JP2001039727A - Optical fiber preform and method or processing preform for optical fiber - Google Patents

Optical fiber preform and method or processing preform for optical fiber

Info

Publication number
JP2001039727A
JP2001039727A JP11213743A JP21374399A JP2001039727A JP 2001039727 A JP2001039727 A JP 2001039727A JP 11213743 A JP11213743 A JP 11213743A JP 21374399 A JP21374399 A JP 21374399A JP 2001039727 A JP2001039727 A JP 2001039727A
Authority
JP
Japan
Prior art keywords
flame
optical fiber
burner
preform
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11213743A
Other languages
Japanese (ja)
Other versions
JP4377483B2 (en
Inventor
Shinji Suzuki
真二 鈴木
Tadakatsu Shimada
忠克 島田
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21374399A priority Critical patent/JP4377483B2/en
Publication of JP2001039727A publication Critical patent/JP2001039727A/en
Application granted granted Critical
Publication of JP4377483B2 publication Critical patent/JP4377483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01237Removal of preform material to modify the diameter by heat-polishing, e.g. fire-polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical fiber preform to which glass particulates do not stick by one piece of burner in flame processing of the optical fiber preform or the preform having the maximum temperature rising as high as >=2000 deg.C or a method for processing the preform. SOLUTION: The flame processing, such as stretching of the optical fiber preform or flame polishing of the preform, is executed by heating with the flame of the burner from one direction while rotating the optical fiber preform or the preform and while relatively moving the flame heating position of the burner. At this time, the temperature fall gradient before the temperature falls down to 1900 to 1500 deg.C in a longitudinal direction from the flame heating position is controlled so as to enter a range of -20.0 to -1.0 deg.C/mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ母材又
は光ファイバ用プリフォームの延伸や火炎研磨等の火炎
加工に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to flame processing such as stretching and flame polishing of an optical fiber preform or an optical fiber preform.

【0002】[0002]

【従来の技術】一般に、延伸は、光ファイバ母材をガラ
ス旋盤に保持し、加熱源として鎖状炭化水素または水素
を燃焼ガスとするバーナーの火炎で加熱軟化させ、光フ
ァイバ母材を保持する一方の回転チャックを移動させて
両回転チャック間距離を広げることにより、軟化部分に
引っ張り力を作用させて所定の径に縮径し、加熱源を順
次移動させることにより光ファイバ母材のほぼ全長にわ
たって延伸、縮径を行い、光ファイバ用プリフォームを
得ている。
2. Description of the Related Art In general, in stretching, an optical fiber preform is held on a glass lathe and heated and softened by a flame of a burner using a chain hydrocarbon or hydrogen as a combustion gas as a heating source to hold the optical fiber preform. By moving one of the rotary chucks to increase the distance between the two rotary chucks, a pulling force is applied to the softened portion to reduce the diameter to a predetermined diameter, and the heating source is sequentially moved to substantially extend the entire length of the optical fiber preform. The preform for optical fiber is obtained by stretching and reducing the diameter of the preform.

【0003】バーナーの火炎により加熱された光ファイ
バ母材の表面からはSiOが蒸発する。このSiOは雰
囲気中の水分等と結合して、再び、微小な二酸化ケイ素
(SiO2)の粒子、すなわち石英ガラス微粒子となり
光ファイバ母材表面に付着する。このため、表面に付着
したガラス微粒子や取り扱いの際に生じた表面傷を除去
するため、表面処理が欠かせないものとなっている。光
ファイバ母材を延伸して得たプリフォームに対して、上
記したように、付着したガラス微粒子や表面傷の除去及
び残留応力を低減するため、さらに火炎研磨が行われ
る。大径のプリフォームは、さらに、ガラス旋盤で所定
径に延伸される。
[0003] SiO evaporates from the surface of the optical fiber preform heated by the flame of the burner. This SiO combines with moisture in the atmosphere and becomes fine silicon dioxide (SiO 2 ) particles, that is, fine silica glass particles, and adheres to the surface of the optical fiber preform. For this reason, surface treatment is indispensable in order to remove glass particles attached to the surface and surface scratches generated during handling. As described above, the preform obtained by stretching the optical fiber preform is further subjected to flame polishing in order to remove adhered glass particles and surface scratches and reduce residual stress. The large-diameter preform is further stretched to a predetermined diameter by a glass lathe.

