JP2001036131A - AlGaInP LIGHT EMITTING DIODE - Google Patents

AlGaInP LIGHT EMITTING DIODE

Info

Publication number
JP2001036131A
JP2001036131A JP20603999A JP20603999A JP2001036131A JP 2001036131 A JP2001036131 A JP 2001036131A JP 20603999 A JP20603999 A JP 20603999A JP 20603999 A JP20603999 A JP 20603999A JP 2001036131 A JP2001036131 A JP 2001036131A
Authority
JP
Japan
Prior art keywords
layer
light emitting
oxide
window layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20603999A
Other languages
Japanese (ja)
Other versions
JP4376361B2 (en
Inventor
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20603999A priority Critical patent/JP4376361B2/en
Publication of JP2001036131A publication Critical patent/JP2001036131A/en
Application granted granted Critical
Publication of JP4376361B2 publication Critical patent/JP4376361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce forward voltage and uniform and improve the light emitting efficiency by providing a specific layer in a light emitting part and an oxide layer in a window layer respectively, allowing a layer including a metallic element between the light emitting part and window layer to have a non- covering area on a laminated plane, and providing an electrode thereon. SOLUTION: A thin film 106 made of Ni is adhered to the surface of a p-type (Al0.7Ga0.3)0.5In0.5P upper clad layer 105 through a general vacuum evaporation system. A widow layer 107 formed of n-type conductive zinc oxide film is jointed with a metal thin film 106. An insulation film having a smaller refractive index than the zinc oxide is laminated as a surface protective film 108 of the oxide window layer 107 on the surface of the window layer 107. Then, a silicon nitride protective film 108 is removed and the zinc oxide layer forming the window layer 107 is exposed, so that a p-type electrode 109 of double-layered structure, where a lower bottom part 109a in contact with the zinc oxide layer is set to be Ti and an upper layer part 109b is made of Al is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】良好なオーミック接触性を有
する酸化物窓層を備えた高輝度のAlGaInP発光ダ
イオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high brightness AlGaInP light emitting diode having an oxide window layer having good ohmic contact.

【0002】[0002]

【従来技術】(AlXGa1-XYIn1-YP(0≦X≦
1、0<Y≦1)(以下、AlGaInPと略す)多元
混晶にあって、特に、インジウム組成比(=1−Y)を
0.5とする(AlXGa1-X0.5In0.5P(0≦X≦
1)は、砒化ガリウム(GaAs)単結晶と良好な格子
整合性を果たせる利点がある(Appl.Phys.L
ett.,57(27)(1990)、2937〜29
39頁参照)。このため、例えば緑色系から赤橙系色を
出射する発光ダイオード(LED)或いはレーザーダイ
オード(LD)等の発光素子の構成層として利用されて
いる(Appl.Phys.Lett.,64(21)
(1994)、2839〜2841頁参照)。
2. Description of the Related Art (Al X Ga 1 -x ) Y In 1 -Y P (0 ≦ X ≦
1, 0 <Y ≦ 1) (hereinafter abbreviated as AlGaInP) in a multi-element mixed crystal, and in particular, the indium composition ratio (= 1−Y) is set to 0.5 (Al X Ga 1 -X ) 0.5 In 0.5 P (0 ≦ X ≦
1) has an advantage of achieving good lattice matching with gallium arsenide (GaAs) single crystal (Appl. Phys. L).
ett. , 57 (27) (1990), 2937-29.
See page 39). For this reason, it is used as a constituent layer of a light-emitting element such as a light-emitting diode (LED) or a laser diode (LD) that emits green to red-orange colors (Appl. Phys. Lett., 64 (21)).
(1994), pages 2839-2841).

【0003】従来のpn接合型の、ダブルヘテロ(D
H)構造の高輝度LEDにあって、AlGaInP発光
層が備えられたDH構造発光部の上方には、窓層(ウィ
ンドウ層)を配置するのが通例となっている(SPI
E、Vol.3002(1997)、110〜118頁
参照)。窓層は、発光の取り出し効率を向上させるた
め、発光層からの発光を吸収し難い、発光に対して透明
な、禁止帯幅の大きな半導体材料から構成する必要があ
る。また、窓層は、発光面積を拡大するため、素子動作
電流を広範に拡散する役目も担う結晶層であるから、出
来る限り低抵抗の物質から構成するのが常套である。
[0003] Conventional pn junction type double hetero (D
H) In a high-brightness LED having a structure, it is customary to arrange a window layer (window layer) above a DH structure light-emitting portion provided with an AlGaInP light-emitting layer (SPI)
E, Vol. 3002 (1997), pp. 110-118). The window layer needs to be made of a semiconductor material that is hard to absorb the light emitted from the light emitting layer, is transparent to the light emission, and has a large band gap in order to improve the light extraction efficiency. In addition, the window layer is a crystal layer that also plays a role of widely diffusing an element operating current in order to enlarge a light emitting area. Therefore, the window layer is usually made of a material having as low a resistance as possible.

