JP2001035551A - Pigment-sensitized type solar cell - Google Patents

Pigment-sensitized type solar cell

Info

Publication number
JP2001035551A
JP2001035551A JP11206299A JP20629999A JP2001035551A JP 2001035551 A JP2001035551 A JP 2001035551A JP 11206299 A JP11206299 A JP 11206299A JP 20629999 A JP20629999 A JP 20629999A JP 2001035551 A JP2001035551 A JP 2001035551A
Authority
JP
Japan
Prior art keywords
dye
solar cell
fine particles
sensitized solar
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11206299A
Other languages
Japanese (ja)
Other versions
JP4514251B2 (en
Inventor
Masahiro Oma
正弘 大麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP20629999A priority Critical patent/JP4514251B2/en
Publication of JP2001035551A publication Critical patent/JP2001035551A/en
Application granted granted Critical
Publication of JP4514251B2 publication Critical patent/JP4514251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To improve photoelectric transfer efficiency of a pigment-sensitized type solar cell. SOLUTION: In this pigment-sensitized type solar cell, a cathode electrode composed by forming a transparent conductive film 2 on the inside surface of one transparent board 1 and by coating its surface with platinum or carbon is made to face an anode electrode, composed by sequentially forming a transparent conductive film 2 and a metal oxide film 4 such as titanium oxide on the inside surface of the other transparent board 1 and carrying on the surface of the metal oxide 4 a pigment, such as a ruthenium complex via an oxidation- reduction electrolyte 3, and a voltage is generated between both the electrodes through absorption of light. In this case, metal fine particles 7 of platinum, a platinum alloy, palladium, or a palladium alloy are arranged in the vicinity of the pigment 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は色素増感型太陽電池
に関し、特に白金、白金合金、パラジウム、または、パ
ラジウム合金の金属微粒子のプラズモン増強効果を利用
した色素増感型太陽電池に関する。
The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell utilizing the plasmon enhancing effect of fine particles of platinum, platinum alloy, palladium, or palladium alloy.

【0002】[0002]

【従来の技術】可視光領域の利用が可能で理論変換効率
が高く、人体に無害とされる酸化チタンを用いる新しい
太陽電池として、色素増感型太陽電池が知られている
(特開平1−220380号公報、特開平5−5040
23号公報等)。
2. Description of the Related Art A dye-sensitized solar cell is known as a new solar cell using titanium oxide which can be used in the visible light region, has a high theoretical conversion efficiency, and is harmless to the human body. 220380, JP-A-5-5040
No. 23).

【0003】図4はこの色素増感型太陽電池の構成を示
す概念図である。例えば板ガラスなどの2枚の透明基板
1の各内側に、それぞれ透明導電膜2を形成して電極と
する。透明導電膜2には、例えば、フッ素ドープ酸化
錫、酸化インジウム、ITO、ATOなどが用いられ
る。
FIG. 4 is a conceptual diagram showing the structure of this dye-sensitized solar cell. For example, a transparent conductive film 2 is formed inside each of two transparent substrates 1 such as a sheet glass to form electrodes. For the transparent conductive film 2, for example, fluorine-doped tin oxide, indium oxide, ITO, ATO, or the like is used.

【0004】一方の基板表面に触媒となる白金若しくは
炭素をコーティングして(図示せず)カソード電極とす
る。他方の基板には、例えば酸化チタンなどの金属酸化
物膜4を形成して、その表面に色素6を吸着、担持して
アノード電極とする。この金属酸化物膜4は、表面積を
大きくするために、例えば焼結した多孔質5で形成され
る。これら電極間には、電解液や固体伝導体からなる酸
化還元電解質3を挟み込むことで、酸化還元電解質中の
酸化還元対が、両電極間の電子の移動に寄与する。
A surface of one substrate is coated with platinum or carbon as a catalyst (not shown) to form a cathode electrode. On the other substrate, for example, a metal oxide film 4 such as titanium oxide is formed, and the dye 6 is adsorbed and carried on the surface to form an anode electrode. This metal oxide film 4 is formed of, for example, sintered porous material 5 in order to increase the surface area. By interposing an oxidation-reduction electrolyte 3 made of an electrolytic solution or a solid conductor between these electrodes, the oxidation-reduction pair in the oxidation-reduction electrolyte contributes to the transfer of electrons between the two electrodes.

【0005】酸化チタンなどは短波長の光しか吸収しな
いので、太陽光を効率よく電気エネルギーに変換するた
めの増感材として色素が用いられる。この色素は光吸収
剤として働き、太陽光を吸収して電子を金属酸化物膜に
注入して発電が行われる。例えば色素のルテニウム錯体
は、太陽光の可視領域の光を吸収し、ルテニウム金属・
配位子軌道遷移により励起された電子が金属酸化物の伝
導帯に移り、光電流となる。このようにして、光を吸収
すると両電極間に電圧が発生する太陽電池が構成され
る。
[0005] Since titanium oxide or the like absorbs only short-wavelength light, a dye is used as a sensitizer for efficiently converting sunlight into electric energy. The dye functions as a light absorber, absorbs sunlight, injects electrons into the metal oxide film, and generates power. For example, ruthenium complexes of dyes absorb light in the visible region of sunlight,
The electrons excited by the ligand orbital transition move to the conduction band of the metal oxide and become a photocurrent. In this way, a solar cell is generated in which a voltage is generated between both electrodes when light is absorbed.

【0006】この型の太陽電池はこのように色素を増感
剤として用いることから、「色素増感型太陽電池」とも
呼ばれる。
[0006] Since this type of solar cell uses a dye as a sensitizer, it is also called a "dye-sensitized solar cell".

【0007】既に量産されているシリコン太陽電池で
は、シリコンのpn接合によってバンドの勾配が形成さ
れ、光照射によって生成した電子と正孔とが内部電界に
よって分離され、起電力が発生する。これに対して、酸
化チタンなどの金属酸化物膜4を利用した太陽電池で
は、太陽光で励起された色素6の電子のみが酸化チタン
微粒子に注入され、電子と正孔の再結合による損失がほ
とんどない。そして、電子注入により酸化された色素6
は、酸化還元電解質3中に存在するドナーによって速や
かに還元され、初期状態へ戻る。従って、シリコン太陽
電池では光エネルギーの吸収と電子の伝達が同じシリコ
ン半導体の中で行われているのと異なり、酸化チタンを
用いた太陽電池では、光エネルギーの吸収と電子の伝達
が別々のところで行われている。これは植物がクロロフ
ィルで光エネルギーを吸収し、細胞膜中のメディエータ
ーで電子を伝達しているのとよく似た構造である。
In a silicon solar cell that has already been mass-produced, a band gradient is formed by a pn junction of silicon, and electrons and holes generated by light irradiation are separated by an internal electric field, thereby generating an electromotive force. On the other hand, in a solar cell using a metal oxide film 4 such as titanium oxide, only electrons of the dye 6 excited by sunlight are injected into the titanium oxide fine particles, and loss due to recombination of electrons and holes is reduced. rare. The dye 6 oxidized by the electron injection
Is quickly reduced by the donor present in the redox electrolyte 3 and returns to the initial state. Therefore, unlike silicon solar cells, where absorption of light energy and transmission of electrons are performed in the same silicon semiconductor, absorption of light energy and transmission of electrons are different in a solar cell using titanium oxide. Is being done. This is similar to the way plants absorb light energy with chlorophyll and transmit electrons with mediators in cell membranes.

【0008】グレッツェルらは、ナノスケールの酸化チ
タン微粒子を焼結した多孔質の酸化チタン膜を用いるこ
とにより表面積を投影面積の約1000倍とし、色素
に、酸化チタンなどの薄膜と相性が良く、太陽光を効率
よく吸収する、ルテニウム錯体(RuL2(NCS)2
L=4,4’−ジカルボキシ−2,2’ビピリジン)
(以下、「Ru色素」という)を用い、酸化還元電解質
に、アセトニトリル(90vol%)と、3メチル2オ
キサゾリジノン(10vol%)の混合溶媒にヨウ素と
ヨウ化リチウムを加えた電解液を用いてI-/I3 -を酸
化還元対としたときに、AM1.5(エアマス1.5:
地球の中緯度における太陽スペクトルの太陽光)に対し
て10%の変換効率が得られることを報告している(M.
K.Nazeeruddin et al., J. Am. Chem. Soc. 1993, 115,
6382)。
[0008] Grettzel et al. Use a porous titanium oxide film obtained by sintering nanoscale titanium oxide fine particles to make the surface area approximately 1000 times the projected area, and the dye is compatible with a thin film such as titanium oxide. Ruthenium complex (RuL 2 (NCS) 2 , which efficiently absorbs sunlight
L = 4,4'-dicarboxy-2,2'bipyridine)
(Hereinafter referred to as "Ru dye"), and using an electrolyte obtained by adding iodine and lithium iodide to a mixed solvent of acetonitrile (90 vol%) and 3-methyldioxazolidinone (10 vol%) as a redox electrolyte. - / I 3 - when redox pairs, AM 1.5 (air mass 1.5:
It has been reported that a conversion efficiency of 10% can be obtained for the Earth's mid-latitude solar spectrum (sunlight in the solar spectrum) (M.
K. Nazeeruddin et al., J. Am. Chem. Soc. 1993, 115,
6382).

【0009】[0009]

【発明が解決しようとする課題】この色素増感型太陽電
池は構成元素が安価で安全性が高く、実用化が期待され
ている。しかし、既に広く用いられているシリコン太陽
電池の光電変換効率は20%を超えるものもある。その
ため、色素増感型太陽電池は更なる光電変換効率の向上
が望まれている。
The dye-sensitized solar cell is inexpensive, has high safety, and is expected to be put to practical use. However, some silicon solar cells already widely used have a photoelectric conversion efficiency exceeding 20%. Therefore, it is desired that the dye-sensitized solar cell be further improved in photoelectric conversion efficiency.

【0010】そこで本発明は、色素増感型太陽電池の光
電変換効率を従来より一層向上させることを目的とす
る。
Accordingly, an object of the present invention is to further improve the photoelectric conversion efficiency of a dye-sensitized solar cell as compared with the conventional one.

【0011】[0011]

【課題を解決するための手段】色素増感型太陽電池にお
いて、金、銀、または銅の金属微粒子を用いれば、表面
プラズモンによる増強効果が得られることが知られてい
る(特開平9−259943号公報)。しかし、ハロゲ
ン系の酸化還元電解質が、これら金属微粒子と反応して
溶解してしまう。例え金であっても、微粒子、薄膜の状
態では室温で容易に溶解されでしまう。そこで本発明者
は、白金、白金合金、パラジウム、パラジウム合金に注
目し、研究を進めた。
It is known that in a dye-sensitized solar cell, the use of gold, silver, or copper metal fine particles can enhance the effect of surface plasmon (Japanese Patent Application Laid-Open No. 9-259943). No.). However, the halogen-based redox electrolyte reacts and dissolves with these metal fine particles. Even if it is gold, it is easily dissolved at room temperature in the state of fine particles and thin film. Therefore, the present inventor paid attention to platinum, a platinum alloy, palladium, and a palladium alloy, and proceeded with research.

【0012】図2は、PtAg系合金微粒子によるRu
色素の吸光度の増強効果を示す。図2中、横軸の波長
(単位:nm)に対して縦軸は吸光度(無次元数)を示
し、「△」は、ガラス基板にRu色素のみを担持した場
合、「○」は、ガラス基板にPtAg系合金微粒子溶液
を、塗布、乾燥してPtAg系合金微粒子膜を形成し、
Ru色素を担持した場合である。Ru色素のみの吸光度
に比べ、PtAg系微粒子膜上のRu色素の吸光度が、
可視光から近赤外領域にかけて増強されていることが分
かる。
FIG. 2 shows Ru by PtAg-based alloy fine particles.
5 shows the effect of enhancing the absorbance of the dye. In FIG. 2, the vertical axis indicates absorbance (dimensionless number) with respect to the wavelength (unit: nm) on the horizontal axis, “△” indicates that the glass substrate carries only the Ru dye, and “「 ”indicates glass. A PtAg-based alloy fine particle solution is applied to the substrate and dried to form a PtAg-based alloy fine particle film,
This is the case where a Ru dye is supported. Compared to the absorbance of the Ru dye alone, the absorbance of the Ru dye on the PtAg-based fine particle membrane is:
It can be seen that the intensity is enhanced from the visible light to the near infrared region.

【0013】図3は、図2のPtAg系合金微粒子をP
t微粒子に変えた以外は図2と同様の図である。ここに
おいてもPtAg系合金微粒子同様の吸光度の増強がみ
られる。同様のことが、白金、白金合金の他、パラジウ
ム、パラジウム合金でも確認された。
FIG. 3 shows the PtAg-based alloy fine particles of FIG.
FIG. 4 is a view similar to FIG. 2 except that t fine particles are used. Also in this case, an increase in absorbance similar to that of the PtAg-based alloy fine particles is observed. The same was confirmed for palladium and palladium alloys in addition to platinum and platinum alloys.

【0014】これら金属微粒子は、太陽光の照射により
表面プラズモン吸収による光エネルギーの吸収が起こ
り、色素との共鳴や色素への電荷移動により、可視光か
ら近赤外領域において色素の吸光度の増強効果がある。
この色素の光吸収の増強効果により光電流の増加が引き
起こされ、光電変換効率を向上させることができる。
These metal fine particles absorb light energy due to surface plasmon absorption when irradiated with sunlight, and the effect of enhancing the absorbance of the dye from visible light to the near infrared region by resonance with the dye and charge transfer to the dye. There is.
An increase in photocurrent is caused by the effect of enhancing the light absorption of the dye, and the photoelectric conversion efficiency can be improved.

【0015】更に、これらは微粒子状態でもハロゲン系
の酸化還元電解質によって溶解されないことが確認され
た。
Further, it was confirmed that they were not dissolved by the halogen-based redox electrolyte even in a fine particle state.

【0016】本発明者は、これらの事実より、本発明を
完成するに至った。すなわち、上記課題を解決するため
の本発明の色素増感型太陽電池は、一方の透明基板の内
側に透明導電膜を形成し、表面に白金若しくは炭素をコ
ーティングしたカソード電極と、他方の透明基板の内側
に透明導電膜及び金属酸化物膜を順次形成し、この金属
酸化物膜の表面に色素を担持したアノード電極とを、酸
化還元電解質を介して対向させ、光の吸収によりこれら
電極間に電圧が発生するようにした色素増感型太陽電池
であって、前記色素の近傍に金属微粒子を配したことを
特徴とする。
The present inventors have completed the present invention based on these facts. In other words, the dye-sensitized solar cell of the present invention for solving the above-mentioned problem has a transparent conductive film formed inside one transparent substrate, a cathode electrode coated with platinum or carbon on the surface, and the other transparent substrate. A transparent conductive film and a metal oxide film are sequentially formed on the inside of the metal oxide film. An anode electrode supporting a dye is opposed to the surface of the metal oxide film via a redox electrolyte, and light is absorbed between these electrodes. A dye-sensitized solar cell in which a voltage is generated, wherein metal fine particles are arranged near the dye.

【0017】この金属微粒子には、白金(Pt)、白金
合金、パラジウム(Pd)、または、パラジウム合金の
微粒子が適している。
As the fine metal particles, fine particles of platinum (Pt), a platinum alloy, palladium (Pd), or a palladium alloy are suitable.

【0018】前記金属酸化物は、酸化チタン(Ti
2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb
25)、酸化錫(SnO2)、または、チタン酸ストロ
ンチウム(SrTiO3)を用いることができる。
The metal oxide is titanium oxide (Ti)
O 2 ), zinc oxide (ZnO), niobium oxide (Nb)
2 O 5 ), tin oxide (SnO 2 ), or strontium titanate (SrTiO 3 ) can be used.

【0019】前記色素には、ルテニウム錯体、または、
キサンテン系色素を用いることができる。
The dye may be a ruthenium complex or
Xanthene dyes can be used.

【0020】前記酸化還元電解質には、ヨウ素、臭素、
または、塩素のハロゲンを含む電解液または固体伝導体
を用いることができる。
The redox electrolyte includes iodine, bromine,
Alternatively, an electrolytic solution containing a halogen of chlorine or a solid conductor can be used.

【0021】[0021]

【発明の実施の形態】本発明の色素増感型太陽電池の構
成を図1を用いて説明する。図1は図4における色素6
及び金属微粒子7を含む金属酸化物膜4をより詳細に示
した概念図である。色素増感型太陽電池は透明導電膜
(例えば、フッ素ドープ酸化錫)のついたガラス基板1
の透明導電膜2に白金をコーティングした(図示せず)
カソード電極と、透明導電膜(例えばフッ素ドープ酸化
錫)2のついたガラス基板1上に多孔質の金属酸化物膜
4を形成し、金属酸化物5の表面に色素6および金属微
粒子7を担持した光電極であるアノード電極と、酸化還
元電解質3とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a dye-sensitized solar cell of the present invention will be described with reference to FIG. FIG. 1 shows the dye 6 in FIG.
FIG. 3 is a conceptual diagram showing a metal oxide film 4 including metal fine particles 7 in more detail. The dye-sensitized solar cell is a glass substrate 1 having a transparent conductive film (for example, fluorine-doped tin oxide).
Platinum coated transparent conductive film 2 (not shown)
A porous metal oxide film 4 is formed on a glass substrate 1 provided with a cathode electrode and a transparent conductive film (for example, fluorine-doped tin oxide) 2, and a dye 6 and metal fine particles 7 are carried on the surface of the metal oxide 5. And a redox electrolyte 3.

【0022】酸化還元電解質3はヨウ素系酸化還元電解
質でありアセトニトリル(90vol%)と3メチル2
オキサゾリジノン(10vol%)の混合溶媒にヨウ素
とヨウ化リチウムを加えたものであり、ヨウ素酸化還元
対(I3 -/I-)として働き、カソード電極とアノード
電極間の電子移動に寄与している。
The oxidation-reduction electrolyte 3 is an iodine-based oxidation-reduction electrolyte, which is composed of acetonitrile (90 vol%) and 3-methyl 2
It is a mixture of oxazolidinone (10 vol%) with iodine and lithium iodide added thereto, and serves as an iodine redox couple (I 3 / I ), contributing to electron transfer between a cathode electrode and an anode electrode. .

【0023】多孔質の金属酸化物膜4は、例えば酸化チ
タンで形成することができる。色素6は例えばルテニウ
ム錯体からなる色素を用いると、太陽光の可視領域の光
を吸収してルテニウム金属・配位子軌道遷移により励起
された電子が酸化チタンの伝導帯に移り光電流となる。
The porous metal oxide film 4 can be formed of, for example, titanium oxide. When the dye 6 is a dye composed of, for example, a ruthenium complex, the light excited in the visible region of sunlight is absorbed, and the electrons excited by the transition of the ruthenium metal / ligand orbit move to the conduction band of the titanium oxide to become a photocurrent.

【0024】金属微粒子7は、例えば白金微粒子、白金
がモル比で50%以上の白金合金微粒子、パラジウム微
粒子、パラジウムがモル比で50%以上のパラジウム合
金微粒子を用いると、ヨウ素系酸化還元電解質に溶解消
失せず色素近傍に配することができる。これら微粒子は
色素に化学結合や吸着により直接配してもよく、TiO
2に化学結合や吸着した結果としてTiO2に担持された
色素近傍に配してもよい。
As the metal fine particles 7, for example, platinum fine particles, platinum alloy fine particles having a platinum molar ratio of 50% or more, palladium fine particles, or palladium alloy fine particles having a palladium molar ratio of 50% or more can be used as an iodine-based oxidation-reduction electrolyte. It can be placed near the dye without dissolving and disappearing. These fine particles may be directly disposed on the dye by chemical bonding or adsorption.
2 may be arranged in the vicinity of a dye supported on TiO 2 as a result of chemical bonding or adsorption to 2 .

【0025】色素近傍に配した金属微粒子の粒径は1〜
100nmが好ましく、1〜10nmがより好ましい。
配置方法としてはこれら微粒子の分散液に色素を担持し
たTiO2膜を浸漬する方法がある。微粒子分散液は、
例えば貴金属溶解溶液に還元剤、高分子分散剤を添加し
て作製することができる。また、真空容器内で気化させ
た貴金属の再凝固微粒子を溶媒中に捕獲して作製するこ
ともできる。
The particle size of the metal fine particles disposed near the dye is 1 to
100 nm is preferable, and 1 to 10 nm is more preferable.
As an arrangement method, there is a method of immersing a TiO 2 film carrying a dye in a dispersion of these fine particles. The fine particle dispersion is
For example, it can be prepared by adding a reducing agent and a polymer dispersant to a noble metal solution. Further, it can also be produced by capturing the recoagulated fine particles of a noble metal vaporized in a vacuum vessel in a solvent.

【0026】また、市販の貴金属の溶解溶液に色素を担
持したTiO2膜を浸漬後、水素還元や光還元により貴
金属微粒子を析出させてもよい。例えば、白金ではH2
PtCl6・6H2Oや、〔Pt(NH34〕(NO32
水溶液に浸漬後、還元してPtを色素近傍に析出させて
もよい。
Alternatively, after immersing the TiO 2 film carrying the dye in a commercially available solution of a noble metal, fine particles of the noble metal may be precipitated by hydrogen reduction or photoreduction. For example, for platinum, H 2
PtCl 6 · 6H 2 O and, [Pt (NH 3) 4] (NO 3) 2
After immersion in the aqueous solution, Pt may be reduced to precipitate near the dye.

【0027】これら白金、白金合金、パラジウム、パラ
ジウム合金の各金属微粒子は、太陽光の照射により表面
プラズモン吸収による光エネルギーの吸収が起こり、色
素との共鳴や色素への電荷移動により可視光から近赤外
領域において色素の吸光度の増強効果がある。この色素
の光吸収の増強効果により光電流の増加が引き起こされ
光電変換効率を向上させることができる。
Each of these fine particles of platinum, platinum alloy, palladium, and palladium alloy absorbs light energy due to surface plasmon absorption due to irradiation of sunlight, and resonates with the dye and transfers electric charges to the dye to make the near-visible light more visible. There is an effect of enhancing the absorbance of the dye in the infrared region. This effect of enhancing the light absorption of the dye causes an increase in photocurrent, which can improve photoelectric conversion efficiency.

【0028】[0028]

【実施例】本発明を以下の実施例により説明する。しか
し、本発明はこれに限定されるものではない。
The present invention will be described with reference to the following examples. However, the present invention is not limited to this.

【0029】実施例1 ・・・ 以下の条件で、本発明
の色素増感型太陽電池を構成し、その特性を評価した。
透明導電膜を形成した透明基板には市販のフッ素ドープ
SnO2ガラス(日本板硝子製、導電層膜厚450n
m)を用いた。金属酸化物膜には、多孔質酸化チタンと
して平均粒径15nmのTiO2ペースト(Solaronix社
製)を用いた。
Example 1 A dye-sensitized solar cell of the present invention was constructed under the following conditions, and its characteristics were evaluated.
A commercially available fluorine-doped SnO 2 glass (Nippon Sheet Glass, conductive layer thickness 450 n
m) was used. For the metal oxide film, a TiO 2 paste (manufactured by Solaronix) having an average particle size of 15 nm was used as porous titanium oxide.

【0030】フッ素ドープSnO2ガラス上にTiO2
ーストを塗布し、自然乾燥後、500℃で30分間電気
炉で焼成を行った。一回の塗布で約2μm厚のTiO2
多孔質膜が形成された。TiO2多孔質膜をRu色素溶
液に浸漬し、80℃で2時間還流を行い、TiO2多孔
質表面にRu色素を担持した。Ru色素溶液はエタノー
ルに3×10-4mol/L(L:リットル)のRu色素
(Solaronix社製Ruthenium535)を溶解させることによ
り作製した。
A TiO 2 paste was applied on a fluorine-doped SnO 2 glass, dried naturally, and fired in an electric furnace at 500 ° C. for 30 minutes. TiO 2 about 2 μm thick by one application
A porous film was formed. The TiO 2 porous film was immersed in a Ru dye solution and refluxed at 80 ° C. for 2 hours to carry the Ru dye on the TiO 2 porous surface. The Ru dye solution was prepared by dissolving 3 × 10 −4 mol / L (L: liter) of Ru dye (Ruthenium 535 manufactured by Solaronix) in ethanol.

【0031】Ru色素を担持したTiO2多孔質膜をP
tAg系微粒子が単分散した溶液に浸漬し、エタノール
で洗浄後自然乾燥させることによりRu色素表面にPt
Ag系微粒子を吸着させた。単分散PtAg系微粒子溶
液は白金と銀のモル比を4:1にし、酸化還元電解質に
溶解するのを防いだ。以上のようにして光電極であるア
ノード電極を形成した。
The TiO 2 porous membrane supporting the Ru dye is made of P
By immersing in a solution in which tAg-based fine particles are monodispersed, washing with ethanol, and naturally drying, Pt is added to the Ru dye surface.
Ag-based fine particles were adsorbed. The monodisperse PtAg-based fine particle solution had a molar ratio of platinum to silver of 4: 1 to prevent dissolution in the redox electrolyte. As described above, an anode electrode serving as a photoelectrode was formed.

【0032】一方、カソード電極はフッ素ドープSnO
2ガラス表面にスパッタリング法で白金をコーティング
して形成した。カソード電極とアノード電極とを対向さ
せて電池構造を形成し、隙間に酸化還元電解質を注入し
た。酸化還元電解質はヨウ素系電解液であり、アセトニ
トリル(90vol%)と3メチル2オキサゾリジノン
(10vol%)の混合溶媒にヨウ素とヨウ化リチウム
を加えたものである。
On the other hand, the cathode electrode is made of fluorine-doped SnO.
(2) Platinum was coated on the glass surface by a sputtering method to form a film. A battery structure was formed with the cathode electrode and the anode electrode facing each other, and a redox electrolyte was injected into the gap. The oxidation-reduction electrolyte is an iodine-based electrolyte, which is obtained by adding iodine and lithium iodide to a mixed solvent of acetonitrile (90 vol%) and 3-methyl-2-oxazolidinone (10 vol%).

【0033】参照用に同一プロセスでPtAg系微粒子
を吸着させない従来型の太陽電池も形成した。それら
の、太陽電池に対してAM1.5のソーラーシミュレー
タで1000W/m2の疑似太陽光を照射して電流電圧
特性を測定した。その結果、従来型太陽電池の変換効率
が3%であったのに対し、PtAg系微粒子を色素近傍
に配した太陽電池では変換効率が6%と、2倍に向上し
た。
For reference, a conventional solar cell which does not adsorb PtAg-based fine particles by the same process was also formed. The solar cells were irradiated with 1000 W / m 2 of pseudo sunlight using a solar simulator of AM 1.5 to measure current-voltage characteristics. As a result, the conversion efficiency of the conventional solar cell was 3%, whereas the conversion efficiency of the solar cell in which the PtAg-based fine particles were arranged in the vicinity of the dye was 6%, which was twice as high.

【0034】実施例2 ・・・ PtAg系微粒子をP
t微粒子とした他は、実施例1と同様にして本発明の色
素増感型太陽電池を構成し、その特性を評価した。
Example 2 PtAg based fine particles
Except for using t fine particles, a dye-sensitized solar cell of the present invention was constructed in the same manner as in Example 1, and its characteristics were evaluated.

【0035】また、参照用に同一プロセスでPt微粒子
を吸着させない従来型の太陽電池も形成した。
Further, a conventional solar cell which does not adsorb Pt fine particles by the same process was formed for reference.

【0036】これら作成した太陽電池に対して、実施例
1と同様に特性を測定した。その結果、従来型太陽電池
の変換効率が3%であったのに対し、Pt微粒子を色素
近傍に配した太陽電池では変換効率が5%と、約1.7
倍に向上した。
The characteristics of these solar cells were measured in the same manner as in Example 1. As a result, the conversion efficiency of the conventional solar cell was 3%, while the conversion efficiency of the solar cell in which Pt fine particles were arranged in the vicinity of the dye was 5%, which is about 1.7.
Improved by a factor of two.

【0037】実施例3 ・・・ PtAg系微粒子をP
d微粒子とした他は、実施例1と同様にして本発明の色
素増感型太陽電池を構成し、その特性を評価した。
Example 3 PtAg-based fine particles were converted to P
A dye-sensitized solar cell of the present invention was constructed in the same manner as in Example 1 except that the fine particles were d, and the characteristics were evaluated.

【0038】また、参照用に同一プロセスでPd微粒子
を吸着させない従来型の太陽電池も形成した。
Further, a conventional solar cell in which Pd fine particles were not adsorbed by the same process was formed for reference.

【0039】これら作成した太陽電池に対して、実施例
1と同様に特性を測定した。その結果、従来型太陽電池
の変換効率が3%であったのに対し、Pd微粒子を色素
近傍に配した太陽電池では変換効率が4.5%と、1.
5倍に向上した。
The characteristics of these solar cells were measured in the same manner as in Example 1. As a result, the conversion efficiency of the conventional solar cell was 3%, while the conversion efficiency of the solar cell in which Pd fine particles were arranged in the vicinity of the dye was 4.5%.
5 times improvement.

【0040】実施例4 ・・・ PtAg系微粒子をP
dAg系微粒子とした他は、実施例1と同様にして本発
明の色素増感型太陽電池を構成し、その特性を評価し
た。
Example 4 PtAg based fine particles
A dye-sensitized solar cell of the present invention was constructed in the same manner as in Example 1 except that dAg-based fine particles were used, and its characteristics were evaluated.

【0041】また、参照用に同一プロセスでPdAg系
微粒子を吸着させない従来型の太陽電池も形成した。
Further, for reference, a conventional solar cell not adsorbing PdAg-based fine particles was formed in the same process.

【0042】これら作成した太陽電池に対して、実施例
1と同様に特性を測定した。その結果、従来型太陽電池
の変換効率が3%であるのに対し、PdAg系微粒子を
色素近傍に配した太陽電池では、変換効率が4.8%
と、1.6倍に向上した。
The characteristics of these solar cells were measured in the same manner as in Example 1. As a result, while the conversion efficiency of the conventional solar cell is 3%, the conversion efficiency of the solar cell in which PdAg-based fine particles are arranged near the dye is 4.8%.
1.6 times higher.

【0043】[0043]

【発明の効果】本発明の色素増感型太陽電池により、白
金、白金合金、パラジウム、または、パラジウム合金を
金属酸化物表面に担持された色素近傍に配することによ
り、色素の吸光度が増強される。さらに、ヨウ素系酸化
還元電解質を用いることにより大きな光電流が容易に取
り出せるため、光電変換効率を向上させることができ
る。
According to the dye-sensitized solar cell of the present invention, by disposing platinum, a platinum alloy, palladium, or a palladium alloy near a dye supported on a metal oxide surface, the absorbance of the dye is enhanced. You. Furthermore, by using an iodine-based redox electrolyte, a large photocurrent can be easily taken out, so that the photoelectric conversion efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる色素増感型太陽電池の構成を示
す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of a dye-sensitized solar cell according to the present invention.

【図2】金属微粒子として白金−銀を使った場合の吸光
度の増強を示す、吸光度−波長曲線である。
FIG. 2 is an absorbance-wavelength curve showing enhancement of absorbance when platinum-silver is used as metal fine particles.

【図3】金属微粒子として白金を使った場合の吸光度の
増強を示す、吸光度−波長曲線である。
FIG. 3 is an absorbance-wavelength curve showing enhancement of absorbance when platinum is used as metal fine particles.

【図4】従来の色素増感型太陽電池の構成を示す概念図
である。
FIG. 4 is a conceptual diagram showing a configuration of a conventional dye-sensitized solar cell.

【符号の説明】 1 透明基板 2 透明導電膜 3 酸化還元電解質 4 金属酸化物膜 5 金属酸化物微粒子 6 色素 7 金属微粒子[Description of Signs] 1 transparent substrate 2 transparent conductive film 3 redox electrolyte 4 metal oxide film 5 metal oxide fine particles 6 dye 7 metal fine particles

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年8月30日(1999.8.3
0)
[Submission date] August 30, 1999 (1999.8.3)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】一方の基板表面に触媒となる白金若しくは
炭素をコーティングして(図示せず)カソード電極とす
る。他方の基板には、例えば酸化チタンなどの金属酸化
物膜4を形成して、その表面に色素(図示せず)を吸
着、担持してアノード電極とする。この金属酸化物膜4
は、表面積を大きくするために、例えば焼結した多孔質
(図示せず)で形成される。これら電極間には、電解液
や固体伝導体からなる酸化還元電解質3を挟み込むこと
で、酸化還元電解質中の酸化還元対が、両電極間の電子
の移動に寄与する。
A surface of one substrate is coated with platinum or carbon as a catalyst (not shown) to form a cathode electrode. A metal oxide film 4 of, for example, titanium oxide is formed on the other substrate, and a dye (not shown) is adsorbed and carried on the surface to form an anode electrode. This metal oxide film 4
To increase the surface area, e.g. sintered porous
(Not shown) . By interposing an oxidation-reduction electrolyte 3 made of an electrolytic solution or a solid conductor between these electrodes, the oxidation-reduction pair in the oxidation-reduction electrolyte contributes to the transfer of electrons between the two electrodes.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】既に量産されているシリコン太陽電池で
は、シリコンのpn接合によってバンドの勾配が形成さ
れ、光照射によって生成した電子と正孔とが内部電界に
よって分離され、起電力が発生する。これに対して、酸
化チタンなどの金属酸化物膜4を利用した太陽電池で
は、太陽光で励起された色素(図示せず)の電子のみが
酸化チタン微粒子に注入され、電子と正孔の再結合によ
る損失がほとんどない。そして、電子注入により酸化さ
れた色素(図示せず)は、酸化還元電解質3中に存在す
るドナーによって速やかに還元され、初期状態へ戻る。
従って、シリコン太陽電池では光エネルギーの吸収と電
子の伝達が同じシリコン半導体の中で行われているのと
異なり、酸化チタンを用いた太陽電池では、光エネルギ
ーの吸収と電子の伝達が別々のところで行われている。
これは植物がクロロフィルで光エネルギーを吸収し、細
胞膜中のメディエーターで電子を伝達しているのとよく
似た構造である。
In a silicon solar cell that has already been mass-produced, a band gradient is formed by a pn junction of silicon, and electrons and holes generated by light irradiation are separated by an internal electric field, thereby generating an electromotive force. On the other hand, in a solar cell using a metal oxide film 4 such as titanium oxide, only electrons of a dye (not shown) excited by sunlight are injected into the titanium oxide fine particles, and electrons and holes are regenerated. There is almost no coupling loss. The dye (not shown) oxidized by the electron injection is rapidly reduced by the donor present in the redox electrolyte 3 and returns to the initial state.
Therefore, unlike silicon solar cells, where absorption of light energy and transmission of electrons are performed in the same silicon semiconductor, absorption of light energy and transmission of electrons are different in a solar cell using titanium oxide. Is being done.
This is similar to the way plants absorb light energy with chlorophyll and transmit electrons with mediators in cell membranes.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【課題を解決するための手段】色素増感型太陽電池にお
いて、金、銀、または銅の金属微粒子を用いれば、表面
プラズモンによる増強効果が得られることが知られてい
る(特開平9−259943号公報)。しかし、ハロゲ
ン系の酸化還元電解質が、これら金属微粒子と反応して
溶解してしまう。例え金であっても、微粒子、薄膜の状
態では室温で容易に溶解されしまう。そこで本発明者
は、白金、白金合金、パラジウム、パラジウム合金に注
目し、研究を進めた。
It is known that in a dye-sensitized solar cell, the use of gold, silver, or copper metal fine particles can enhance the effect of surface plasmon (Japanese Patent Application Laid-Open No. 9-259943). No.). However, the halogen-based redox electrolyte reacts and dissolves with these metal fine particles. Even at gold particles, thus it is readily dissolved at room temperature in the form of a thin film. Therefore, the present inventor paid attention to platinum, a platinum alloy, palladium, and a palladium alloy, and proceeded with research.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一方の透明基板の内側に透明導電膜を形
成し、表面に白金若しくは炭素をコーティングしたカソ
ード電極と、他方の透明基板の内側に透明導電膜及び金
属酸化物膜を順次形成し、この金属酸化物膜の表面に色
素を担持したアノード電極とを、酸化還元電解質を介し
て対向させ、光の吸収によりこれら電極間に電圧が発生
するようにした色素増感型太陽電池であって、前記色素
の近傍に金属微粒子を配したことを特徴とする色素増感
型太陽電池。
1. A transparent conductive film is formed inside one transparent substrate, a cathode electrode coated with platinum or carbon on the surface, and a transparent conductive film and a metal oxide film are sequentially formed inside the other transparent substrate. A dye-sensitized solar cell in which a dye-supported anode electrode is opposed to the surface of the metal oxide film via a redox electrolyte, and a voltage is generated between the electrodes by light absorption. A dye-sensitized solar cell, wherein metal fine particles are arranged in the vicinity of the dye.
【請求項2】 前記金属微粒子が、白金(Pt)、白金
合金、パラジウム(Pd)、または、パラジウム合金の
微粒子である請求項1記載の色素増感型太陽電池。
2. The dye-sensitized solar cell according to claim 1, wherein the metal fine particles are fine particles of platinum (Pt), a platinum alloy, palladium (Pd), or a palladium alloy.
【請求項3】 前記金属酸化物膜が、酸化チタン(Ti
2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb
25)、酸化錫(SnO2)、または、チタン酸ストロ
ンチウム(SrTiO3)で形成される請求項1または
請求項2記載の色素増感型太陽電池。
3. The method according to claim 1, wherein the metal oxide film is made of titanium oxide (Ti).
O 2 ), zinc oxide (ZnO), niobium oxide (Nb)
3. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is formed of 2 O 5 ), tin oxide (SnO 2 ), or strontium titanate (SrTiO 3 ). 4.
【請求項4】 前記色素が、ルテニウム錯体、または、
キサンテン系色素である請求項1記載〜請求項3いずれ
かに記載の色素増感型太陽電池。
4. The method according to claim 1, wherein the dye is a ruthenium complex or
The dye-sensitized solar cell according to any one of claims 1 to 3, which is a xanthene-based dye.
【請求項5】 前記酸化還元電解質が、ヨウ素、臭素、
または、塩素のハロゲンを含む電解液である請求項1〜
請求項4いずれかに記載の色素増感型太陽電池。
5. The method according to claim 5, wherein the redox electrolyte is iodine, bromine,
Or an electrolytic solution containing halogen of chlorine.
The dye-sensitized solar cell according to claim 4.
【請求項6】 前記酸化還元電解質が、ヨウ素、臭素、
または、塩素のハロゲンを含む固体伝導体である請求項
1〜請求項4いずれかに記載の色素増感型太陽電池。
6. The method according to claim 1, wherein the redox electrolyte is iodine, bromine,
5. The dye-sensitized solar cell according to claim 1, which is a solid conductor containing halogen of chlorine. 6.
JP20629999A 1999-07-21 1999-07-21 Dye-sensitized solar cell Expired - Lifetime JP4514251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20629999A JP4514251B2 (en) 1999-07-21 1999-07-21 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20629999A JP4514251B2 (en) 1999-07-21 1999-07-21 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2001035551A true JP2001035551A (en) 2001-02-09
JP4514251B2 JP4514251B2 (en) 2010-07-28

Family

ID=16521013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20629999A Expired - Lifetime JP4514251B2 (en) 1999-07-21 1999-07-21 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4514251B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416502B1 (en) * 2001-10-18 2004-01-31 한국전자통신연구원 Dye-sensitized solar cells including titanium silicalite-2
KR100825730B1 (en) * 2006-09-28 2008-04-29 한국전자통신연구원 Die-sensitized solar cells including polymer electrolyte containing conductive particles suspended therein and method for manufacturing the same
WO2008056815A1 (en) * 2006-11-08 2008-05-15 Ricoh Company, Ltd. Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element, and optical modeling system using the same
JP2008122439A (en) * 2006-11-08 2008-05-29 Ricoh Co Ltd Mixture, optical recording medium using same, photoelectric conversion element, optical limiting element, and optical modeling system
JP2008126603A (en) * 2006-11-24 2008-06-05 Ricoh Co Ltd Composite material with multiphoton absorption function, optical recording medium optical, optical control element, photo-molding system using the same
JP2009071147A (en) * 2007-09-14 2009-04-02 Asahi Glass Co Ltd Plasmon resonance photoelectric conversion element, and method of manufacturing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
KR101021567B1 (en) 2009-05-25 2011-03-16 성균관대학교산학협력단 Photocatalyst, preparing method thereof and process for decomposing volatile organic composite using the same
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
CN102150322A (en) * 2009-07-01 2011-08-10 索尼公司 Photoelectric conversion element, method of manufacturing therefor, and electronic device
JP2011198628A (en) * 2010-03-19 2011-10-06 Dainippon Printing Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012038541A (en) * 2010-08-06 2012-02-23 Asahi Glass Co Ltd Plasmon resonance type photoelectric conversion element manufacturing method, and plasmon resonance type photoelectric conversion element
KR101174887B1 (en) 2006-01-20 2012-08-17 삼성에스디아이 주식회사 A counter electrode for photovoltaic cell using supported catalyst
JP2012169380A (en) * 2011-02-11 2012-09-06 Mitsubishi Materials Corp Sensitizer for solar cell, and solar cell using it
JP2013025949A (en) * 2011-07-19 2013-02-04 Sumitomo Metal Mining Co Ltd Dye-sensitized solar cell
US8441708B2 (en) 2009-08-24 2013-05-14 Samsung Electronics Co., Ltd. Electrochromic device and method of manufacturing the same
JP2013254940A (en) * 2012-05-11 2013-12-19 Osaka Prefecture Univ Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected
KR101352330B1 (en) 2012-03-19 2014-01-17 한국광기술원 Method for manufacturing metal nano-structures of dye-sensitized solar cell
JP2014032847A (en) * 2012-08-03 2014-02-20 Toyota Central R&D Labs Inc Complex, photoelectrode, dye-sensitized solar cell and dye-sensitized solar cell module
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP5661965B1 (en) * 2014-06-17 2015-01-28 株式会社ジーエル・マテリアルズホールディングス Material for organic solar cell, organic solar cell using the same, and method for producing the material
US9240286B2 (en) 2009-09-07 2016-01-19 National University Corporation Hokkaido University Photoelectric conversion device, light detecting device, and light detecting method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416502B1 (en) * 2001-10-18 2004-01-31 한국전자통신연구원 Dye-sensitized solar cells including titanium silicalite-2
KR101174887B1 (en) 2006-01-20 2012-08-17 삼성에스디아이 주식회사 A counter electrode for photovoltaic cell using supported catalyst
KR100825730B1 (en) * 2006-09-28 2008-04-29 한국전자통신연구원 Die-sensitized solar cells including polymer electrolyte containing conductive particles suspended therein and method for manufacturing the same
WO2008056815A1 (en) * 2006-11-08 2008-05-15 Ricoh Company, Ltd. Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element, and optical modeling system using the same
JP2008122439A (en) * 2006-11-08 2008-05-29 Ricoh Co Ltd Mixture, optical recording medium using same, photoelectric conversion element, optical limiting element, and optical modeling system
JP2008126603A (en) * 2006-11-24 2008-06-05 Ricoh Co Ltd Composite material with multiphoton absorption function, optical recording medium optical, optical control element, photo-molding system using the same
JP2009071147A (en) * 2007-09-14 2009-04-02 Asahi Glass Co Ltd Plasmon resonance photoelectric conversion element, and method of manufacturing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
KR101021567B1 (en) 2009-05-25 2011-03-16 성균관대학교산학협력단 Photocatalyst, preparing method thereof and process for decomposing volatile organic composite using the same
CN102150322A (en) * 2009-07-01 2011-08-10 索尼公司 Photoelectric conversion element, method of manufacturing therefor, and electronic device
US8441708B2 (en) 2009-08-24 2013-05-14 Samsung Electronics Co., Ltd. Electrochromic device and method of manufacturing the same
US9240286B2 (en) 2009-09-07 2016-01-19 National University Corporation Hokkaido University Photoelectric conversion device, light detecting device, and light detecting method
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011198628A (en) * 2010-03-19 2011-10-06 Dainippon Printing Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012038541A (en) * 2010-08-06 2012-02-23 Asahi Glass Co Ltd Plasmon resonance type photoelectric conversion element manufacturing method, and plasmon resonance type photoelectric conversion element
JP2012169380A (en) * 2011-02-11 2012-09-06 Mitsubishi Materials Corp Sensitizer for solar cell, and solar cell using it
JP2013025949A (en) * 2011-07-19 2013-02-04 Sumitomo Metal Mining Co Ltd Dye-sensitized solar cell
KR101352330B1 (en) 2012-03-19 2014-01-17 한국광기술원 Method for manufacturing metal nano-structures of dye-sensitized solar cell
JP2013254940A (en) * 2012-05-11 2013-12-19 Osaka Prefecture Univ Photothermal conversion element and method of manufacturing the same, photothermal power generation device, and method of detecting material to be detected
JP2014032847A (en) * 2012-08-03 2014-02-20 Toyota Central R&D Labs Inc Complex, photoelectrode, dye-sensitized solar cell and dye-sensitized solar cell module
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP5661965B1 (en) * 2014-06-17 2015-01-28 株式会社ジーエル・マテリアルズホールディングス Material for organic solar cell, organic solar cell using the same, and method for producing the material

Also Published As

Publication number Publication date
JP4514251B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4514251B2 (en) Dye-sensitized solar cell
EP1976051B1 (en) Dye sensitized solar cell and dye sensitized solar cell module
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
US20120097251A1 (en) Photoelectric conversion device method for making same and electronic device
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
JP2004220920A (en) Photoelectric conversion element
JP4639481B2 (en) Composite solar cell
JP2011204662A (en) Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
US20120318346A1 (en) Method of manufacturing photoelectric conversion element, photoelectric conversion element, and electronic apparatus
EP1780827A1 (en) Semiconductor electrode, fabrication method thereof and solar cell comprising the same
JP5609800B2 (en) Dye-sensitized solar cell
JP4552330B2 (en) Display device with solar cell
JP4596305B2 (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP2000285975A (en) Semiconductor for photoelectric conversion and photoelectric conversion element
JP4479108B2 (en) Photoelectric conversion element
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP4716636B2 (en) Compound semiconductor
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2003303628A (en) Polymer solid electrolyte and photoelectric conversion element
JP4455868B2 (en) Dye-sensitized solar cell
JP4537693B2 (en) Dye-sensitized solar cell
JP5786326B2 (en) Dye-sensitized solar cell
JP2003123852A (en) Organic dye sensitized metal oxide semiconductor electrode and manufacturing method of the same, and solar cell having the semiconductor electrode
JP2003163037A (en) Electrode for dye sensitizing type photoelectrochemical cell and dye sensitizing type photoelectrochemical cell using the same
JP2004241234A (en) Optical electrode and dye-sensitized solar cell using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080527

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

EXPY Cancellation because of completion of term