【0004】この所定径に延伸されたプリフォームの一
端又は両端にダミーガラス棒を溶着後、線引機に装着し
て加熱、線引することにより光ファイバが得られる。所
定径への延伸やダミーガラス棒の溶着などを行うときの
温度は、プリフォームの径方向中心部で1600℃以上
に保持されねばならない。プリフォームの中心部で16
00℃以上にするためには、プリフォーム表面の温度を
2000℃以上とし、さらに、十数分もこの状態を維持
しなければならない。
An optical fiber is obtained by welding a dummy glass rod to one or both ends of the preform drawn to a predetermined diameter, mounting the dummy glass rod on a drawing machine, heating and drawing. The temperature at the time of stretching to a predetermined diameter, welding of a dummy glass rod, and the like must be maintained at 1600 ° C. or more at the radial center of the preform. 16 in the center of the preform
In order to increase the temperature to 00 ° C. or higher, the temperature of the preform surface must be 2000 ° C. or higher, and this state must be maintained for more than ten minutes.

【0005】石英ガラスがこのような高温の火炎雰囲気
に曝されると、一部がSiOとなって蒸発した後、再び
ガラス微粒子となって火炎加熱位置の周囲に付着する。
この現象は蒸発した石英ガラスの成分が、空気中の水分
等と反応して微小な二酸化ケイ素(SiO2)の粒子と
なり、急激に冷やされることによって凝縮され、周囲に
付着すると考えられる。表面にガラス微粒子が付着した
状態のプリフォームを線引きすると、電気炉内の雰囲気
がSiO2の微粒子で汚染され、さらに、この付着した
ガラス微粒子により、光ファイバの表面に傷をつけてし
まい、機械的強度を低下させるおそれがある。
When the quartz glass is exposed to such a high-temperature flame atmosphere, a part thereof becomes SiO and evaporates, and then becomes fine glass particles again and adheres around the flame heating position.
This phenomenon is considered that the evaporated quartz glass component reacts with moisture and the like in the air to become fine silicon dioxide (SiO 2 ) particles, which are condensed by being rapidly cooled and adhere to the surroundings. When a preform with glass particles attached to the surface is drawn, the atmosphere in the electric furnace is contaminated with SiO 2 particles, and the attached glass particles damage the surface of the optical fiber, and cause mechanical damage. There is a risk of reducing the target strength.

【0006】プリフォームを、表面に傷や異物等が付着
した状態で線引きすると、光ファイバの強度は著しく低
下し、線引中に断線を生じることが多い。線引中に断線
が起こると、再スタートまでに要する時間やオペレータ
ーの作業量は、断線が起こらなかった場合に比べ、約2
倍の時間、作業量となり、装置の生産性が低下する。こ
のため従来から、表面に付着した異物や傷を除去する目
的で、光ファイバ母材をガラス旋盤で所定径に延伸して
プリフォームとした後、さらに火炎研磨が行なわれてい
る。
When a preform is drawn with scratches or foreign matter adhered to the surface, the strength of the optical fiber is remarkably reduced, and disconnection often occurs during drawing. If a disconnection occurs during drawing, the time required for restarting and the amount of work performed by the operator will be about two times less than if no disconnection occurred.
Double the time and work volume, and the productivity of the device decreases. Therefore, conventionally, in order to remove foreign matters and scratches attached to the surface, an optical fiber preform is drawn to a predetermined diameter by a glass lathe to form a preform, and then flame polishing is performed.

【0007】バーナー火炎により、プリフォームの表面
温度が約2000℃にも達すると、石英ガラスの一部は
SiOとなって蒸発する。このSiOの蒸発によりプリ
フォーム径がわずかに減少し、これに伴って、表面傷や
付着した異物は除去される。また、プリフォームの表面
温度が約2000℃以上になると、石英ガラスの粘度は
104〜105ポアズ程度にまで低下し、僅かな力で容易
に変形させることができる。プリフォーム表面の傷は、
ガラス粘度が低下することにより、表面張力が作用して
消失し、表面は滑らかになる。
When the surface temperature of the preform reaches about 2000 ° C. due to the burner flame, a part of the quartz glass becomes SiO and evaporates. Due to the evaporation of the SiO, the diameter of the preform is slightly reduced, and accordingly, surface flaws and attached foreign matter are removed. Further, when the surface temperature of the preform becomes about 2000 ° C. or higher, the viscosity of the quartz glass decreases to about 10 4 to 10 5 poise, and the quartz glass can be easily deformed with a small force. The scratch on the preform surface
When the glass viscosity decreases, the surface tension acts and disappears, and the surface becomes smooth.

【0008】延伸や火炎研磨により蒸発したSiOが、
SiO2のガラス微粒子となってプリフォームの表面に
付着する場所は、火炎により強く熱せられている部分の
すぐ外側であり、帯状の曇りを発生する。この曇りを形
成しているガラス微粒子は、線引き時、炉内で飛散し
て、異物と同様に炉内雰囲気を汚染し、ファイバの表面
に傷を付けるおそれがあるため、線引きする前に除去す
る必要がある。この曇りは、比較的弱い火炎で表面温度
を約1900℃程度に熱することで除去することができ
る。
[0008] SiO evaporated by stretching or flame polishing is
The place where it becomes glass fine particles of SiO 2 and adheres to the surface of the preform is immediately outside the portion which is strongly heated by the flame, and a band-like fogging is generated. The glass particles forming the cloud are scattered in the furnace during drawing, contaminate the furnace atmosphere like foreign matters, and may damage the surface of the fiber, so they are removed before drawing. There is a need. This fogging can be removed by heating the surface temperature to about 1900 ° C. with a relatively weak flame.

【0009】この場合、ガス量やバーナーの移動速度に
よっては、プリフォーム中心部の加熱が不十分で強い歪
みが残り、わずかな衝撃でクラックが発生することがあ
る。逆に、必要以上に加熱してしまうと、残留歪み量は
小さくなるが、再び石英ガラスが蒸発し、曇りを生じ
る。このため、従来のファイヤーポリッシュ(火炎研
磨)の条件は、残留する歪みを歪計等で測定し、残留す
る歪みが問題とならないレベルになるガス条件、バーナ
ー移動速度条件、さらに外観検査を行い、曇りを生じな
いガス条件、バーナー移動速度条件等を試行錯誤して見
付け出していた。これらの条件はプリフォームの径、個
々のバーナーによっても異なる。
In this case, depending on the amount of gas and the moving speed of the burner, the center of the preform is not sufficiently heated and strong distortion remains, and cracks may be generated by a slight impact. Conversely, if the heating is carried out more than necessary, the residual strain is reduced, but the quartz glass evaporates again and fogging occurs. For this reason, in the conventional fire polishing (flame polishing) conditions, the remaining strain is measured with a strain gauge or the like, and the gas condition, the burner moving speed condition, and the appearance inspection are performed so that the remaining strain does not cause a problem. Gas conditions that do not cause fogging, burner moving speed conditions, and the like have been found through trial and error. These conditions vary depending on the diameter of the preform and individual burners.

【0010】例えば、延伸や表面傷および付着したガラ
ス微粒子を除去するため、1回目の火炎加工は、表面温
度が約2000℃以上になる条件で行い、このとき付着
したガラス微粒子を除去するために、2回目の火炎加工
を表面温度が約1900℃程度になる条件で行ってい
る。このような2度にわたる火炎加工で、プリフォーム
の表面を清浄にする方法は、極めて長時間にわたる加工
時間を必要とし、さらに、一度、加熱冷却したものを、
再度加熱するため、熱効率の面からも無駄が多かった。
For example, the first flame processing is carried out under the condition that the surface temperature becomes about 2000 ° C. or more in order to remove stretching, surface scratches and attached glass fine particles. The second flame processing is performed under the condition that the surface temperature becomes about 1900 ° C. The method of cleaning the surface of the preform by such two times of flame processing requires an extremely long processing time, and further, after heating and cooling once,
Since heating was performed again, there was much waste in terms of thermal efficiency.

【0011】[0011]

【発明が解決しようとする課題】このような問題に対し
て、複数のバーナーを設置して一度の火炎加工で処理す
る方法が提案されている。例えば、光ファイバ母材を延
伸する際に、延伸のための加熱バーナーと、この加熱バ
ーナーにより発生したガラス微粒子を除去するためのサ
ブバーナーを設置して火炎加工する方法である。この方
法によれば、光ファイバ母材の延伸については従来の3
分の2以下、表面傷、異物除去の目的で行う火炎研磨に
ついては2分の1以下の時間での処理が可能である。ま
た、ガラス微粒子の除去を同時に行うため、熱効率も向
上する。しかし、複数のバーナーを設置して火炎加工す
る方法は、バーナーの増設及びこれに付随するガス制御
システム、これらに関わる設備の変更など、大きな設備
費を必要とする。
In order to solve such a problem, there has been proposed a method in which a plurality of burners are installed and processed by a single flame processing. For example, when an optical fiber preform is drawn, a flame burner is provided by installing a heating burner for drawing and a sub-burner for removing glass fine particles generated by the heating burner. According to this method, the stretching of the optical fiber preform is performed by the conventional method.
For flame polishing performed for the purpose of removing surface flaws and foreign matter by a factor of two or less, it is possible to perform the processing in a time of one half or less. In addition, since the glass fine particles are removed at the same time, the thermal efficiency is improved. However, the method of performing the flame processing by installing a plurality of burners requires a large equipment cost such as an additional burner, a gas control system accompanying the burner, and a change in equipment related thereto.