【0004】従来、窓層を透明酸化物から構成する例が
ある。例えば、アメリカ合衆国特許第5,481,12
2号の発明のAlGaInPLEDでは、p形オーミッ
クコンタクト層上に酸化インジウム・錫(indium
−tin oxide:略称ITO)層からなる窓層が
配置されている。また、酸化インジウム、酸化錫、酸化
亜鉛や酸化マグネシウムからなる透明被膜を設ける手段
が開示されている(特開平11−17220号公報明細
書参照)。
Conventionally, there is an example in which a window layer is made of a transparent oxide. For example, US Pat. No. 5,481,12
In the AlGaInPLED of the invention of No. 2, the indium tin oxide (indium) is formed on the p-type ohmic contact layer.
A window layer composed of a -tin oxide (abbreviated as ITO) layer is arranged. Further, means for providing a transparent coating made of indium oxide, tin oxide, zinc oxide or magnesium oxide is disclosed (see JP-A-11-17220).

【0005】また、ITO層を、AlGaInPLED
を構成するp形III−V族化合物半導体結晶層の積層
表面の全面に設けた、亜鉛(Zn)若しくは金(Au)
・Zn合金膜を介して設ける技術が開示されている(特
開平11−4020号公報明細書参照)。AlGaIn
PLEDを構成する半導体結晶材料に比較すれば、この
様な金属や合金膜は良導体である。従って、ITO窓層
上に敷設された電極から流通される素子動作電流をAl
GaInP発光部に向けて平面的に広範囲に拡散できる
利点がある。
Further, the ITO layer is made of AlGaInPLED.
(Zn) or gold (Au) provided on the entire surface of the laminated surface of the p-type III-V compound semiconductor crystal layer constituting
-A technique of providing via a Zn alloy film is disclosed (see Japanese Patent Application Laid-Open No. 11-4020). AlGaIn
Such a metal or alloy film is a good conductor as compared with the semiconductor crystal material constituting the PLED. Therefore, the element operating current flowing from the electrode laid on the ITO window layer is changed to Al
There is an advantage that it can be diffused in a wide range in a plane toward the GaInP light emitting portion.

【0006】[0006]

【発明が解決しようとする課題】酸化物窓層側から発光
を外部に取り出す方式のLEDにあって、窓層に設けた
電極の下方の領域からの発光は、電極に遮蔽されて外部
へ効率的に取り出すことができない。従って、発光の取
り出し方向に設けた電極の写影領域に流通される動作電
流は、外部発光効率の向上に然したる貢献をせず、浪費
されることとなる。
In an LED of a type in which light is emitted to the outside from the oxide window layer side, light emitted from a region below an electrode provided on the window layer is shielded by the electrode and efficiently emitted to the outside. Can not be taken out. Therefore, the operating current flowing in the projection region of the electrode provided in the direction of extracting light emission does not contribute to the improvement of the external luminous efficiency and is wasted.

【0007】特開平11−4020号公報に記載される
従来の発明では、酸化物窓層の直下の全面に金属膜が配
置される構成となっている。即ち、電極により発光が遮
蔽される領域にも、素子動作電流を流通させる構成とな
っている。このため、効率的な高輝度化が充分に果たせ
ないのが問題となっている。
In the conventional invention described in Japanese Patent Application Laid-Open No. 11-4020, a metal film is arranged on the entire surface immediately below the oxide window layer. That is, the element operation current is also made to flow in a region where light emission is shielded by the electrode. For this reason, there is a problem that efficient high brightness cannot be sufficiently achieved.

【0008】本発明では、酸化物窓層/金属(合金)層
/p形III−V族化合物半導体LED構成層の積層構
造を備えたAlGaInPLEDにあって、効率的に動
作電流を流通できる積層構造を備えたAlGaInPL
EDを提供する。
According to the present invention, there is provided an AlGaInPLED having a stacked structure of an oxide window layer / a metal (alloy) layer / a p-type group III-V compound semiconductor LED constituent layer. With AlGaInPL
Provide ED.

【0009】[0009]

【課題を解決するための手段】発明者は、上記の課題を
解決すべく鋭意努力検討した結果、本発明に到達した。
即ち、本発明は、[1]発光部、窓層、及び電極を有す
る発光ダイオードにおいて、発光部が(AlXGa1-X
YIn1-YP(0≦X≦1、0<Y≦1)層を含み、窓層
が酸化物層を含み、発光部と窓層の間に金属元素を含む
層を有し、該金属元素を含む層が積層平面上において非
被覆領域を有し、該非被覆領域上に電極を有することを
特徴とするpサイドアップ型の発光ダイオード、[2]
金属元素を含む層が、発光部側の層とオーミック接触し
ていることを特徴とする請求項1に記載のpサイドアッ
プ型の発光ダイオード、[3]金属元素を含む層が、ニ
ッケルを含むことを特徴とする[1]または[2]に記
載のpサイドアップ型の発光ダイオード、[4]金属元
素を含む層が、酸化ニッケルを含むことを特徴とする
[1]または[2]に記載のpサイドアップ型の発光ダ
イオード、[5]窓層が、酸化亜鉛を含むことを特徴と
する[1]〜[4]のいずれか1項に記載のpサイドア
ップ型の発光ダイオード、に関する。
Means for Solving the Problems The inventor of the present invention has arrived at the present invention as a result of intensive studies to solve the above-mentioned problems.
That is, the present invention provides [1] a light emitting diode having a light emitting portion, a window layer, and an electrode, wherein the light emitting portion is (Al X Ga 1 -x )
A window layer including an oxide layer, a layer including a metal element between the light emitting portion and the window layer, the layer including a Y In 1-Y P (0 ≦ X ≦ 1, 0 <Y ≦ 1) layer; A p-side-up type light-emitting diode, characterized in that the layer containing a metal element has an uncovered region on the stacking plane and has an electrode on the uncovered region, [2]
The p-side-up type light emitting diode according to claim 1, wherein the layer containing the metal element is in ohmic contact with the layer on the light emitting section side, [3] the layer containing the metal element contains nickel. The p-side-up type light emitting diode according to [1] or [2], wherein [4] the layer containing a metal element contains nickel oxide. [5] The p-side-up light-emitting diode according to any one of [1] to [4], wherein the window layer contains zinc oxide. .

【0010】[0010]

【発明の実施の形態】本発明では、AlGaInP発光
層に対して、その上方の発光の取り出し方向に配置され
たIII−V族化合物半導体結晶層がp形層からなって
いる、所謂、pサイドアップ型のAlGaInPLED
を対象としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a so-called p-side layer in which a group III-V compound semiconductor crystal layer disposed above an AlGaInP light-emitting layer in a direction in which light is emitted is formed of a p-type layer. Up-type AlGaInPLED
It is intended for.

【0011】本発明の実施形態に係わる金属元素を含む
層(以下、金属層と略す)は、pサイドアップ型のAl
GaInPLEDを構成し、また、酸化物を含む窓層
(以下、酸化物窓層と略す)の被堆積層でもあるp形I
II−V族化合物半導体結晶層の表面に次の様な手法を
もって形成できる。 (1)被堆積層の全面に一旦、金属層を被着させた後、
公知のパターニング技法を利用して電極を形成する予定
の領域に対応する金属層を、電極の底面形状に対応させ
て選択的に除去する方法。 (2)被堆積層の表面の、電極を形成する予定の領域
に、電極の底面形状に対応した平面形状をもって、フォ
トレジスト材等の被覆材で予め被覆した後、金属層を被
着させ、リフト−オフ(lift−off)法等を利用
して、電極の形成予定領域に在る金属層のみを部分的に
除去する方法。
A layer containing a metal element according to the embodiment of the present invention (hereinafter abbreviated as a metal layer) is a p-side-up type Al
P-type I which constitutes a GaInPLED and is also a layer to be deposited with a window layer containing an oxide (hereinafter abbreviated as an oxide window layer)
It can be formed on the surface of the II-V compound semiconductor crystal layer by the following method. (1) After a metal layer is once deposited on the entire surface of the layer to be deposited,
A method of selectively removing a metal layer corresponding to a region where an electrode is to be formed using a known patterning technique in accordance with the bottom surface shape of the electrode. (2) On a surface of the layer to be deposited, a region where an electrode is to be formed is coated in advance with a coating material such as a photoresist material in a plane shape corresponding to the bottom shape of the electrode, and then a metal layer is applied. A method of partially removing only a metal layer existing in a region where an electrode is to be formed by using a lift-off method or the like.

【0012】金属層を選択的に除去する領域の平面形状
は、電極の平面形状と相似であるのが望ましい。例え
ば、円形電極にあっては、金属層を除去する領域も円形
とするのが望ましい。また、電極の平面形状の中心と金
属層を除去する領域の中心とは略合致させるのが望まし
い。金属層を除去する領域の平面積は、電極の底面積と
略同様とする。金属層を除去する領域の面積を電極の底
面積に比べて極端に大とすれば、それだけ酸化物窓層と
LED構成層との高抵抗な接合領域の面積が増し、動作
電流が流通できる領域が縮小する。従って、高輝度化に
支障を来す。金属層を除去する領域の平面積は、電極の
底面積の大凡、0.7倍から1.2倍の範囲であるのが
望ましい。
The planar shape of the region where the metal layer is selectively removed is preferably similar to the planar shape of the electrode. For example, in the case of a circular electrode, it is desirable that the region from which the metal layer is removed is also circular. In addition, it is desirable that the center of the planar shape of the electrode and the center of the region where the metal layer is removed be substantially matched. The plane area of the region from which the metal layer is removed is substantially the same as the bottom area of the electrode. If the area of the region where the metal layer is removed is extremely large compared to the bottom area of the electrode, the area of the high-resistance junction region between the oxide window layer and the LED constituent layer increases, and the region where the operating current can flow Will shrink. Therefore, there is a problem in increasing the brightness. The plane area of the region from which the metal layer is removed is desirably approximately 0.7 to 1.2 times the bottom area of the electrode.

【0013】また本発明では金属層を、p形III−V
族化合物半導体結晶等の発光部側の層とオーミック接触
をなす金属から構成すると、より好ましい酸化物窓層が
得られる。p形III−V族化合物半導体結晶層とオー
ミック接合を形成できる金属には、周知の金−亜鉛(A
u−Zn)合金がある。また、ニッケル(Ni)などの
単体金属がある。また、ニッケル−アルミニウム(Ni
−Al)合金、ニッケル−金(Ni−Au)、ニッケル
−チタン(Ni−Ti)、ニッケル−銀(Ni−A
g)、ニッケル−モリブデン(Ni−Mo)、ニッケル
−銅(Ni−Cu)などのNiを含む合金がある。これ
らの金属層は一般的な真空蒸着法、高周波スパッタリン
グ法などを利用して被着できる。
In the present invention, the metal layer is formed of p-type III-V
A more preferable oxide window layer can be obtained by using a metal that makes ohmic contact with a layer on the light emitting portion side such as a group III compound semiconductor crystal. Metals that can form an ohmic junction with the p-type III-V compound semiconductor crystal layer include well-known gold-zinc (A
u-Zn) alloy. In addition, there is a simple metal such as nickel (Ni). Nickel-aluminum (Ni
-Al) alloy, nickel-gold (Ni-Au), nickel-titanium (Ni-Ti), nickel-silver (Ni-A
g), nickel-molybdenum (Ni-Mo), nickel-copper (Ni-Cu), and other alloys containing Ni. These metal layers can be applied using a general vacuum deposition method, a high frequency sputtering method, or the like.

【0014】金属層をNiや酸化ニッケル(NiO)か
ら構成するとIII−V族化合物半導体構成層と良好な
オーミック接触性が発揮されて好ましい。特に、NiO
を用いた場合、透光性に優れる酸化物窓層が構成され
る。
It is preferable that the metal layer be made of Ni or nickel oxide (NiO) because good ohmic contact with the III-V compound semiconductor constituent layer is exhibited. In particular, NiO
In the case where is used, an oxide window layer having excellent translucency is formed.

【0015】NiOからなる金属層は例えば、NiOか
らなるターゲット材を用いて被着できる。また、III
−V族化合物半導体構成層の表面上に一旦、Ni単体か
らなる膜を被着させた後、それを酸化させて形成でき
る。また、Ni単体からなる膜を被着させた後、引き続
きその上に窓層をなす酸化物層を堆積し、然る後、熱処
理を施せば、酸化物層内に含まれている酸素によりNi
膜は酸化され、NiOに変換される。
The metal layer made of NiO can be applied using, for example, a target material made of NiO. III
After a film made of Ni alone is deposited on the surface of the -V compound semiconductor constituent layer, the film can be formed by oxidizing the film. Further, after depositing a film composed of a single element of Ni, an oxide layer serving as a window layer is successively deposited thereon, and thereafter, if heat treatment is performed, Ni contained in the oxide layer is reduced by oxygen contained in the oxide layer.
The film is oxidized and converted to NiO.

【0016】酸化物窓層は、例えば、酸化亜鉛(Zn
O)、酸化錫(SnO2)、酸化インジウム(In
23)、酸化チタン(TiO、TiO2)、酸化ガリウ
ム(Ga2 3)、NiO、酸化マンガン(MnO)、酸
化銅(CuO)等から構成できる。また、ITOなどの
複合酸化物から構成できる。特に、AlGaInP発光
層から出射される赤橙色帯域の発光を充分に透過でき
る、禁止帯幅にして約2エレクトロンボルト(eV)以
上の酸化物は窓層の構成材料として好ましく利用でき
る。禁止帯幅がかくの如く大きく、また、比抵抗にして
約1ミリオーム・センチメートル(mΩ・cm)或いは
それ以下の低抵抗率の、導電性の酸化物材料は、LED
の動作電流を平面的に拡散する電流拡散層を兼用する窓
層として優位に利用できる。
The oxide window layer is made of, for example, zinc oxide (Zn).
O), tin oxide (SnO)Two), Indium oxide (In)
TwoOThree), Titanium oxide (TiO, TiOTwo), Gallium oxide
(GaTwoO Three), NiO, manganese oxide (MnO), acid
It can be made of copper oxide (CuO) or the like. In addition, such as ITO
It can be composed of a composite oxide. In particular, AlGaInP emission
The red-orange light emitted from the layer can be sufficiently transmitted.
Less than about 2 electron volts (eV)
The above oxide is preferably used as a constituent material of the window layer.
You. The bandgap is so large, and the specific resistance
About 1 milliohm centimeter (mΩ · cm) or
The lower resistivity, conductive oxide material is LED
Window that doubles as a current spreading layer that spreads the operating current in two dimensions
Advantageously available as a layer.

【0017】窓層は、複数の酸化物結晶層を重層させて
も構成できる。屈折率を上方に向けて漸次、小となる様
に屈折率を相違する酸化物からなる結晶層を重層させれ
ば、発光層から出射される発光を透過するのにより好都
合な窓層が構成できる。例えば、下層をITOとし、上
層を酸化亜鉛層とする重層構造窓層の例がある。
The window layer can also be formed by stacking a plurality of oxide crystal layers. If a crystal layer made of an oxide having a different refractive index is gradually layered so that the refractive index gradually becomes smaller upward, a more convenient window layer can be formed to transmit light emitted from the light emitting layer. . For example, there is an example of a layered window layer in which the lower layer is made of ITO and the upper layer is made of a zinc oxide layer.

【0018】p形のIII−V族化合物半導体構成層上
に酸化物窓層を設ける本発明にあって、酸化物窓層を、
ZnOを主体として構成すると好都合となる。III−
V族化合物半導体結晶では、亜鉛はp形不純物として振
る舞う。このため、酸化亜鉛を構成する亜鉛が仮に、p
形III−V族化合物半導体構成層内に侵入しても、I
II−V族化合物半導体はp形の伝導を保持でき有利で
あることに依る。ZnOを主体とする酸化物とは、同物
質を主成分として含有する酸化物を指す。例えば、酸化
インジウム・亜鉛や酸化ガリウム・亜鉛などの複合酸化
物がある。
In the present invention in which an oxide window layer is provided on a p-type group III-V compound semiconductor constituent layer, the oxide window layer is
Conveniently, the composition is mainly composed of ZnO. III-
In a group V compound semiconductor crystal, zinc behaves as a p-type impurity. Therefore, if the zinc constituting the zinc oxide is p
Even if it penetrates into the group III-V compound semiconductor constituent layer,
II-V compound semiconductors are advantageous because they can maintain p-type conduction. The oxide mainly composed of ZnO refers to an oxide containing the same substance as a main component. For example, there are composite oxides such as indium / zinc oxide and gallium / zinc oxide.

【0019】[0019]

【実施例】本実施例では、エピタキシャル積層構造体2
0上に、ZnOからなる窓層を備えたAlGaInPL
ED10を例にして、本発明を詳細に説明する。図1は
本実施例に係わるLED10の断面模式図である。
EXAMPLE In this example, the epitaxial laminated structure 2 was used.
AlGaInPL with a window layer made of ZnO
The present invention will be described in detail using the ED 10 as an example. FIG. 1 is a schematic sectional view of an LED 10 according to the present embodiment.

【0020】積層構造体20は、珪素(Si)ドープn
形GaAs単結晶基板101、Siドープn形GaAs
緩衝層102、Siドープn形(Al0.7Ga0.30.5
In0 .5P下部クラッド層103、アンドープ(Al0.2
Ga0.80.5In0.5P発光層104、及びマグネシウ
ム(Mg)ドープp形(Al0.7Ga0.30.5In0.5
上部クラッド層105から構成した。エピタキシャル構
成層102〜105の各層は、トリメチルガリウム
((CH33Ga)/トリメチルアルミニウム((CH
33Al)/トリメチルインジウム((CH33In)
/ホスフィン(PH3)系減圧MO−VPE法により7
30℃で成長させた。マグネシウムのドーピング源はビ
ス−シクロペンタジエニルMg(bis−(C552
Mg)を用いた。珪素のドーピング源は、ジシラン(S
26)を約10体積ppmの濃度で含むジシラン−水
素混合ガスとした。
The laminated structure 20 is made of silicon (Si) doped n
-Type GaAs single crystal substrate 101, Si-doped n-type GaAs
Buffer layer 102, Si-doped n-type (Al 0.7 Ga 0.3 ) 0.5
An In 0 .5 P lower cladding layer 103, an undoped (Al 0.2
Ga 0.8 ) 0.5 In 0.5 P light emitting layer 104 and magnesium (Mg) doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P
The upper clad layer 105 was used. Each of the epitaxial constituent layers 102 to 105 is composed of trimethylgallium ((CH 3 ) 3 Ga) / trimethyl aluminum ((CH
3 ) 3 Al) / trimethylindium ((CH 3 ) 3 In)
/ Phosphine (PH 3 ) based 7 pressure reduction MO-VPE method
Grow at 30 ° C. Doping source of magnesium bis - cyclopentadienyl Mg (bis- (C 5 H 5 ) 2
Mg). The silicon doping source is disilane (S
disilane containing i 2 H 6) at a concentration of about 10 vol ppm - was hydrogen mixed gas.

【0021】基板101には、<011>方向に4゜傾
斜したGaAs単結晶を用いた。基板101のキャリア
濃度は約2×1019cm-3で、層厚は約300μmであ
った。GaAs緩衝層102の層厚(d)は1.5μm
とし、キャリア濃度(n)は約2×1018cm-3とし
た。下部クラッド層103はd=3.5μmとし、n=
3×1018cm-3とした。発光層104はd=0.2μ
mとし、キャリア濃度(p)=1×1017cm-3とし
た。上部クラッド層105はd=1μmとし、p=7×
1017cm-3とした。
As the substrate 101, a GaAs single crystal inclined by 4 ° in the <011> direction was used. The carrier concentration of the substrate 101 was about 2 × 10 19 cm −3 , and the layer thickness was about 300 μm. The layer thickness (d) of the GaAs buffer layer 102 is 1.5 μm
And the carrier concentration (n) was about 2 × 10 18 cm −3 . The lower cladding layer 103 has d = 3.5 μm and n =
It was 3 × 10 18 cm −3 . The light emitting layer 104 has d = 0.2 μm
m and the carrier concentration (p) = 1 × 10 17 cm −3 . The upper cladding layer 105 has d = 1 μm and p = 7 ×
It was set to 10 17 cm -3 .

【0022】p形(Al0.7Ga0.30.5In0.5P上部
クラッド層105の表面には、一般的な真空蒸着法によ
りNiからなる膜106を被着させた。膜厚は約10n
mとした。被着直後のNi膜106は灰色であるのが視
認された。一般的なフォトリソグラフィー技術を利用し
て、後に酸化物窓層上に設ける電極の底面形状に相似さ
せて、電極を形成する予定の領域に在るNi膜106
を、直径130μmの円形領域にわたり選択的に除去し
た。電極の平面形状の中心とNi膜106を削除した領
域の中心とは略合致させた。
On the surface of the p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P upper cladding layer 105, a film 106 made of Ni was applied by a general vacuum deposition method. The film thickness is about 10n
m. It was visually recognized that the Ni film 106 immediately after the deposition was gray. Using a general photolithography technique, the Ni film 106 in a region where an electrode is to be formed is made similar to the shape of the bottom surface of the electrode to be formed on the oxide window layer later.
Was selectively removed over a circular area of 130 μm in diameter. The center of the planar shape of the electrode substantially coincided with the center of the region where the Ni film 106 was removed.

【0023】金属層106上には、n形の伝導を呈する
酸化亜鉛膜からなる窓層107を接合させた。酸化物窓
層107は比抵抗を約9×10-4Ω・cmとするAlド
ープ酸化亜鉛から、高周波マグネトロンスパッタリング
法により構成した。約300℃で堆積した酸化亜鉛層の
厚さは約0.25μmとした。
On the metal layer 106, a window layer 107 made of a zinc oxide film exhibiting n-type conductivity was bonded. The oxide window layer 107 was formed from Al-doped zinc oxide having a specific resistance of about 9 × 10 −4 Ω · cm by a high-frequency magnetron sputtering method. The thickness of the zinc oxide layer deposited at about 300 ° C. was about 0.25 μm.

【0024】窓層107の表面上には、酸化亜鉛(屈折
率=2.0)よりも小さな屈折率を有するSi34(屈
折率約1.9)からなる絶縁膜を酸化物窓層107の表
面保護膜108として堆積した。窒化珪素保護膜108
はモノシラン(SiH4)とアンモニア(NH3)を原料
とする公知のプラズマCVD法により被着させた。層厚
は約0.15μmとした。
On the surface of the window layer 107, an insulating film made of Si 3 N 4 (refractive index: about 1.9) having a smaller refractive index than zinc oxide (refractive index = 2.0) is formed. 107 was deposited as a surface protective film 108. Silicon nitride protective film 108
Was deposited by a known plasma CVD method using monosilane (SiH 4 ) and ammonia (NH 3 ) as raw materials. The layer thickness was about 0.15 μm.

【0025】n形GaAs基板101の裏面には、金
(Au)−ゲルマニウム(Ge)合金(Au95重量%
−Ge5重量%)膜を一般的な真空蒸着法により被着さ
せた。膜厚は約0.5μmとした。然る後、アルゴン
(Ar)気流中に於いて430℃で10分間、アロイン
グ(alloying)処理を施して、n形オーミック
電極110となした。
On the back surface of the n-type GaAs substrate 101, a gold (Au) -germanium (Ge) alloy (Au 95% by weight)
-Ge 5% by weight) The film was applied by a general vacuum evaporation method. The film thickness was about 0.5 μm. Thereafter, an alloying treatment was performed at 430 ° C. for 10 minutes in a stream of argon (Ar) to form an n-type ohmic electrode 110.

【0026】アロイ(alloy)処理後にあっては、
上記のNi膜106は脱色され、略透明となるのが視認
された。これは、Ni膜106の上層をなす酸化亜鉛膜
107に含有される酸素により、Ni膜106が酸化ニ
ッケル(NiO)に変換されたためと考えられる。
After the alloy processing,
It was visually observed that the Ni film 106 was decolorized and became substantially transparent. It is considered that this is because the Ni film 106 was converted to nickel oxide (NiO) by oxygen contained in the zinc oxide film 107 as the upper layer of the Ni film 106.

【0027】次に、p形電極109を形成する領域にあ
る窒化珪素保護膜108を公知のフォトリソグラフィー
技術を利用して部分的に除去した。窒化珪素保護膜10
8が除去され、窓層107をなす酸化亜鉛層が露出され
た領域には、酸化亜鉛層に接する下底部109aをTi
とし、上層部109bをAlとした重層構造のp形電極
109を形成した。p形電極109は、直径を約120
μmとする円形電極とした。
Next, the silicon nitride protective film 108 in the region where the p-type electrode 109 is to be formed was partially removed by using a known photolithography technique. Silicon nitride protective film 10
8 is removed, and a lower bottom portion 109a in contact with the zinc oxide layer is formed in a region where the zinc oxide layer forming the window layer 107 is exposed.
Then, a p-type electrode 109 having a multilayer structure in which the upper layer portion 109b was made of Al was formed. The p-type electrode 109 has a diameter of about 120
A circular electrode having a thickness of μm was used.

【0028】p形電極109及びn形オーミック電極1
10間に順方向に20ミリアンペア(mA)の電流を通
流したところ、窓層107の略全面からほぼ一様に赤橙
色の発光が得られた。分光器により測定された発光波長
は約618nmであった。また、発光スペクトルの半値
幅は約19nmであり、単色性に優れる発光が得られ
た。また、金属層106の配備により上部クラッド層1
05と窓層107との間のオーミック接合性は良好とな
った。このため、順方向電圧(@20mA)は平均して
2.1ボルト(V)に低減された。また、LED間の順
方向電圧は2.1V±0.1Vの均一な範囲に収納され
た。発光強度は約66ミリカンデラ(mcd)に到達し
た。
P-type electrode 109 and n-type ohmic electrode 1
When a current of 20 milliamperes (mA) was passed in the forward direction between 10 and 10, red-orange light was emitted almost uniformly from almost the entire surface of the window layer 107. The emission wavelength measured by the spectrometer was about 618 nm. The half width of the light emission spectrum was about 19 nm, and light emission having excellent monochromaticity was obtained. In addition, the provision of the metal layer 106 allows the upper clad layer 1
The ohmic junction between the layer 05 and the window layer 107 became good. For this reason, the forward voltage (m20 mA) was reduced to 2.1 volts (V) on average. The forward voltage between the LEDs was accommodated in a uniform range of 2.1V ± 0.1V. The emission intensity reached about 66 millicandela (mcd).

【0029】(比較例)実施例1に記載のエピタキシャ
ル積層構造体の最表面をなすn形(Al0.7Ga0.3
0.5In0.5P上部クラッド層の表面上に、Ni(Ni
O)膜を介在させずに直接、酸化亜鉛からなる酸化物窓
層を接合させて、AlGaInPLEDを構成した。
Comparative Example An n-type (Al 0.7 Ga 0.3 ) forming the outermost surface of the epitaxial laminated structure described in Example 1.
On the surface of the 0.5 In 0.5 P upper cladding layer, Ni (Ni
O) An AlGaInPLED was formed by directly bonding an oxide window layer made of zinc oxide without an intervening film.

【0030】実施例1に記載の手法により形成したAl
GaInPLEDは、順方向電流を20mAとした際の
順方向電圧は約6Vと高い値となった。酸化物窓層とI
II−V族化合物半導体構成層との間に金属層を介在さ
せていないために、両層間でのオーミック接触性が不良
であることに因る。発光の中心波長は、実施例1と略同
様に約618nmであった。また、酸化物窓層の略全般
から発光が認められず、窓層上の電極の、外周縁の極く
周辺のみから発光が認められるに過ぎなかった。発光面
積が極端に限定されたため、チップ状態での発光強度は
約20mcdに留まった。本比較例に記す如く、金属層
を電極の平面形状に関係する特定の位置に配置しない従
来の構成では、オーミック接触性に優れるが故に順方向
電圧が低く、高輝度のAlGaInPLEDを得るに不
利であることが証された。
Al formed by the method described in Example 1
The GaInPLED had a high forward voltage of about 6 V when the forward current was 20 mA. Oxide window layer and I
This is because ohmic contact between both layers is poor because no metal layer is interposed between the II-V compound semiconductor constituent layer and the II-V compound semiconductor constituent layer. The central wavelength of light emission was about 618 nm, almost as in Example 1. No light emission was observed from almost the entirety of the oxide window layer, and only light emission was observed from the very outer periphery of the electrode on the window layer. Since the light emitting area was extremely limited, the light emitting intensity in a chip state was only about 20 mcd. As described in the present comparative example, the conventional configuration in which the metal layer is not disposed at a specific position related to the planar shape of the electrode has a disadvantage in obtaining a high-luminance AlGaInPLED because of its excellent ohmic contact and low forward voltage. Proof that there is.

【0031】[0031]

【発明の効果】本発明に依れば、AlGaInPLED
の酸化物窓層で良好なオーミック接触性が得られ、また
発光面に動作電流を拡散できるため、順方向電圧が低く
均一で、かつ発光効率に優れる高輝度の素子が提供でき
る。
According to the present invention, an AlGaInPLED is provided.
A good ohmic contact property can be obtained with the oxide window layer, and an operating current can be diffused to the light-emitting surface, so that a high-luminance element having a low forward voltage, uniformity, and excellent luminous efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に記載のLEDの断面模式図である。FIG. 1 is a schematic sectional view of the LED described in Example 1.

【符号の説明】 10 AlGaInPLED 20 積層構造体 101 GaAs単結晶基板 102 GaAs緩衝層 103 下部クラッド層 104 発光層 105 上部クラッド層 106 金属層 107 酸化物窓層 108 保護膜 109 p形電極 109a p形電極下底層 109b p形電極上層 110 n形オーミック電極DESCRIPTION OF SYMBOLS 10 AlGaInPLED 20 laminated structure 101 GaAs single crystal substrate 102 GaAs buffer layer 103 lower cladding layer 104 light emitting layer 105 upper cladding layer 106 metal layer 107 oxide window layer 108 protective film 109 p-type electrode 109a p-type electrode Lower bottom layer 109b p-type electrode upper layer 110 n-type ohmic electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発光部、窓層、及び電極を有する発光ダイ
オードにおいて、発光部が(AlXGa1-XYIn1-Y
(0≦X≦1、0<Y≦1)層を含み、窓層が酸化物層
を含み、発光部と窓層の間に金属元素を含む層を有し、
該金属元素を含む層が積層平面上において非被覆領域を
有し、該非被覆領域上に電極を有することを特徴とする
pサイドアップ型の発光ダイオード。
1. A light emitting diode having a light emitting part, a window layer, and an electrode, wherein the light emitting part is (Al X Ga 1 -x ) Y In 1 -Y P
(0 ≦ X ≦ 1, 0 <Y ≦ 1) layer, the window layer includes an oxide layer, and a layer including a metal element between the light emitting portion and the window layer.
A p-side-up type light-emitting diode, wherein the layer containing a metal element has an uncovered region on a stack plane and has an electrode on the uncovered region.
【請求項2】金属元素を含む層が、発光部側の層とオー
ミック接触していることを特徴とする請求項1に記載の
pサイドアップ型の発光ダイオード。
2. The p-side-up type light-emitting diode according to claim 1, wherein the layer containing a metal element is in ohmic contact with the layer on the light-emitting portion side.
【請求項3】金属元素を含む層が、ニッケルを含むこと
を特徴とする請求項1または2に記載のpサイドアップ
型の発光ダイオード。
3. The p-side-up type light emitting diode according to claim 1, wherein the layer containing a metal element contains nickel.
【請求項4】金属元素を含む層が、酸化ニッケルを含む
ことを特徴とする請求項1または2に記載のpサイドア
ップ型の発光ダイオード。
4. The p-side-up type light emitting diode according to claim 1, wherein the layer containing a metal element contains nickel oxide.
【請求項5】窓層が、酸化亜鉛を含むことを特徴とする
請求項1〜4のいずれか1項に記載のpサイドアップ型
の発光ダイオード。
5. The light emitting diode according to claim 1, wherein said window layer contains zinc oxide.
JP20603999A 1999-07-21 1999-07-21 AlGaInP light emitting diode Expired - Fee Related JP4376361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20603999A JP4376361B2 (en) 1999-07-21 1999-07-21 AlGaInP light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20603999A JP4376361B2 (en) 1999-07-21 1999-07-21 AlGaInP light emitting diode

Publications (2)

Publication Number Publication Date
JP2001036131A true JP2001036131A (en) 2001-02-09
JP4376361B2 JP4376361B2 (en) 2009-12-02

Family

ID=16516892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20603999A Expired - Fee Related JP4376361B2 (en) 1999-07-21 1999-07-21 AlGaInP light emitting diode

Country Status (1)

Country Link
JP (1) JP4376361B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261675A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Optoelectronic structural element for light emitting diodes has an epitaxial semiconductor layer sequence with an electromagnetic radiation emitting zone and electrical contact region(s) with at least one radiation permeable zinc oxide
DE10261676A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Light emitting diode chip comprises epitaxial semiconductor sequence having protective layer and electromagnetic radiation emitting active zone, used for high efficiency semiconductor light emitting diodes
KR20190102545A (en) * 2018-02-26 2019-09-04 주식회사 세미콘라이트 Method of manufacturing semiconductor light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261675A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Optoelectronic structural element for light emitting diodes has an epitaxial semiconductor layer sequence with an electromagnetic radiation emitting zone and electrical contact region(s) with at least one radiation permeable zinc oxide
DE10261676A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Light emitting diode chip comprises epitaxial semiconductor sequence having protective layer and electromagnetic radiation emitting active zone, used for high efficiency semiconductor light emitting diodes
US6979842B2 (en) 2002-12-31 2005-12-27 Osram Opto Semiconductors Gmbh Opto-electronic component with radiation-transmissive electrical contact layer
KR20190102545A (en) * 2018-02-26 2019-09-04 주식회사 세미콘라이트 Method of manufacturing semiconductor light emitting device
KR102051477B1 (en) * 2018-02-26 2019-12-04 주식회사 세미콘라이트 Method of manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
JP4376361B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US8395176B2 (en) Top-emitting nitride-based light-emitting device with ohmic characteristics and luminous efficiency
US7291865B2 (en) Light-emitting semiconductor device
US7821026B2 (en) Light emitting diode device and manufacturing method therof
WO2005050748A1 (en) Semiconductor device and method for manufacturing same
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
JPH10173224A (en) Compound semiconductor light emitting element and its manufacture
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US20050098801A1 (en) Semiconductor light emitting device
JP4298861B2 (en) AlGaInP light emitting diode
JP4382912B2 (en) AlGaInP light emitting diode
JP4409684B2 (en) AlGaInP light emitting diode and manufacturing method thereof
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
JP4376361B2 (en) AlGaInP light emitting diode
JPH10190056A (en) Semiconductor light emitting element and its manufacture
JP4439645B2 (en) AlGaInP light emitting diode
JP4255710B2 (en) Semiconductor light emitting device
JP2001068734A (en) Group iii nitride semiconductor light-emitting element
JP2001036130A (en) AlGaInP LIGHT EMITTING DIODE PROVIDED WITH WINDOW LAYER
JPH09172198A (en) Light emitting diode and its manufacture
CN110034219B (en) Light emitting diode and method of manufacturing the same
JP2001168395A (en) Iii-v compound semiconductor light emitting diode
TW200417066A (en) Semiconductor light emitting device and the manufacturing method thereof
JP2004103709A (en) Semiconductor light emitting element
JP4286983B2 (en) AlGaInP light emitting diode

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20010612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees