、ホウ素及び窒素を
主格成分とする有機金属重合体の均一分散混合物より炭
化ケイ素焼結体を得る方法が提案されている。
There have been many attempts to introduce a metal or metal oxide into the skeleton or side chain of an organosilicon compound and then produce ceramics such as silicon carbide or silicon nitride. For example, Japanese Patent Publication No. 56-13645 proposes a method for producing a silicon carbide sintered body from an organosilicon polymer having Si, B and O as main skeleton components and having a group containing C in a side chain. I have. In addition, Japanese Patent Publication No. 57-3854
In No. 9, a method of producing a silicon carbide ceramic from a material in which at least one element selected from B, Al, Fe, or Ti or a compound containing the same is chemically bonded to polycarbosilane, which is a kind of an organosilicon compound, Has been proposed. JP-A-57-22169 proposes a method for producing a heat-resistant ceramic sintered body by mixing a polycarbosilane partially containing a vanadio-siloxane bond (VO-Si) with a non-oxide ceramic powder. ing. In Japanese Patent Publication No. 59-10945, a semi-inorganic polymer containing Si, B and O is mixed with a ceramic powder such as oxide, carbide, nitride, boride and silicide to form a heat-resistant ceramic sintered compact. How to get it has been proposed. Japanese Patent Application Laid-Open No. S60-151276 proposes a method for obtaining a silicon carbide sintered body from a homogeneously dispersed mixture of silicon carbide powder and an organometallic polymer containing silicon, carbon, boron and nitrogen as main components.

【0004】上記、従来の技術において、ホットプレス
による焼結は、熱と共に圧力を加えるため有効に焼結が
起こるが、セラミックスの形状に制限が生じるとの問題
がある。この点、無加圧固相焼結は、形状の制限という
問題はなく、汎用的な技術であるといえる。しかしなが
ら、無加圧焼結のうち、ホウ素、炭素を助剤として添加
することによる固相焼結は、緻密な焼結体を得るための
温度領域が非常に狭く、条件を厳密に制御する必要があ
ることが問題である。一方、アルミナや希土類酸化物、
YAG(Y3 Al512)のような複合酸化物、又は二
種以上の酸化物の複合添加による無加圧液相焼結におい
ては、無加圧固相焼結と比べ、比較的焼結条件は広い。
しかし、緻密な焼結体を得るためには、一定量以上の助
剤を添加する必要がある。この時、助剤成分が粒界に第
2相を形成し、この粒界相が高温で粘性流動による粒界
滑りを引き起こすことが問題となっている。粒界滑りは
塑性変形の一種ではあるが、不均一変形であるため、応
力集中を引き起こし、強度低下の原因となる。また、粒
界三重点に偏析した助剤成分は、耐酸化性という観点か
らも大きな問題となっている。
In the above-mentioned conventional techniques, sintering by hot pressing effectively applies pressure together with heat, but sintering occurs effectively, but there is a problem that the shape of ceramics is limited. In this regard, pressureless solid-phase sintering does not have a problem of shape limitation and can be said to be a versatile technique. However, among pressureless sintering, solid-phase sintering by adding boron and carbon as assistants has a very narrow temperature range for obtaining a dense sintered body, and the conditions must be strictly controlled. Is a problem. On the other hand, alumina and rare earth oxides,
Pressureless liquid phase sintering by the addition of a complex oxide such as YAG (Y 3 Al 5 O 12 ) or a combination of two or more oxides is relatively more sintering than pressureless solid phase sintering. The result is wide.
However, in order to obtain a dense sintered body, it is necessary to add a certain amount or more of an auxiliary agent. At this time, there is a problem that the auxiliary component forms a second phase at the grain boundary, and this grain boundary phase causes grain boundary slip due to viscous flow at a high temperature. Grain boundary slip is a kind of plastic deformation, but it is a non-uniform deformation, so it causes stress concentration and causes a decrease in strength. Auxiliary components segregated at the grain boundary triple point pose a serious problem from the viewpoint of oxidation resistance.

【0005】[0005]

【発明が解決しようとする課題】焼結温度を低下させ製
造設備や製造コストを低減させるために、低温で液相を
生成する焼結助剤の探索と炭化ケイ素超微粉の使用が検
討されてきたが、高い機械強度を保持するに十分な緻密
な焼結体を製造できなかった。本発明の目的は、炭化ケ
イ素焼結体の焼結温度を低下させると共に、低温におい
ても緻密化を促進する非酸化物系焼結助剤を加えて焼結
した高強度焼結体ならびに高強度炭化ケイ素焼結体のパ
ルス通電焼結法による短時間製造法を提供することにあ
る。
In order to lower the sintering temperature and to reduce the production equipment and production cost, the search for a sintering aid that produces a liquid phase at a low temperature and the use of ultrafine silicon carbide powder have been studied. However, a dense sintered body sufficient to maintain high mechanical strength could not be produced. An object of the present invention is to reduce the sintering temperature of a silicon carbide sintered body and to add a non-oxide sintering aid that promotes densification even at a low temperature. An object of the present invention is to provide a short-time manufacturing method of a silicon carbide sintered body by a pulse electric current sintering method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、パルス通
電加熱によって炭化ケイ素の緻密化温度が低下するとの
本発明者らの発見をもとに、パルス通電加熱に適した低
温焼結助剤の探索を行い本発明を完成させるに至った。
すなわち、焼結助剤として、一般的な炭化ケイ素の焼結
助剤であるホウ素と炭素からなる固相焼結助剤に代え
て、比較低い温度で炭化ケイ素に対する濡れ性に優れた
液相を生成する炭化アルミニウム−炭化ホウ素からなる
混合粉末を、焼結温度の低下に適したCVD法等の方法
で製造された平均粒子径が数十ナノメーターの炭化ケイ
素超微粉末に加えパルス通電することによって、焼結温
度が従来の方法と比較して300から550℃低いにも
かかわらず強度が高い炭化ケイ素セラミックスを焼結す
る方法を見出した。
Means for Solving the Problems The present inventors have found that low-temperature sintering suitable for pulse current heating is based on the discovery that the densification temperature of silicon carbide is lowered by pulse current heating. The search for agents resulted in the completion of the present invention.
That is, instead of a solid-phase sintering aid composed of boron and carbon, which are general sintering aids of silicon carbide, a liquid phase having excellent wettability to silicon carbide at a comparatively low temperature is used as a sintering aid. The resulting mixed powder of aluminum carbide and boron carbide is added to ultra-fine silicon carbide powder having an average particle size of several tens of nanometers manufactured by a method such as a CVD method suitable for lowering the sintering temperature, and pulse current is applied. Has found a method of sintering silicon carbide ceramics having high strength despite the sintering temperature being lower by 300 to 550 ° C. than the conventional method.

【0007】上記課題を解決するための本発明は、以下
の技術的手段から構成される。 (1)炭化アルミニウム、炭化ホウ素がモル比で2:1
を最適とする割合で混合された非酸化物系焼結助剤を、
CVD法や有機原料から製造された平均粒子径が数十ナ
ノメーターの微細炭化ケイ素粉末に1.5から10.0
重量%加えてパルス通電により焼結して成る高強度炭化
ケイ素焼結体。 (2)前記(1)の非酸化物系焼結助剤を、CVD法や
有機原料から合成された平均粒子径が数十ナノメータの
微細炭化ケイ素粉末に1.5から10.0重量%加え、
1500から1750℃の温度でパルス通電により焼結
することを特徴とする高強度炭化ケイ素焼結体の製造方
法。
The present invention for solving the above problems comprises the following technical means. (1) Aluminum carbide and boron carbide in a molar ratio of 2: 1
Non-oxide sintering aids mixed at the optimum ratio
1.5 to 10.0 fine silicon carbide powder having an average particle size of several tens of nanometers produced by CVD or organic raw materials.
A high-strength silicon carbide sintered body formed by sintering by pulse current in addition to weight%. (2) 1.5 to 10.0% by weight of the non-oxide sintering aid of (1) is added to fine silicon carbide powder having an average particle diameter of several tens of nanometers synthesized from a CVD method or an organic raw material. ,
A method for producing a high-strength silicon carbide sintered body, characterized by sintering at a temperature of 1500 to 1750 ° C. by pulse current.

【0008】[0008]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明において使用されるCVD法や有機原
料から製造された平均粒子径が数十ナノメーターの微細
炭化ケイ素粉末としては、具体的には、例えば、SiH
4 ガスとC24 ガスを原料として熱プラズマCVD法
によって合成される平均粒子径30nmの炭化ケイ素粉
末や(CH32 SiCl2 ガスの熱分解反応によって
合成される平均粒径50nmの炭化ケイ素粉末などが好
適なものとして例示されるが、これらに限らず、これら
と同効のものであれば適宜の微細炭化ケイ素粉末を使用
することができる。次に、炭化アルミニウム−炭化ホウ
素からなる非酸化物系焼結助剤は、一般に、試薬として
販売されている炭化アルミニウムや炭化ホウ素等の高純
度、微細粉末を所定量混合することによって調製でき
る。この場合、炭化アルミニウム、炭化ホウ素の混合割
合はモル比で2:1を最適とするが、これに限定される
ものではない。
Next, the present invention will be described in more detail.
explain. CVD method and organic material used in the present invention
Fine particles with an average particle size of tens of nanometers
Specific examples of the silicon carbide powder include, for example, SiH
Four Gas and CTwo HFour Thermal plasma CVD using gas as raw material
Silicon carbide powder with an average particle diameter of 30 nm synthesized by
The end (CHThree )Two SiClTwo By pyrolysis of gas
Preferred is a silicon carbide powder having an average particle size of 50 nm to be synthesized.
Suitable examples include, but are not limited to,
Use the appropriate fine silicon carbide powder if it has the same effect as
can do. Next, aluminum carbide-boron carbide
In general, non-oxide sintering aids composed of elemental
High purity such as aluminum carbide and boron carbide sold
Can be prepared by mixing a predetermined amount of fine powder.
You. In this case, a mixture of aluminum carbide and boron carbide
In the case, the molar ratio is optimally 2: 1 but is not limited to this.
Not something.

【0009】本発明において、上記炭化アルミニウム−
炭化ホウ素からなる非酸化物系焼結助剤を、上記微細炭
化ケイ素粉末に対して1.5から10重量%添加する。
この場合、1.5重量%以下では、焼結温度を高めても
90%以上の焼結密度を持つ焼結体を製造することがで
きず、一方、10重量%以上では、焼結密度が高い焼結
体を得ることはできるが、炭化ケイ素結晶粒界を埋める
非晶質粒界相が増加するために、製造された焼結体の高
温強度や耐クリープ性が著しく低下するので好ましくな
い。
In the present invention, the above-mentioned aluminum carbide
A non-oxide sintering aid composed of boron carbide is added in an amount of 1.5 to 10% by weight based on the fine silicon carbide powder.
In this case, if the sintering temperature is increased to 1.5% by weight or less, a sintered body having a sintering density of 90% or more cannot be produced. Although a high sintered body can be obtained, it is not preferable because the high-temperature strength and creep resistance of the manufactured sintered body are significantly reduced due to an increase in the number of amorphous grain boundary phases filling the silicon carbide crystal grain boundaries.

【0010】次に、上記原料を1500〜1750℃の
温度でパルス通電加熱により焼結する。この場合、15
00℃以下では、焼結助剤から溶融した液相が生成しな
いために緻密な焼結体を作製することができず、また、
1750℃以上では、炭化ケイ素の異常粒成長が起こる
ために、強度が著しく低下するので好ましくない。パル
ス通電加熱の条件は、例えば、アルゴンガス雰囲気で昇
温速度が100〜400℃/minとなるようにパルス
電流を調節して加熱を行う。
Next, the above raw material is sintered at a temperature of 1500 to 1750 ° C. by pulse current heating. In this case, 15
If the temperature is lower than 00 ° C., a liquid phase melted from the sintering aid is not generated, so that a dense sintered body cannot be produced.
When the temperature is 1750 ° C. or more, abnormal grain growth of silicon carbide occurs, so that the strength is remarkably reduced. The conditions of the pulse current heating include, for example, heating in an argon gas atmosphere by adjusting the pulse current so that the rate of temperature rise is 100 to 400 ° C./min.

【0011】上記プロセスにより、従来の方法より30
0から550℃低い焼結温度で、短時間(2分間)で、
相対密度99.5%以上、強度800MPa以上の高強
度炭化ケイ素焼結体が得られる。非酸化物液相焼結助剤
を加え、パルス通電法により焼結した本発明の炭化ケイ
素焼結体組織の電子顕微鏡写真を図1に示す(焼結条
件:焼結温度;1600℃、焼結時間;5分間、昇温速
度;200℃/min、アルゴン雰囲気中)。板状に粒
成長した(写真では柱状にみえる)炭化ケイ素結晶と微
細な炭化ケイ素結晶とが混合した強度と靱性の向上に適
した組織となる。
By the above process, the conventional method is 30 times less than the conventional method.
0 to 550 ° C lower sintering temperature, shorter time (2 minutes)
A high-strength silicon carbide sintered body having a relative density of 99.5% or more and a strength of 800 MPa or more is obtained. FIG. 1 shows an electron micrograph of the structure of the silicon carbide sintered body of the present invention obtained by adding a non-oxide liquid phase sintering aid and sintering by a pulsed current method (sintering conditions: sintering temperature; Setting time: 5 minutes, heating rate: 200 ° C./min, in an argon atmosphere). A structure suitable for improving the strength and toughness is obtained by mixing a silicon carbide crystal which has grown into a plate shape (which looks like a column in the photograph) and a fine silicon carbide crystal.

【0012】本発明の方法によれば、焼結温度を低下さ
せることで焼結に要するエネルギーコストが低減される
のみならず、焼結に必要な時間が2分程度に短縮される
ので、極めて生産効率が高い焼結技術であると共に、低
温短時間焼結により炭化ケイ素の粒成長が抑制された微
細結晶粒からなる焼結体であるために高い機械強度を持
つ炭化ケイ素焼結体となる。
According to the method of the present invention, not only the energy cost required for sintering is reduced by lowering the sintering temperature, but also the time required for sintering is reduced to about 2 minutes. It is a sintering technology with high production efficiency and a silicon carbide sintered body with high mechanical strength because it is a sintered body consisting of fine crystal grains with grain growth of silicon carbide suppressed by low-temperature short-time sintering .

【0013】[0013]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例1 CVD法によって製造された平均粒子径30nmの微細
炭化ケイ素粉末に、2.04wt%の炭化アルミニウム
と0.4wt%の炭化ホウ素を加え、成形した成形体
を、アルゴンガス雰囲気下で、47MPaの加重を加え
ながらパルス通電法により1600℃で2分間焼結し
た。このものは、相対密度99.5%、強度807MP
aの炭化ケイ素焼結体となった。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example 1 2.04 wt% of aluminum carbide and 0.4 wt% of boron carbide were added to fine silicon carbide powder having an average particle diameter of 30 nm produced by a CVD method, and a molded product was formed under an argon gas atmosphere. Sintering was performed at 1600 ° C. for 2 minutes by a pulse current method while applying a load of 47 MPa. It has a relative density of 99.5% and a strength of 807MP.
a was obtained.

【0014】実施例2 実施例1と同様にして作製した成形体を、アルゴンガス
雰囲気下で、47MPaの加重を加えながらパルス通電
法により1600℃で5分間焼結した。このものは、相
対密度99.9%、強度731MPaの炭化ケイ素焼結
体となった。
Example 2 A compact produced in the same manner as in Example 1 was sintered at 1600 ° C. for 5 minutes by a pulse current method while applying a load of 47 MPa under an argon gas atmosphere. This was a silicon carbide sintered body having a relative density of 99.9% and a strength of 731 MPa.

【0015】参考例1 実施例1と同様にして作製した成形体を、アルゴンガス
雰囲気下で、40MPaの加重を加えながらホットプレ
ス法により1800℃で1時間焼結した。このものは、
相対密度94.9%の気孔が残留した多孔質炭化ケイ素
焼結体となった。
Reference Example 1 A compact produced in the same manner as in Example 1 was sintered at 1800 ° C. for 1 hour by a hot press method under an argon gas atmosphere while applying a load of 40 MPa. This one is
A porous silicon carbide sintered body having pores with a relative density of 94.9% remained.

【0016】参考例2 CVD法によって製造された平均粒子径30nmの微細
炭化ケイ素粉末に、2.64wt%の酸化アルミニウム
と1.76wt%の酸化イットリウムを加え、成形した
成形体を、アルゴンガス雰囲気下で、47MPaの加重
を加えながらパルス通電法により1700℃で5分間焼
結した。このものは、相対密度89.4%、強度408
MPaの炭化ケイ素焼結体となった。
REFERENCE EXAMPLE 2 To a fine silicon carbide powder having an average particle diameter of 30 nm produced by the CVD method, 2.64 wt% of aluminum oxide and 1.76 wt% of yttrium oxide were added, and the molded article was formed in an argon gas atmosphere. Under a load of 47 MPa, sintering was performed at 1700 ° C. for 5 minutes by a pulse current method. It has a relative density of 89.4% and a strength of 408
A silicon carbide sintered body of MPa was obtained.

【0017】[0017]

【発明の効果】本発明は、炭化アルミニウム−炭化ホウ
素からなる非酸化物系焼結助剤を平均粒子径が数十ナノ
メーターの微細炭化ケイ素粉末に加えてパルス通電加熱
して高強度炭化ケイ素焼結体を製造するものであり、本
発明により、1)従来の方法と比較して300から55
0℃低い焼結温度で高い強度の炭化ケイ素セラミックス
を製造することができる、2)焼結に必要な時間(従来
の抵抗加熱型の雰囲気焼結炉の場合1〜2時間)を2分
程度に短縮できる、3)低温短時間焼結により、炭化ケ
イ素の粒成長が抑制された微細結晶粒からなる焼結体を
得ることができる、4)焼結に要するエネルギーコスト
を低減することができる、5)高い強度と耐磨耗性を有
する炭化ケイ素セラミックスを簡便なプロセスで高い生
産効率で製造することができる、等の効果が奏される。
According to the present invention, a non-oxide sintering aid composed of aluminum carbide and boron carbide is added to fine silicon carbide powder having an average particle size of several tens of nanometers, and pulse current is applied to heat the mixture to obtain high-strength silicon carbide. According to the present invention, a sintered body is manufactured. 1) 300 to 55 times compared with the conventional method.
High strength silicon carbide ceramics can be manufactured at 0 ° C lower sintering temperature. 2) The time required for sintering (1-2 hours in the case of the conventional resistance heating type atmosphere sintering furnace) is about 2 minutes. 3) By sintering at a low temperature for a short time, it is possible to obtain a sintered body composed of fine crystal grains in which grain growth of silicon carbide is suppressed. 4) It is possible to reduce the energy cost required for sintering. 5) It is possible to produce silicon carbide ceramics having high strength and abrasion resistance by a simple process with high production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非酸化物液相焼結助剤を加え、パルス通電法に
より焼結した本発明の炭化ケイ素焼結体組織の電子顕微
鏡写真を示す。
FIG. 1 shows an electron micrograph of a structure of a silicon carbide sintered body of the present invention obtained by adding a non-oxide liquid phase sintering aid and sintering by a pulsed current method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥山 素弘 愛知県春日井市中央台6丁目3番地の1 (72)発明者 平尾 喜代司 愛知県名古屋市北区名城2丁目2番地 6 −36号 (72)発明者 田中 英彦 茨城県つくば市吾妻3丁目19番地の1 パ ークヒル吾妻3号棟106号室 Fターム(参考) 4G001 BA21 BA22 BA23 BB21 BB22 BB23 BC13 BC21 BC52 BC53 BC63 BD12 BD13  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohiro Toriyama 6-3, Chuodai, Kasugai-shi, Aichi 1 (72) Inventor Kiyoji Hirao 2-2-2 Meijo, Kita-ku, Nagoya-shi, Aichi 6-36 (72 ) Inventor Hidehiko Tanaka 1-chome, Azuma 3-chome, Tsukuba-shi, Ibaraki Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化アルミニウム、炭化ホウ素がモル比
で2:1を最適とする割合で混合された非酸化物系焼結
助剤を、CVD法や有機原料から製造された平均粒子径
が数十ナノメーターの微細炭化ケイ素粉末に1.5から
10.0重量%加えてパルス通電により焼結して成る高
強度炭化ケイ素焼結体。
1. A non-oxide sintering aid in which aluminum carbide and boron carbide are mixed at an optimum molar ratio of 2: 1 is mixed with a non-oxide sintering aid having an average particle diameter produced by a CVD method or an organic raw material. A high-strength silicon carbide sintered body obtained by adding 1.5 to 10.0% by weight to a fine silicon carbide powder of 10 nanometers and sintering by pulse current.
【請求項2】 請求項1に記載の非酸化物系焼結助剤
を、CVD法や有機原料から合成された平均粒子径が数
十ナノメータの微細炭化ケイ素粉末に1.5から10.
0重量%加え、1500から1750℃の温度でパルス
通電により焼結することを特徴とする高強度炭化ケイ素
焼結体の製造方法。
2. The method according to claim 1, wherein the non-oxide-based sintering aid is added to a fine silicon carbide powder having an average particle diameter of several tens of nanometers synthesized from a CVD method or an organic raw material.
A method for producing a high-strength silicon carbide sintered body, characterized by adding 0% by weight and sintering at a temperature of 1500 to 1750 ° C. by pulse current.
JP11210366A 1999-07-26 1999-07-26 High-strength silicon carbide sintered body and method for producing the same Expired - Lifetime JP3051931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11210366A JP3051931B1 (en) 1999-07-26 1999-07-26 High-strength silicon carbide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11210366A JP3051931B1 (en) 1999-07-26 1999-07-26 High-strength silicon carbide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP3051931B1 JP3051931B1 (en) 2000-06-12
JP2001039772A true JP2001039772A (en) 2001-02-13

Family

ID=16588183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11210366A Expired - Lifetime JP3051931B1 (en) 1999-07-26 1999-07-26 High-strength silicon carbide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3051931B1 (en)

Also Published As

Publication number Publication date
JP3051931B1 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US6133180A (en) Ceramic composite particle and production method thereof
JP3051931B1 (en) High-strength silicon carbide sintered body and method for producing the same
JP3951643B2 (en) Method for manufacturing titanium silicon carbide sintered body
JPH08333165A (en) Production of silicon nitride composite ceramic
JP4451873B2 (en) Method for manufacturing titanium silicon carbide sintered body
JP2726693B2 (en) High thermal conductive silicon carbide sintered body and method for producing the same
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP3005650B2 (en) Chemically modified silicon carbide ceramic powder and method for producing silicon carbide ceramic
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2691283B2 (en) Silicon carbide whisker and method for manufacturing the same
KR102414539B1 (en) A SiC powder, SiC sintered body and Manufacturing method of the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPS6126566A (en) Method of sintering sic composite body
JP2883074B1 (en) Manufacturing method of silicon carbide ceramic powder and ceramic sintered body
JP2003002745A (en) Titanium silicon carbide sintered compact and production method therefor
JPS5969477A (en) Manufacture of sialon base ceramic sintering material
JPH10139548A (en) Molybdenum disilicide-base composite material and its production
JPH0142915B2 (en)
JPH0435436B2 (en)
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
JPH04310571A (en) Sintered material of aluminum nitride and its production
JPH09157031A (en) Silicon nitride ceramic and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3051931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term