【0012】本発明は、上記問題に鑑みてなされたもの
であり、最高温度が2000℃以上になる光ファイバ母
材又はプリフォーム(以下、これらを総称してロッドと
いう)の火炎加工において、1本のバーナーでガラス微
粒子が付着しないロッドの加工方法を提供をすることを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in the flame processing of an optical fiber preform or a preform (hereinafter, these are collectively referred to as a rod) whose maximum temperature is 2000 ° C. or more. An object of the present invention is to provide a method for processing a rod to which glass fine particles do not adhere using a book burner.

【0013】[0013]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、1本のバーナー火炎でガラス微粒子が付
着しない火炎加工条件を得るために、鋭意研究を重ねた
結果、火炎加工中のロッドの表面温度分布が、約150
0℃以下に低下する領域でガラス微粒子の付着が著しい
ことを見出し、約1900℃から約1500℃ヘ低下す
る表面温度分布領域における温度下降勾配が、−20.
0℃/mmから−1.0℃/mmの範囲にあるときにガ
ラス微粒子の付着を抑えることができることを発見し、
本発明を完成した。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies in order to obtain flame processing conditions in which glass particles do not adhere with a single burner flame. Rod surface temperature distribution is about 150
It has been found that the adhesion of the glass fine particles is remarkable in the region where the temperature falls to 0 ° C. or lower, and the temperature drop gradient in the surface temperature distribution region where the temperature decreases from about 1900 ° C. to about 1500 ° C.
When it was in the range of 0 ° C./mm to −1.0 ° C./mm, it was found that the adhesion of glass particles could be suppressed,
The present invention has been completed.

【0014】すなわち、本発明のロッドの加工方法は、
ロッドを回転させながら一方向からのバーナーの火炎で
加熱し、バーナーの火炎加熱位置を相対的に移動させな
がら光ファイバ母材の延伸あるいは火炎研磨等の火炎加
工を行うに際し、該火炎加熱位置から長手方向に温度が
1900℃から1500℃に下がる間の温度下降勾配
を、−20.0〜−1.0℃/mmの範囲に入るように
制御することにある。この火炎加熱位置から長手方向へ
の温度下降勾配は、ロッドの軸線に対してバーナーを6
0°〜 90°未満、より好ましくは60°〜 80°傾
斜させて得ることができる。また、ロッドを回転させな
がら一方向からのバーナーの火炎で加熱し、バーナーの
火炎加熱位置を相対的に移動させながらロッドの延伸あ
るいは火炎研磨等の火炎加工を行うに際し、バーナーか
らの噴出ガス流量を、バーナーの相対移動方向に分布を
持たせることにより行なわれる。
That is, the method for processing a rod according to the present invention comprises:
The rod is rotated and heated by a burner flame from one direction.When performing flame processing such as stretching or flame polishing of the optical fiber preform while relatively moving the flame heating position of the burner, from the flame heating position. It is to control the temperature falling gradient during the temperature drop from 1900 ° C. to 1500 ° C. in the longitudinal direction so as to fall within a range of −20.0 to −1.0 ° C./mm. The temperature drop gradient in the longitudinal direction from the flame heating position causes the burner to move 6 degrees with respect to the rod axis.
It can be obtained at an angle of 0 ° to less than 90 °, more preferably 60 ° to 80 °. In addition, when the rod is heated by the burner flame from one direction while rotating the rod, and when the flame heating process of the burner is relatively moved while performing the flame processing such as the extension of the rod or the flame polishing, the flow rate of the gas ejected from the burner is increased. Is performed by providing a distribution in the relative movement direction of the burner.

【0015】1900℃から、ロッド表面から蒸発した
SiOが凝縮し始める約1500℃までの温度下降勾配
を−20.0℃/mmから−1.0℃/mmの範囲とす
ることで、徐々に冷却され、また、蒸発が起こっている
ところから凝縮してガラス微粒子が発生する点までにあ
る程度距離が保たれるため、発生した蒸気は、そこへ達
する前に周囲へ拡散される。また、ロッドは2000℃
以上の高温から徐々に冷却されるため、加工後のロッド
には歪みがほとんど残留していない。
By gradually decreasing the temperature gradient from 1900 ° C. to about 1500 ° C. at which the SiO evaporated from the rod surface begins to condense, the temperature is gradually reduced from −20.0 ° C./mm to −1.0 ° C./mm. The vapor generated is diffused to the surroundings before it reaches the point where it is cooled and a certain distance is maintained from the point where evaporation takes place to the point where the glass particles are generated by condensation. The rod is 2000 ℃
Since the rod is gradually cooled from the above high temperature, almost no distortion remains in the rod after processing.

【0016】[0016]

【発明の実施の形態】以下、本発明の加工方法につい
て、図を用いてさらに詳細に説明する。図1(b)は、
単一バーナーをバーナー火炎の相対移動方向とは逆方向
へ傾斜させて、ロッドの長手方向に、加熱中央よりの1
900℃から1500℃にいたる温度下降勾配が−12
℃から−5℃/minの温度分布領域Aを広げたもので
ある。図1(a)は、ロッドの表面温度を示す。バーナ
ーの傾斜角度は、ロッドの軸線に対して60°≦θ<9
0°である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The processing method of the present invention will be described below in more detail with reference to the drawings. FIG. 1 (b)
The single burner is tilted in the direction opposite to the direction of relative movement of the burner flame, so that the single
Temperature drop gradient from 900 ° C to 1500 ° C is -12
The temperature distribution region A from −5 ° C. to −5 ° C./min is expanded. FIG. 1A shows the surface temperature of the rod. The inclination angle of the burner is 60 ° ≦ θ <9 with respect to the axis of the rod.
0 °.

【0017】図2は、バーナーの火口を長方形とし、長
手方向に流出するガス流量を変化させたものであり、
(c)に火口を示し、(d)にバーナー火口長手方向に
対する、左端を1としたときのガスの流速比を示してい
る。また、図3に示す態様は、バーナーの火口を長方形
とし、バーナーの長手中心の流速を1とするガスの流速
比が、バーナーの両端に向かって左右対称に減少するよ
うに形成されたバーナーを用いるものである。なお、図
4は、ガラス旋盤を用いて、ロッドの延伸、火炎研磨等
の火炎加工を行う様子を示し、火炎加工はロッドを回転
させつつ、ロッド又はバーナーのいずれか一方を相対的
に移動させることにより行なわれる。上記1〜3に示し
たいずれの態様の装置においても、ロッド表面に所望の
温度分布を得ることができる。
FIG. 2 shows the burner crater having a rectangular crater and varying the flow rate of gas flowing out in the longitudinal direction.
(C) shows the crater, and (d) shows the gas flow rate ratio when the left end is 1 with respect to the longitudinal direction of the burner crater. In addition, the embodiment shown in FIG. 3 is a burner in which the crater of the burner is rectangular, and the flow velocity ratio of the gas with the flow velocity at the longitudinal center of the burner being 1 decreases symmetrically toward both ends of the burner. It is used. In addition, FIG. 4 shows a state in which flame processing such as elongation of a rod and flame polishing is performed using a glass lathe. In the flame processing, one of a rod and a burner is relatively moved while rotating the rod. It is done by doing. In any of the apparatuses of the above-described embodiments 1 to 3, a desired temperature distribution can be obtained on the rod surface.

【0018】[0018]

【実施例】(実施例1)図1に示したようにバーナー
を、バーナー火炎の相対移動方向とは逆の方向へ60°
傾けて配置し、ロッドの火炎加熱表面に図1のような温
度分布を与えて、長さ約1000mm、直径65mmφ
のロッドを直径60mmφに縮径した。このときの加熱
用バーナーへのガス流量は、H2:300l/min、
2:130l/minで、バーナーの相対移動速度は
10mm/minであり、1900℃から1500℃に
下がる間の温度下降勾配が−10℃/mmから−5℃/
mmの間にあるように制御した。延伸に要した処理時間
は100minであった。延伸後のロッド表面に、ガラ
ス微粒子の付着は認められず、また残留歪量も小さいも
のであった。
(Embodiment 1) As shown in FIG. 1, the burner is turned by 60 ° in a direction opposite to the relative movement direction of the burner flame.
It is placed at an angle, giving a temperature distribution as shown in FIG. 1 to the flame heating surface of the rod, and is approximately 1000 mm long and 65 mm in diameter.
Was reduced to a diameter of 60 mmφ. At this time, the gas flow rate to the heating burner was H 2 : 300 l / min,
O 2 : 130 l / min, the relative movement speed of the burner is 10 mm / min, and the temperature decrease gradient during the fall from 1900 ° C. to 1500 ° C. is from −10 ° C./mm to −5 ° C./min.
mm. The processing time required for stretching was 100 minutes. No adhesion of glass particles was observed on the rod surface after stretching, and the residual strain was small.

【0019】(実施例2)図2に示すような、バーナー
火口が長方形をなすバーナーを用い、火口の長手方向に
流出するガス流量分布を変化させ、ロッドの火炎加熱表
面に図2のような温度分布を与えて、長さ約1000m
m、直径65mmφのロッドを直径60mmφに縮径し
た。このときの加熱用バーナーへのガス流量は、H2
300l/min、O2:130l/minで、バーナ
ーの相対移動速度は10mm/minであり、1900
℃から1500℃に下がる間の温度下降勾配が−8℃/
mmから−4℃/mmの間にあるように制御した。延伸
に要した処理時間は100minであった。延伸後のロ
ッド表面に、ガラス微粒子の付着は認められず、また残
留歪量も小さいものであった。
Example 2 A burner having a rectangular crater as shown in FIG. 2 was used, and the gas flow distribution flowing out in the longitudinal direction of the crater was changed. Given the temperature distribution, length about 1000m
m, a rod having a diameter of 65 mmφ was reduced to a diameter of 60 mmφ. At this time, the gas flow rate to the heating burner is H 2 :
300 l / min, O 2 : 130 l / min, the relative movement speed of the burner was 10 mm / min, and 1900
The temperature gradient during the fall from 1500 ° C to 1500 ° C is -8 ° C /
It was controlled to be between mm and −4 ° C./mm. The processing time required for stretching was 100 minutes. No adhesion of glass particles was observed on the rod surface after stretching, and the residual strain was small.

【0020】(実施例3)図3に示すような、バーナー
火口が長方形をなすバーナーを用い、火口の長手中心か
ら両端に向かって左右対称にガス流量分布を変化させ、
ロッドの火炎加熱表面に図3のような温度分布を与え
て、長さ約1000mm、直径65mmφのロッドを直
径60mmφに縮径した。このときの加熱用バーナーへ
のガス流量は、H2:300l/min、O2:130l
/minで、バーナーの相対移動速度は10mm/mi
nであり、1900℃から1500℃に下がる間の温度
下降勾配が−12℃/mmから−8℃/mmの間にある
ように制御した。延伸に要した処理時間は100min
であった。延伸後のロッド表面に、ガラス微粒子の付着
は認められず、また残留歪量も小さいものであった。
(Embodiment 3) As shown in FIG. 3, a burner whose burner crater has a rectangular shape is used, and the gas flow distribution is changed symmetrically from the longitudinal center of the crater toward both ends.
By giving a temperature distribution as shown in FIG. 3 to the flame heating surface of the rod, a rod having a length of about 1000 mm and a diameter of 65 mmφ was reduced to a diameter of 60 mmφ. At this time, the gas flow rate to the heating burner was 300 l / min for H 2 and 130 l for O 2 .
/ Min, the relative movement speed of the burner is 10 mm / mi
n, and the temperature was controlled so that the temperature falling gradient during the period from 1900 ° C to 1500 ° C was between -12 ° C / mm and -8 ° C / mm. Processing time required for stretching is 100 min
Met. No adhesion of glass particles was observed on the rod surface after stretching, and the residual strain was small.

【0021】(比較例1)図5に示したように、バーナ
ーからの火炎の流出方向をロッドに垂直とする従来の方
法で、ロッドの火炎加熱表面に図5のような温度分布を
与えて、長さ約1000mm、直径65mmφのロッド
を直径60mmφに縮径した。このときの加熱用バーナ
ーへのガス流量は、H2:300l/min、O2:13
0l/minで、バーナーの相対移動速度は10mm/
minであり、1900℃から1500℃に下がる間の
温度下降勾配を−30℃/mmから−20℃/mmの間
とした。延伸に要した処理時間は100minであっ
た。延伸後のロッド表面にガラス微粒子が付着していた
ため、さらに以下の条件で火炎研磨した。加熱用バーナ
ーへのガス流量は、H2:250l/min、O2:12
0l/minで、バーナーの相対移動速度20mm/m
inとし、1900℃から1500℃に下がる間の温度
下降勾配を−10℃/mmから−5℃/mmの間に制御
した。この火炎研磨に要した時間は50minであっ
た。直径60mmφへの延伸・縮径と、ガラス微粒子除
去のための火炎研磨に要した時間は全150minとな
った。
(Comparative Example 1) As shown in FIG. 5, a flame distribution as shown in FIG. 5 is given to the flame heating surface of the rod by a conventional method in which the outflow direction of the flame from the burner is perpendicular to the rod. A rod having a length of about 1000 mm and a diameter of 65 mm was reduced to a diameter of 60 mm. At this time, the gas flow rate to the heating burner was 300 l / min for H 2 and 13 for O 2.
At 0 l / min, the relative movement speed of the burner is 10 mm / min.
min, and the temperature descending gradient during the period from 1900 ° C to 1500 ° C was between -30 ° C / mm and -20 ° C / mm. The processing time required for stretching was 100 minutes. Since the glass fine particles had adhered to the rod surface after the stretching, flame polishing was further performed under the following conditions. The gas flow rate to the heating burner is H 2 : 250 l / min, O 2 : 12
At 0 l / min, the relative movement speed of the burner is 20 mm / m
and the temperature drop gradient during the period from 1900 ° C to 1500 ° C was controlled between -10 ° C / mm and -5 ° C / mm. The time required for this flame polishing was 50 minutes. The time required for elongating and reducing the diameter to 60 mmφ and flame polishing for removing glass particles was 150 minutes in total.

【0022】[0022]

【発明の効果】本発明は、上記構成としたことにより、
表面にガラス微粒子の付着がなく、残留応力の少ないロ
ッドが得られる。また、本発明の加工方法は、1本のバ
ーナーでよく、かつ一度の火炎加工で延伸とガラス微粒
子の除去を同時に行うことができるため、熱効率及び生
産性が向上するとともに、バーナーを傾斜させるか、あ
るいはバーナーの火口を交換するだけでよく、バーナー
の増設及びこれに付随するガス制御システム、これらに
関わる設備の変更など、大きな設備費を必要とせず、容
易に実施することができる。
According to the present invention, the above-mentioned structure is provided.
A rod having no residual particles and no glass particles adhered to the surface can be obtained. In addition, the processing method of the present invention requires only one burner, and can simultaneously perform stretching and removal of glass fine particles by a single flame processing, so that thermal efficiency and productivity are improved and the burner is inclined. Alternatively, it is only necessary to replace the crater of the burner, and it can be easily implemented without requiring large equipment costs such as adding a burner and changing a gas control system associated therewith, and equipment related thereto.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の態様を示し、(a)はロ
ッド表面の温度分布を、(b)はバーナーによるロッド
表面の火炎加熱の様子を示す説明図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram illustrating an embodiment of the present invention, in which (a) shows a temperature distribution on a rod surface, and (b) shows how a rod surface is heated by a flame.

【図2】 本発明の実施例2の態様を示し、(a)はロ
ッド表面の温度分布を、(b)はバーナーによるをロッ
ド表面の火炎加熱の様子、(c)はバーナーの火口、
(d)はバーナ火口の長手方向へのガスの流速比の変
化、を示す説明図である。
FIGS. 2A and 2B show aspects of a second embodiment of the present invention, wherein FIG. 2A shows the temperature distribution on the rod surface, FIG. 2B shows the state of flame heating on the rod surface by a burner, FIG.
(D) is explanatory drawing which shows the change of the flow velocity ratio of the gas to the longitudinal direction of a burner crater.

【図3】 本発明の実施例3の態様を示し、(a)はロ
ッド表面の温度分布を、(b)はバーナーによるをロッ
ド表面の火炎加熱の様子、(c)はバーナーの火口、
(d)はバーナ火口の長手方向へのガスの流速比の変
化、を示す説明図である。
FIG. 3 shows an embodiment of the present invention, in which (a) shows the temperature distribution on the rod surface, (b) shows the state of flame heating of the rod surface by a burner, (c) shows the crater of the burner,
(D) is explanatory drawing which shows the change of the flow velocity ratio of the gas to the longitudinal direction of a burner crater.

【図4】 ガラス旋盤によるロッドの延伸、火炎研磨等
の火炎加工を説明する図である。
FIG. 4 is a diagram illustrating flame processing such as stretching of a rod and flame polishing using a glass lathe.

【図5】 従来の方法を示し、(a)はロッド表面の温
度分布を、(b)はバーナーによるロッド表面の火炎加
熱の様子を示す説明図である。
5A and 5B are diagrams illustrating a conventional method, in which FIG. 5A is a diagram illustrating a temperature distribution on a rod surface, and FIG. 5B is a diagram illustrating a state of flame heating of a rod surface by a burner.

フロントページの続き (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 4G015 BA01 BB01 4G021 BA00 Continued on the front page (72) Inventor Hideo Hirasawa 2-13-1, Isobe, Annaka-shi, Gunma F-term in Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory 4G015 BA01 BB01 4G021 BA00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材又は光ファイバ用プリフ
ォームを回転させながら一方向からのバーナーの火炎で
加熱し、バーナーの火炎加熱位置を相対的に移動させな
がら延伸あるいは火炎研磨等の火炎加工を行うに際し、
該火炎加熱位置から長手方向に温度が1900℃から1
500℃に下がる間の温度下降勾配を、−20.0〜−
1.0℃/mmの範囲に入るように制御することを特徴
とする光ファイバ母材及び光ファイバ用プリフォームの
加工方法。
1. An optical fiber preform or an optical fiber preform is heated by a burner flame from one direction while rotating, and a flame processing such as stretching or flame polishing is performed while relatively moving the flame heating position of the burner. When doing
Temperature from 1900 ° C to 1 in the longitudinal direction from the flame heating position
The temperature falling gradient during the fall to 500 ° C.
A method for processing an optical fiber preform and an optical fiber preform, wherein the method is controlled to fall within a range of 1.0 ° C./mm.
【請求項2】 前記温度下降勾配を、光ファイバ母材又
は光ファイバ用プリフォームの軸線に対してバーナーを
60°〜 90°未満傾斜させることにより得る請求項
1に記載の光ファイバ母材及び光ファイバ用プリフォー
ムの加工方法。
2. The optical fiber preform according to claim 1, wherein the temperature drop gradient is obtained by inclining the burner by 60 ° to less than 90 ° with respect to the axis of the optical fiber preform or the optical fiber preform. Processing method of preform for optical fiber.
【請求項3】 光ファイバ母材又は光ファイバ用プリフ
ォームを回転させながら一方向からのバーナーの火炎で
加熱し、バーナーの火炎加熱位置を相対的に移動させな
がら延伸あるいは火炎研磨等の火炎加工を行うに際し、
バーナーからの噴出ガス流量を、バーナーの相対移動方
向に分布を持たせることを特徴とする光ファイバ母材及
び光ファイバ用プリフォームの加工方法。
3. An optical fiber preform or an optical fiber preform is heated by a burner flame from one direction while rotating, and a flame processing such as stretching or flame polishing is performed while relatively moving the flame heating position of the burner. When doing
A method for processing an optical fiber preform and an optical fiber preform, characterized in that the flow rate of gas emitted from the burner is distributed in the direction of relative movement of the burner.
JP21374399A 1999-07-28 1999-07-28 Optical fiber preform and method for processing optical fiber preform Expired - Fee Related JP4377483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21374399A JP4377483B2 (en) 1999-07-28 1999-07-28 Optical fiber preform and method for processing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21374399A JP4377483B2 (en) 1999-07-28 1999-07-28 Optical fiber preform and method for processing optical fiber preform

Publications (2)

Publication Number Publication Date
JP2001039727A true JP2001039727A (en) 2001-02-13
JP4377483B2 JP4377483B2 (en) 2009-12-02

Family

ID=16644290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21374399A Expired - Fee Related JP4377483B2 (en) 1999-07-28 1999-07-28 Optical fiber preform and method for processing optical fiber preform

Country Status (1)

Country Link
JP (1) JP4377483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090248A1 (en) * 2004-03-18 2005-09-29 Shin-Etsu Chemical Co., Ltd. Optical fiber preform processing method and optical fiber preform
JP2016166104A (en) * 2015-03-10 2016-09-15 信越化学工業株式会社 Processing method for optical fiber preform
CN113213748A (en) * 2021-04-28 2021-08-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090248A1 (en) * 2004-03-18 2005-09-29 Shin-Etsu Chemical Co., Ltd. Optical fiber preform processing method and optical fiber preform
JP2016166104A (en) * 2015-03-10 2016-09-15 信越化学工業株式会社 Processing method for optical fiber preform
CN113213748A (en) * 2021-04-28 2021-08-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber
CN113213748B (en) * 2021-04-28 2022-05-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber

Also Published As

Publication number Publication date
JP4377483B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
KR100551100B1 (en) Optical fiber manufacture method, preform manufacture method, and preform manufacture apparatus
KR101145470B1 (en) Cleaning process and apparatus for silicate materials
KR100608980B1 (en) Glass rod manufacturing method and glass rod manufacturing apparatus
JP2001039727A (en) Optical fiber preform and method or processing preform for optical fiber
CN108081070A (en) A kind of numerical control small tool polishing auxiliary atmosphere plasma processing method
JPH03187944A (en) Heat-treatment of glass material
WO2002085804A1 (en) Method for cutting glass rod and cutting device for use therein
JP3198290B2 (en) Processing method and processing apparatus for optical fiber preform
JP5990994B2 (en) A method for producing a glass powder material and a porous vitreous membrane.
KR100630915B1 (en) Optical fiber base material heat treatment method and optical fiber manufacture method
JP2960716B2 (en) Drawing method and drawing apparatus for optical fiber preform
JP3057063B2 (en) Optical fiber preform base material stretching device
JP3362062B2 (en) Ceramic member for semiconductor manufacturing apparatus and method of manufacturing the same
JP2000319031A (en) Flame polishing method for optical fiber reform
JP2010013352A (en) Method of processing glass preform
KR100456125B1 (en) Apparatus for efficiently removing shoot, for the preparation of optical fiber preform
JPH1111972A (en) Fusing cutting of optical fiber preform and fusion cutting device therefor
JP2001039726A (en) Method for processing optical fiber preform and processing device therefor
JP2000100675A (en) Dummy wafer
JP4593240B2 (en) Glass rod-shaped body processing apparatus and glass rod-shaped body processing method using the same
JPH092830A (en) Production device for glass preform
KR20050093706A (en) Method for processing optical fiber preform, and optical fiber preform processed thereby
JPS5934139B2 (en) Optical fiber manufacturing method
JP3418679B2 (en) Apparatus and method for processing optical fiber preform
JP2001039721A (en) Heat treatment of optical fiber preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees