JP5661965B1 - Material for organic solar cell, organic solar cell using the same, and method for producing the material - Google Patents

Material for organic solar cell, organic solar cell using the same, and method for producing the material Download PDF

Info

Publication number
JP5661965B1
JP5661965B1 JP2014124282A JP2014124282A JP5661965B1 JP 5661965 B1 JP5661965 B1 JP 5661965B1 JP 2014124282 A JP2014124282 A JP 2014124282A JP 2014124282 A JP2014124282 A JP 2014124282A JP 5661965 B1 JP5661965 B1 JP 5661965B1
Authority
JP
Japan
Prior art keywords
metal
solar cell
particles
metal oxide
organic solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124282A
Other languages
Japanese (ja)
Other versions
JP2016004901A (en
Inventor
錫勤 高
錫勤 高
元日古 林
元日古 林
浩之 梶
浩之 梶
中原 真
真 中原
Original Assignee
株式会社ジーエル・マテリアルズホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジーエル・マテリアルズホールディングス filed Critical 株式会社ジーエル・マテリアルズホールディングス
Priority to JP2014124282A priority Critical patent/JP5661965B1/en
Application granted granted Critical
Publication of JP5661965B1 publication Critical patent/JP5661965B1/en
Publication of JP2016004901A publication Critical patent/JP2016004901A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】色素増感型及び有機半導体系の太陽電池の光電変換効率を向上させることである。【解決手段】金属酸化物粒子及び/または金属粒子を撹拌しながら、物理蒸着法により貴金属ナノ粒子を堆積させた貴金属ナノ粒子担持金属酸化物粒子及び/または金属粒子を、上記有機系太陽電池の構成材料として用いる。【選択図】図2An object of the present invention is to improve the photoelectric conversion efficiency of dye-sensitized and organic semiconductor solar cells. Noble metal nanoparticles-supported metal oxide particles and / or metal particles obtained by depositing noble metal nanoparticles by physical vapor deposition while stirring the metal oxide particles and / or metal particles are used for the organic solar cell. Used as a constituent material. [Selection] Figure 2

Description

本発明は、有機系太陽電池に適した金属ナノ粒子が担持された金属酸化物粒子及び/または金属粒子及びそれを用いた有機系太陽電池、並びに、その粒子の製造方法に関する。   The present invention relates to metal oxide particles and / or metal particles supporting metal nanoparticles suitable for organic solar cells, organic solar cells using the same, and methods for producing the particles.

限りある地球において、その物質循環システムを破壊することなく、人類が持続可能な社会を構築するためには、枯渇性資源である化石燃料やウラン等を用いない、また、資源環境を破壊しないクリーンエネルギーの創出が、必須課題の一つとなっている。つまり、電気や熱等の人類が活用する有効なエネルギーに変換する際、二酸化炭素、窒素酸化物等の有害物質排出量が少なく、太陽光、風力、波力、地熱等の、燃料が不要で、無尽蔵に存在する自然の力で補充される再生可能エネルギーが求められている。   In order to build a sustainable society without destroying its material circulation system on a limited earth, clean resources that do not use fossil fuels and uranium, which are exhaustible resources, and do not destroy the resource environment Energy creation is one of the essential issues. In other words, when converting to effective energy used by human beings such as electricity and heat, emissions of harmful substances such as carbon dioxide and nitrogen oxides are small, and fuel such as sunlight, wind power, wave power and geothermal heat is unnecessary. There is a need for renewable energy that is replenished by the inexhaustible natural power.

特に、太陽光を電気エネルギーに変換する太陽光発電は、太陽電池及び二次電池の開発が進み、本格的実用化が期待されているクリーンエネルギーの代表格である。太陽電池は、半導体によって光エネルギーを電気エネルギーに変換するものであり、半導体の材料により、無機系と有機系に大別される。更に、無機系は、シリコン半導体系と化合物半導体系、有機系は、金属酸化物半導体系(色素増感型)と有機半導体系とに分類される。   In particular, solar power generation that converts sunlight into electrical energy is a representative clean energy that is expected to be put into full-scale practical use as solar cells and secondary batteries are developed. Solar cells convert light energy into electrical energy by a semiconductor, and are roughly classified into inorganic and organic depending on the material of the semiconductor. Further, the inorganic system is classified into a silicon semiconductor system and a compound semiconductor system, and the organic system is classified into a metal oxide semiconductor system (dye sensitized type) and an organic semiconductor system.

無機系は、材料コストが高く、大面積化が困難であるという課題があるが、変換効率が高いため、着実に実用化が進んでいる。一方、有機系は、材料コストが安く、大面積化が容易な太陽電池として期待されたが、光電変換効率の克服が困難で、開発が停滞していた時期があった。   Inorganic systems have the problem of high material cost and difficulty in increasing the area, but since conversion efficiency is high, practical application is steadily progressing. On the other hand, the organic type was expected as a solar cell with low material cost and easy to increase in area, but there was a period when development was stagnant because it was difficult to overcome the photoelectric conversion efficiency.

しかし、有機系太陽電池において、次のような改良が報告された。まず、色素増感型では、1991年、グレッツェル・セルと呼ばれ、多孔質酸化チタン半導体の負極と白金の正極との間に、ルテニウム色素を溶解した酸化還元電解液を用いる有機太陽電池が開発され、光電変換効率7.9%を達成した(非特許文献1)。更に、1997年には、ルテニウム色素の改良によって、アモルファスシリコン半導体系太陽電池と同等の光電変換効率約10%に到達した(非特許文献2)。一方、有機半導体系においては、2002年、電子供与体としてポリチオフェン系高分子薄膜を、電子受容体としてフラーレン誘導体薄膜を用いることによって、光電変換効率が2.8%まで改善され(非特許文献3)、この系の研究が活性化された。最近では、電子供与体と電子受容体をブレンドしたバルクヘテロジャンクション型有機太陽電池によって、光電変換効率10%を達成した報告もある(例えば、非特許文献4)。   However, the following improvements have been reported in organic solar cells. First, the dye-sensitized type, called the Gretzel cell, was developed in 1991, and an organic solar cell using a redox electrolyte solution in which a ruthenium dye was dissolved between a negative electrode of a porous titanium oxide semiconductor and a positive electrode of platinum was developed. As a result, a photoelectric conversion efficiency of 7.9% was achieved (Non-patent Document 1). Furthermore, in 1997, due to the improvement of the ruthenium dye, the photoelectric conversion efficiency equivalent to that of the amorphous silicon semiconductor solar cell reached about 10% (Non-patent Document 2). On the other hand, in the organic semiconductor system, the photoelectric conversion efficiency was improved to 2.8% in 2002 by using a polythiophene polymer thin film as an electron donor and a fullerene derivative thin film as an electron acceptor (Non-patent Document 3). ) Research on this system was activated. Recently, there has been a report of achieving a photoelectric conversion efficiency of 10% by a bulk heterojunction organic solar cell in which an electron donor and an electron acceptor are blended (for example, Non-Patent Document 4).

今では、有機系太陽電池には、太陽電池の本格的実用化に極めて重要な低コスト化・大面積化を実現しうる可能性があるものとして、大きな期待が寄せられている。当面、有機系太陽電池の用途は、透明太陽電池、フレキシブル太陽電池等の比較的消費電力が低く、屋内で用いられる小型民生機器の電源と考えられるが、上記持続可能な社会を実現するためには、エネルギー問題を解決する住宅用発電システムとして用いられる電源となる必要がある。   Nowadays, organic solar cells have high expectations that they can realize cost reduction and large area that are extremely important for full-scale practical use of solar cells. For the time being, the use of organic solar cells is considered to be a power source for small consumer devices used indoors, such as transparent solar cells and flexible solar cells, but in order to realize the above sustainable society. Needs to be a power source used as a residential power generation system to solve energy problems.

そのため、耐久性や光電変換効率等の特性についても、更なる向上に注力されている。特に、光電変換効率については、有機系太陽電池も、小面積のセルではアモルファスシリコン半導体系と同等の光電変換効率を達成しているが、単結晶シリコン半導体系の約25%、多結晶シリコン半導体系の約20%にまでは至っていない。また、実際の大面積セルになると、アモルファスシリコン半導体系で約7%、単結晶シリコン半導体系及び多結晶シリコン半導体系では約14%程度まで大きく低下するため、更なる向上が急務となっている。   For this reason, characteristics such as durability and photoelectric conversion efficiency are also focused on further improvement. In particular, with regard to photoelectric conversion efficiency, organic solar cells also achieve photoelectric conversion efficiency equivalent to that of amorphous silicon semiconductors in small-area cells, but about 25% of single crystal silicon semiconductors, polycrystalline silicon semiconductors It has not reached about 20% of the system. Further, in the case of an actual large-area cell, since it is greatly reduced to about 7% in the amorphous silicon semiconductor system and about 14% in the single crystal silicon semiconductor system and the polycrystalline silicon semiconductor system, further improvement is urgently required. .

このような状況において、金属ナノ粒子の表面プラズモン共鳴(SPR,Surface Plasmon Resonance)を、太陽電池の光電変換効率向上に適用した報告が既に数多く認められる。シリコン半導体系太陽電池では、その受光面に金属ナノ粒子が有機又は無機材料中に分散された膜を形成するもの(特許文献1)やシリコン半導体層と透明電極間に透明樹脂で被覆された金属ナノ粒子を形成するもの(特許文献2)が報告されている。色素増感型太陽電池では、電解質に銀ナノ粒子を分散したもの(特許文献3)、光電極をなす多孔質の酸化チタン膜表面に金属ナノ粒子あるいは化学修飾した金属ナノ粒子を担持するもの(特許文献4及び5)、負極に金属ナノ粒子と酸化チタンナノ粒子の規則的な積層構造をコロイド溶液から形成するもの(特許文献6)等が開示されている。また、有機半導体系でも、透明電極の対抗電極に金属ナノ粒子の形成が有効であることが開示されている(特許文献7)。   In such a situation, many reports on applying surface plasmon resonance (SPR, Surface Plasmon Resonance) of metal nanoparticles to the photoelectric conversion efficiency of solar cells have already been recognized. In a silicon semiconductor solar cell, a metal film in which metal nanoparticles are dispersed in an organic or inorganic material (Patent Document 1) or a metal covered with a transparent resin between a silicon semiconductor layer and a transparent electrode Those that form nanoparticles (Patent Document 2) have been reported. In a dye-sensitized solar cell, a silver nanoparticle is dispersed in an electrolyte (Patent Document 3), and a metal nanoparticle or a chemically modified metal nanoparticle is supported on the surface of a porous titanium oxide film forming a photoelectrode ( Patent Documents 4 and 5), a negative electrode in which a regular laminated structure of metal nanoparticles and titanium oxide nanoparticles is formed from a colloid solution (Patent Document 6), and the like are disclosed. Moreover, it is disclosed that the formation of metal nanoparticles is effective for the counter electrode of the transparent electrode even in the organic semiconductor system (Patent Document 7).

しかし、このような有機系太陽電池へのSPRの適用においては、光電変換効率向上に対する金属ナノ粒子の効果は認められるものの、上述した各種シリコン半導体系太陽電池の到達している光電変換効率を凌駕するには至っていない。その原因は、従来のSPRを誘起させる金属ナノ粒子が、液相法、すなわち、貴金属の溶液の還元によって析出、生成されるコロイド溶液を用いるものであることに起因していると考えられる。すなわち、液相法で生成された金属ナノ粒子の粒子径制御が困難であること、コロイド溶液から金属ナノ粒子を電極基板に浸漬して付着させるため、付着量制御が困難であり、金属ナノ粒子の電極基板に対する付着力が不足していること等であると推測される(特許文献4、5、及び、6)。一方、スパッタリング法を用いて電極基板上に金属ナノ粒子を直接形成する方法も考えられるが、スパッタリング初期の金属ドメインを金属ナノ粒子層としており、球体のナノ粒子の層を形成したものではなく、表面積が小さい(特許文献7)。   However, in the application of SPR to such organic solar cells, although the effect of metal nanoparticles on the improvement of photoelectric conversion efficiency is recognized, it surpasses the photoelectric conversion efficiency reached by the various silicon semiconductor solar cells described above. It has not been done. The cause is considered to be due to the fact that conventional metal nanoparticles for inducing SPR use a colloidal solution that is deposited and generated by a liquid phase method, that is, reduction of a noble metal solution. That is, it is difficult to control the particle size of the metal nanoparticles produced by the liquid phase method, and the metal nanoparticles are immersed in and adhered to the electrode substrate from the colloidal solution. This is presumed to be due to a lack of adhesion to the electrode substrate (Patent Documents 4, 5, and 6). On the other hand, although a method of directly forming metal nanoparticles on the electrode substrate using a sputtering method is also conceivable, the metal domain at the initial stage of sputtering is a metal nanoparticle layer, not a spherical nanoparticle layer, The surface area is small (Patent Document 7).

特開2011−040645号公報Japanese Patent Application Laid-Open No. 2011-040645 特開2012−169380号公報JP 2012-169380 A 特開平9−259943号公報JP-A-9-259943 特開2001−035551号公報JP 2001-035551 A 特開2007−265694号公報JP 2007-265694 A 特開2007−335222号公報JP 2007-335222 A 特開2009−246025号公報JP 2009-246025 A 特開2012−057198号公報JP2012-057198A 国際公開第2012/150804号公報International Publication No. 2012/150804

B.O’Regan and M.Graetzel,Nature,353,737(1991).B. O'Regan and M.M. Graetzel, Nature, 353, 737 (1991). M.K.Nazeeruddin,P.Pechy and M.Graetzel,Chem.Commum.,1705(1997).M.M. K. Nazeeruddin, P.M. Pechy and M.M. Graetzel, Chem. Commum. , 1705 (1997). P.Schilinsky,C.Waldauf,and C.J.Brabec,Appl.Phys.Lett.,81,3885(2002).P. Schilinsky, C.I. Waldauf, and C.I. J. et al. Brabec, Appl. Phys. Lett. 81, 3885 (2002). 佐々木健一,「有機薄膜太陽電池のバルクヘテロ型デバイス構造の最適化に関する研究」,神戸大学博士論文(2013年1月).Kenichi Sasaki, “Study on Optimization of Bulk Heterotype Device Structure of Organic Thin Film Solar Cell”, Kobe University Doctoral Dissertation (January 2013). 特許庁標準技術集,「色素増感型太陽電池の概要」,2004年3月26日掲載。JPO Standard Technology Collection, “Outline of dye-sensitized solar cells”, published on March 26, 2004. (独)工業所有権情報・研修館,「平成17年度特許流通支援チャート ナノ粒子製造技術」,2006年3月.(Germany) Industrial Property Information and Training Hall, “2005 Patent Distribution Support Chart Nanoparticle Manufacturing Technology”, March 2006. 多賀康訓,「薄膜プロセス技術の研究」,総合工学,第22巻,53−64(2010).Yasunori Taga, “Research on Thin Film Process Technology”, Integrated Engineering, Vol. 22, 53-64 (2010). W.Ensinger et al.,Surface and Coatings Technology,vol.163−164,30 January,281−285(2003).W. Ensinger et al. , Surface and Coatings Technology, vol. 163-164, 30 January, 281-285 (2003).

本発明は、有機系太陽電池の光電変換効率向上を目的として、SPRが効果的に作用する金属ナノ粒子を担持した金属酸化物粒子及び/または金属粒子を提供するものである。更に、その材料を用いた有機系太陽電池を提供するものである。並びに、その材料の特性を発現するために適した材料の製造方法を提供することを目的としている。特に、金属ナノ粒子を担持した金属酸化物粒子は、色素増感型太陽電池の電極材料に適したものである。   This invention provides the metal oxide particle and / or metal particle which carry | supported the metal nanoparticle which SPR acts effectively for the purpose of the photoelectric conversion efficiency improvement of an organic type solar cell. Furthermore, the present invention provides an organic solar cell using the material. In addition, an object of the present invention is to provide a method for producing a material suitable for expressing the characteristics of the material. In particular, metal oxide particles carrying metal nanoparticles are suitable for electrode materials for dye-sensitized solar cells.

本発明者らは、物理蒸着(PVD)の基材(母材)となる金属酸化物粒子及び/または金属粒子を撹拌しながら、金属のPVDを行うと、その金属酸化物粒子及び/または金属粒子上に金属ナノ粒子が堆積させて得られ、この金属ナノ粒子が担持した金属酸化物及び/または金属粒子が、SPRを最も効果的に発現することを見出し、本発明の完成に至った。すなわち、本発明は、金属ナノ粒子が担持された金属酸化物粒子及び/または金属粒子を有機系太陽電池の構成材料として提供すると共に、それを用いた有機系太陽電池を提供するものである。並びに、その材料の特性を発現するために適した材料の上記製造方法を提供する。   When the present inventors perform PVD of metal while stirring metal oxide particles and / or metal particles that are base materials (base materials) of physical vapor deposition (PVD), the metal oxide particles and / or metal It was found that metal nanoparticles were deposited on the particles, and the metal oxide and / or metal particles supported by the metal nanoparticles expressed SPR most effectively, and the present invention was completed. That is, the present invention provides metal oxide particles and / or metal particles carrying metal nanoparticles as a constituent material of an organic solar cell, and also provides an organic solar cell using the same. In addition, the above-described method for producing a material suitable for expressing the characteristics of the material is provided.

更に具体的には、本発明は、PVD槽に、その上部に設けられた蒸発源、その蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽、その拌槽内に設けられた蒸発物質が前記母材に均一に堆積するための拌機、を少なくとも設置し、母材として粒子径1〜200nmの金属酸化物粒子及び/または金属粒子を拌層に投入し、少なくとも1種以上の金属を蒸発源として用い、上記金属酸化物粒子及び/または金属粒子を撹拌しながら、その表面に粒子径1〜10nmの金属ナノ粒子を堆積して製造されることを特徴とする、有機系太陽電池の構成材料に適した金属ナノ粒子担持金属酸化物粒子及び/または金属粒子である。また、それを構成材料として用いたことを特徴とする有機系太陽電池である。並びに、その材料の特性を発現するために適した材料の上記製造方法を提供する。 More specifically, the present invention is, in PVD chamber, the evaporation source provided thereon, stirred tank for introducing base material in which the evaporation source evaporating material provided in the lower is deposited, in that 拌槽 agitator, for provided evaporation material is uniformly deposited on the base material at least placed, the metal oxide particles and / or metallic particles with a particle size 1~200nm put into 拌層as a base material , Produced by depositing metal nanoparticles having a particle diameter of 1 to 10 nm on the surface of the metal oxide particles and / or metal particles while stirring at least one kind of metal as an evaporation source. Metal nanoparticle-supported metal oxide particles and / or metal particles suitable for a constituent material of an organic solar cell. Moreover, it is an organic solar cell characterized by using it as a constituent material. In addition, the above-described method for producing a material suitable for expressing the characteristics of the material is provided.

上記PVDされる金属ナノ粒子としては、金、銀、白金、白金合金、パラジウム、パラジウム合金、チタン、及び、チタン合金の中から選ばれる少なくとも1種以上の金属を用いることが、いずれの有機系太陽電池の光吸収を促進するSPRに効果的である。   As the metal nanoparticles to be PVD, it is possible to use at least one metal selected from gold, silver, platinum, platinum alloy, palladium, palladium alloy, titanium, and titanium alloy. It is effective for SPR that promotes light absorption of solar cells.

しかし、母材は、有機系太陽電池の種類によって異なる。色素増感型太陽電池の電極材料として用いる場合、本発明の上記母材として金属酸化物粒子を用いることが好ましく、この金属ナノ粒子担持金属酸化物粒子は、色素増感型太陽電池の光電極に適する電極材料である。具体的には、透明導電膜を形成した透明基板上に白金若しくは炭素質材料をコーティングした対向電極と、透明導電膜を形成した透明基板上に金属酸化物多孔質膜を形成し、この金属酸化物多孔質膜の表面にルテニウム錯体等の色素を担持した光電極とを、酸化還元電解質を介して対向させ、光の吸収によりこれら電極間に電圧が発生するようにした色素増感型太陽電池における、金属酸化物多孔質膜の構成材料として最も有効である。この場合、金属酸化物としては、酸化チタン粒子が好ましく、アナターゼ型酸化チタン粒子がより好ましい。そして、このような金属ナノ粒子担持金属酸化物粒子は、有機あるいは無機材料中に分散され、上記透明導電膜上に製膜して使用される。   However, the base material differs depending on the type of organic solar cell. When used as an electrode material of a dye-sensitized solar cell, it is preferable to use metal oxide particles as the base material of the present invention. The metal nanoparticle-supported metal oxide particles are used as a photoelectrode of a dye-sensitized solar cell. It is a suitable electrode material. Specifically, a metal oxide porous film is formed on a transparent substrate on which a transparent conductive film is formed and a counter electrode obtained by coating platinum or a carbonaceous material on the transparent substrate on which the transparent conductive film is formed. Dye-sensitized solar cell in which a photoelectrode carrying a dye such as ruthenium complex is opposed to the surface of a porous material film via a redox electrolyte, and voltage is generated between these electrodes by light absorption Is the most effective material for the metal oxide porous membrane. In this case, as the metal oxide, titanium oxide particles are preferable, and anatase type titanium oxide particles are more preferable. And such a metal nanoparticle carrying | support metal oxide particle is disperse | distributed in an organic or inorganic material, and it forms and uses it on the said transparent conductive film.

一方、有機半導体系太陽電池の場合には、上記金属ナノ粒子が担持される物質に制限がない。これは、有機半導体系太陽電池が、電子供与体が光を吸収し、励起されて、電子供与体から電子受容体に電子移動することによって光電変換するためである。このため、可能な限り全ての光が吸収されるような工夫が必要であり、本発明の金属ナノ粒子を担持した金属酸化物粒子及び/または金属粒子の層を電極に設けることが効果的である。また、これらは、太陽光の入射面及びその反対面の電極いずれに設けてもよい。もちろん、入射面の電極に用いる場合には、十分な透明性が保持される粒子径に限定される。   On the other hand, in the case of an organic semiconductor solar cell, there is no limitation on the material on which the metal nanoparticles are supported. This is because in the organic semiconductor solar cell, the electron donor absorbs light, is excited, and undergoes photoelectric conversion by transferring electrons from the electron donor to the electron acceptor. For this reason, it is necessary to devise such that all light is absorbed as much as possible, and it is effective to provide a metal oxide particle and / or metal particle layer carrying the metal nanoparticles of the present invention on the electrode. is there. Moreover, you may provide these in any of the incident surface of sunlight, and the electrode of the opposite surface. Of course, when used for the electrode on the incident surface, the particle diameter is limited to a value that maintains sufficient transparency.

更に、本発明の金属ナノ粒子が担持された金属酸化物及び/または金属粒子は、色素増感型太陽電池の電解質や有機半導体系太陽電池の半導体層に分散してもよい。このような金属ナノ粒子が担持された金属酸化物及び/または金属粒子は、金属ナノ粒子単体よりも効果的にSPRが発現し、光電変換効率が向上する。(特許文献3)。この場合、上記母材の材質に特に制限はないが、金属酸化物粒子や金属粒子であることが好ましい。   Furthermore, the metal oxide and / or metal particles carrying the metal nanoparticles of the present invention may be dispersed in an electrolyte of a dye-sensitized solar cell or a semiconductor layer of an organic semiconductor solar cell. The metal oxide and / or metal particles on which such metal nanoparticles are supported exhibit SPR more effectively than the metal nanoparticles alone, and the photoelectric conversion efficiency is improved. (Patent Document 3). In this case, the material of the base material is not particularly limited, but is preferably metal oxide particles or metal particles.

以上、本発明の上記母材は、有機系太陽電池の光電変換効率を高める直接的な機能を有するが、均一な金属ナノ粒子をPVD法で堆積させるための場として不可欠であり、PVDに対して、安定な材質であり、常に新しい表面を作り出せることが可能な形状であること等が求められる。   As described above, the base material of the present invention has a direct function of increasing the photoelectric conversion efficiency of the organic solar cell, but is indispensable as a place for depositing uniform metal nanoparticles by the PVD method. Therefore, it is required to have a shape that is a stable material and can always create a new surface.

本発明のSPRを誘起する金属ナノ粒子は、PVD法によって金属酸化物粒子及び/または金属粒子表面上に直接形成されるのに対し、化学蒸着(CVD)法を用いる気相法、コロイド溶液系を用いる液相法、及び、粉砕等の固相法から生成される単一の金属ナノ粒子は、その後、金属酸化物粒子と分散、吸着させる必要がある。従って、本発明の金属ナノ粒子は、純度が高く、均一かつ小さな粒子径であり、その上、金属酸化物粒子及び/または金属粒子表面上に金属ナノ粒子を直接堆積させるため、金属ナノ粒子と金属酸化物粒子及び/または金属粒子との付着力が強く、金属ナノ粒子の粒子数を制御することができる(非特許文献6)。上記本発明の特徴に基づいて、従来の有機系太陽電池におけるSPRを上回る効果があり、光電変換効率を向上させることができる。   The metal nanoparticles for inducing SPR of the present invention are directly formed on the metal oxide particles and / or metal particle surfaces by the PVD method, whereas the vapor phase method using the chemical vapor deposition (CVD) method, the colloid solution system It is necessary to disperse and adsorb the single metal nanoparticles generated from the liquid phase method using a solid phase method such as pulverization with metal oxide particles. Therefore, the metal nanoparticles of the present invention have high purity, uniform and small particle size, and in addition, the metal nanoparticles are directly deposited on the metal oxide particles and / or the metal particle surface. Adhesive strength with metal oxide particles and / or metal particles is strong, and the number of metal nanoparticles can be controlled (Non-Patent Document 6). Based on the characteristics of the present invention, there is an effect exceeding the SPR in the conventional organic solar cell, and the photoelectric conversion efficiency can be improved.

色素増感型太陽電池においては、透明導電膜を形成した透明基板上に白金若しくは炭素質材料をコーティングした対向電極と、透明導電膜を形成した透明基板上に上記金属ナノ粒子担持金属酸化物粒子を用いて形成した金属酸化物膜の表面にルテニウム錯体等の色素を担持した光電極とを、酸化還元電解質を介して対向させ、光の吸収によりこれら電極間に電圧が発生するようにすると、従来技術のSPRを上回る効果があり、光電変換効率を向上させることができる。更に、本発明の金属ナノ粒子を担持した金属酸化物粒子及び/または金属粒子を電解質中に分散させることによって、単一の金属ナノ粒子を分散させる場合以上のSPR効果を生起することができる。   In a dye-sensitized solar cell, a counter electrode obtained by coating platinum or a carbonaceous material on a transparent substrate on which a transparent conductive film is formed, and the metal oxide particles supporting metal oxide particles on the transparent substrate on which the transparent conductive film is formed When a photoelectrode carrying a dye such as a ruthenium complex is opposed to the surface of a metal oxide film formed using a redox electrolyte so that a voltage is generated between these electrodes by light absorption, There is an effect that exceeds the SPR of the prior art, and the photoelectric conversion efficiency can be improved. Furthermore, by dispersing the metal oxide particles and / or metal particles carrying the metal nanoparticles of the present invention in the electrolyte, it is possible to produce an SPR effect that is greater than that when a single metal nanoparticle is dispersed.

また、有機半導体系太陽電池の場合、必ずしも金属酸化物に担持させる必要はないが、金属ナノ粒子担持金属酸化物粒子及び/または金属粒子の層を電極上に形成したり、半導体層中に分散すると、従来の単一の金属ナノ粒子を用いる場合以上のSPRによって光の利用効率が向上し、光電変換効率も改善される。   In the case of an organic semiconductor solar cell, it is not always necessary to support a metal oxide, but a metal nanoparticle-supported metal oxide particle and / or a layer of metal particles is formed on an electrode or dispersed in a semiconductor layer. Then, the light utilization efficiency is improved by the SPR more than that in the case of using conventional single metal nanoparticles, and the photoelectric conversion efficiency is also improved.

金属ナノ粒子を担持した金属酸化物粒子及び/または金属粒子を製造するPVD装置の概要図である。It is a schematic diagram of the PVD apparatus which manufactures the metal oxide particle and / or metal particle which carry | supported the metal nanoparticle. 本発明のPVD法により金属ナノ粒子を担持した金属酸化物粒子を光電極構成材料としたグレッツェル・タイプの色素増感型太陽電池の断面の模式図である。It is a schematic diagram of a cross section of a Gretzel type dye-sensitized solar cell using metal oxide particles carrying metal nanoparticles by the PVD method of the present invention as a photoelectrode constituent material.

本発明の金属ナノ粒子を担持した金属酸化物粒子及び/または金属粒子は、図1に示した一般的なPVD装置を用いて製造することができる。ただし、金属ナノ粒子を担持させる金属酸化物粒子及び/または金属粒子(母材)が、金属(蒸着物質)に対し、常に新しい堆積面を向けるように、この母材を撹拌しながらPVDを行う必要がある。この方法による金属ナノ粒子の生成機構は定かでないが、次のように考えることができる。一般的な蒸着やスパッタリング等の成膜機構は、Volmer−Weber(VW)成長、Frank−van der Merwe(FM)成長、Stranski−Krastanov(SK)成長が有名である(非特許文献7)。PVD物質と基板について、表面エネルギー、温度等様々なパラメーターによって成膜機構に差が生じると考えられるが、成膜初期において、VW成長となる条件を見出し、上記母材を撹拌しながらPVDを行えば、常に新しい堆積面が蒸着物質に対して向けられるため、3次元の海島構造、すなわち、金属ナノ粒子が次々に生成していくものと推測している。従って、上記新しい堆積面の創出がなければ、ナノ粒子の生成は不可能であると考えられる(特許文献7)。   The metal oxide particles and / or metal particles carrying the metal nanoparticles of the present invention can be produced using the general PVD apparatus shown in FIG. However, PVD is performed while stirring the base material so that the metal oxide particles and / or metal particles (base material) supporting the metal nanoparticles always face a new deposition surface with respect to the metal (vapor deposition material). There is a need. The formation mechanism of metal nanoparticles by this method is not clear, but can be considered as follows. As film forming mechanisms such as general vapor deposition and sputtering, Volmer-Weber (VW) growth, Frank-van der Merwe (FM) growth, and Strunki-Krastanov (SK) growth are well known (Non-patent Document 7). It is considered that the film formation mechanism differs depending on various parameters such as surface energy and temperature between the PVD substance and the substrate. However, at the initial stage of film formation, the conditions for VW growth were found, and PVD was performed while stirring the base material. For example, since a new deposition surface is always directed to the vapor deposition material, it is assumed that a three-dimensional sea-island structure, that is, metal nanoparticles are generated one after another. Therefore, it is considered impossible to generate nanoparticles without the creation of the new deposition surface (Patent Document 7).

具体的には、図1に示したように、PVD槽内の上部に設けられた蒸発源、蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽、拌槽内に設けられた蒸発物質が母材に均一に堆積するための拌機を少なくとも設置し、母材である粒子を撹拌しながら、蒸着源の金属を蒸発させることによって、金属ナノ粒子が粒子表面上に堆積される。PVD法としては、真空蒸着法、イオンビーム蒸着法、イオンプレーティング法、及び、各種スパッタリング法を用いることができ、例えば、非特許文献9、特許文献8及び9等の方法が開示されている。このようにして作製された金属ナノ粒子が担持された粒子は、金属ナノ粒子の酸化を防止するため、不活性ガスで置換された容器に保存されることが好ましい。 Specifically, as shown in FIG. 1, the evaporation source provided in an upper portion of the PVD chamber, stirred tank for introducing preform evaporated substance provided to deposit the evaporation source below, in 拌槽provided evaporation material is at least placed agitator for uniformly deposited on the base material, while stirring the particles as the base material, by evaporating a metal evaporation source, the metal nanoparticles on the particle surface It is deposited on. As the PVD method, a vacuum deposition method, an ion beam deposition method, an ion plating method, and various sputtering methods can be used. For example, methods such as Non-Patent Document 9, Patent Documents 8 and 9 are disclosed. . In order to prevent oxidation of the metal nanoparticles, the particles on which the metal nanoparticles thus prepared are supported are preferably stored in a container substituted with an inert gas.

蒸着源であり、ナノ粒子となる金属は、金属であれば特に制限はないが、金、銀、白金、白金合金、パラジウム、パラジウム合金、チタン、及び、チタン合金、の中から選ばれる少なくとも1種以上の金属が適している。これは、SPRが、金属をナノオーダー(光の波長の1/10以下)まで小さくすると、粒子の表面近傍で電子の振動による分極が生じ、金属の材質や形状、その金属ナノ粒子の存在する媒体等によって特定の波長を有するプラズモンが生起するため、光の吸収が高まり、光電変換効率が向上することに基づくが、特に、励起されるプラズモン共鳴周波数が可視光から近赤外光領域の波長に存在する金や銀等が好ましい。ただし、色素増感型太陽電池に適用する場合、その電解質は、腐食性のあるハロゲン系の酸化還元電解質を用いることが多いため、その電解質に応じて、白金、白金合金、チタン、及び、チタン合金の中から選ばれる少なくとも1種以上の金属を用いる方が好ましく、白金合金及びチタン合金は、白金及びチタン共に、50mol%以上含まれていることが好ましい。もちろん、色素増感型太陽電池の光電変換効率の向上のため、本発明の酸化チタン系光電極材料の改良だけでなく、色素増感型太陽電池を構成する基板、透明電極、電解質、対向電極等、あらゆる観点から新材料が試みられており、非腐食性電界質の開発も進められているので、材料が限定される訳ではない。   The metal that is a deposition source and becomes nanoparticles is not particularly limited as long as it is a metal, but at least one selected from gold, silver, platinum, platinum alloys, palladium, palladium alloys, titanium, and titanium alloys. More than seed metals are suitable. This is because, when the SPR is reduced to a nano-order (1/10 or less of the wavelength of light), polarization occurs due to vibration of electrons near the surface of the particle, and the metal material and shape, and the metal nanoparticles exist. This is based on the fact that plasmon having a specific wavelength occurs depending on the medium, etc., so that the absorption of light is increased and the photoelectric conversion efficiency is improved. In particular, the excited plasmon resonance frequency ranges from the visible light to the near-infrared wavelength region. Gold, silver, etc. present in However, when applied to a dye-sensitized solar cell, the electrolyte often uses a corrosive halogen-based redox electrolyte, so platinum, platinum alloy, titanium, and titanium are used depending on the electrolyte. It is preferable to use at least one metal selected from the alloys, and it is preferable that the platinum alloy and the titanium alloy contain 50 mol% or more of both platinum and titanium. Of course, in order to improve the photoelectric conversion efficiency of the dye-sensitized solar cell, not only the improvement of the titanium oxide photoelectrode material of the present invention, but also the substrate, transparent electrode, electrolyte, counter electrode constituting the dye-sensitized solar cell Since new materials have been tried from all points of view, and development of non-corrosive electrolytes is underway, the materials are not limited.

上記金属ナノ粒子の粒子径は、1〜10nmであることが好ましい。より好ましくは、3〜5nmである。そして、金属酸化物粒子に対する金属ナノ粒子の付着量は、金属酸化物粒子1cmあたり0.00001〜0.5cmであることが好ましい。更に、0.0001〜0.1cmの付着量であることがより好ましい。この粒子径及び付着量(粒子数)は、PVDの条件、母材の拌条件等によって容易に制御することが可能である。上記領域にある金属ナノ粒子が、SPRの光電変換効率向上に効果的であることはいうまでのないが、この原因は定かではないが、粒子表面に堆積しているナノ粒子の積層構造、金属ナノ粒子と母材である金属酸化物粒子や金属粒子との相互作用等に関係しており、それが、従来にはない効果を発現するものと推測している。
The particle diameter of the metal nanoparticles is preferably 1 to 10 nm. More preferably, it is 3-5 nm. The adhesion amount of the metal nanoparticles to the metal oxide particles is preferably a metal oxide particle 1 cm 3 per 0.00001~0.5cm 3. Furthermore, it is more preferable that the adhesion amount is 0.0001 to 0.1 cm 3 . The particle size and deposition amount (number of particles) can be easily controlled by PVD conditions, the base material 拌conditions. It goes without saying that the metal nanoparticles in the above region are effective in improving the photoelectric conversion efficiency of SPR, but the cause of this is not clear, but the laminated structure of the nanoparticles deposited on the particle surface, metal It is related to the interaction between the nanoparticles and the metal oxide particles or metal particles, which are the base material, and it is assumed that this produces an effect that has not been achieved in the past.

一方、金属ナノ粒子が堆積する上記母材は、金属酸化物粒子や金属粒子が好ましく用いられ、特に制限はない。   On the other hand, metal oxide particles and metal particles are preferably used as the base material on which the metal nanoparticles are deposited, and there is no particular limitation.

特に、色素増感型太陽電池用の母材には金属酸化物粒子が好ましく、酸化チタン、酸化亜鉛、酸化第二スズ、三酸化タングステン、酸化ニオブ、チタン酸ストロンチウム等やそれらの複合系を用いることができる。しかし、酸化チタン、特に、ルチル型よりもアナターゼ型酸化チタンが好ましい。また、シリコンやステアリン酸等の表面処理剤で処理されていないものが好ましい。その粒子径は1〜200nmが好ましく、5〜100nmがより好ましく、15〜50nmがより更に好ましい。粒子径が1nmより小さいと、金属ナノ粒子の生成及び付着が困難となる。一方、粒子径が200nm以上になると、光の透過性が悪くなり、色素、金属ナノ粒子に対し、光が十分作用することができなくなる。このような本発明に適した酸化チタンとしては、触媒として利用されるものが市販されており、石原産業製STシリーズやMCシリーズ、堺化学工業製触媒用酸化チタン、テイカ製AMTシリーズ、シーアイ化成製Nano Tech、チタン工業製PCシリーズ、古河機械金属製DNシリーズ、日本エアロジル製Pシリーズ等から選ぶことができる。ただし、色素増感型太陽電池の電界質に分散させる場合は、金属粒子でもよく、その粒子径は上記金属酸化物と同様である。   In particular, metal oxide particles are preferable as a base material for a dye-sensitized solar cell, and titanium oxide, zinc oxide, stannic oxide, tungsten trioxide, niobium oxide, strontium titanate, or a composite system thereof is used. be able to. However, titanium oxide, particularly anatase type titanium oxide, is preferred over rutile type. Further, those not treated with a surface treatment agent such as silicon or stearic acid are preferred. The particle diameter is preferably 1 to 200 nm, more preferably 5 to 100 nm, and still more preferably 15 to 50 nm. When the particle diameter is smaller than 1 nm, it is difficult to generate and attach metal nanoparticles. On the other hand, when the particle diameter is 200 nm or more, the light transmittance is deteriorated, and the light cannot sufficiently act on the pigment and the metal nanoparticles. As such a titanium oxide suitable for the present invention, those used as a catalyst are commercially available, such as ST series and MC series made by Ishihara Sangyo, titanium oxide for catalyst made by Sakai Chemical Industry, AMT series made by Teika, and CAI Kasei. It can be selected from Nano Tech, PC series made by Titanium Industry, DN series made by Furukawa Machine Metal, P series made by Nippon Aerosil. However, when dispersed in the electrolyte of a dye-sensitized solar cell, metal particles may be used, and the particle diameter is the same as that of the metal oxide.

一方、有機半導体系太陽電池の場合、母材に使用する材料に制限はないが、光によって誘起されるプラズモン共鳴振動数が可視光から近赤外光領域の波長に存在する金や銀等が好ましい。その粒子径は、その粒子径は1〜200nmが好ましく、5〜100nmがより好ましく、15〜50nmがより更に好ましい。   On the other hand, in the case of an organic semiconductor solar cell, there is no restriction on the material used for the base material, but gold, silver, etc., in which the plasmon resonance frequency induced by light exists in the wavelength of visible light to near infrared light region. preferable. The particle diameter is preferably 1 to 200 nm, more preferably 5 to 100 nm, and still more preferably 15 to 50 nm.

次いで、上記金属ナノ粒子担持金属酸化物粒子を色素増感型太陽電池の電極材料に適用した例を用いてより具体的に説明するが、本発明の技術思想は、これに限定されるものではなく、課題を解決する手段及び発明の効果で述べたとおりである。   Subsequently, the metal nanoparticle-supported metal oxide particles will be described more specifically using an example in which the metal nanoparticle-supported metal oxide particles are applied to an electrode material of a dye-sensitized solar cell. However, the technical idea of the present invention is not limited thereto. Rather, it is as described in the means for solving the problems and the effects of the invention.

上記金属ナノ粒子担持金属酸化物粒子を光電極材料として用いた色素増感型太陽電池は次のようにして作製される。まず、上記金属ナノ粒子担持金属酸化物粒子を含む光電極は、界面活性剤やバインダー樹脂溶液に金属ナノ粒子担持金属酸化物を分散させたペーストを、酸化インジウムと酸化スズから成るITO膜や酸化スズにフッ素をドープしたFTO膜等の透明電極を設けたガラスや合成樹脂の透明基板上に塗布、乾燥させた後、これを色素溶液に浸漬して色素を吸着させて製造することができる。上記ペーストの塗布方法は、スクリーン印刷法、スピンコーティング法、その他一般的な塗布方法が、上記ペーストの濃度や粘度に応じて使い分けられる。   A dye-sensitized solar cell using the metal nanoparticle-supported metal oxide particles as a photoelectrode material is produced as follows. First, a photoelectrode including the metal nanoparticle-supported metal oxide particles is obtained by using a paste in which metal nanoparticle-supported metal oxide is dispersed in a surfactant or binder resin solution, an ITO film made of indium oxide and tin oxide, or an oxide. It can be produced by coating and drying on a transparent substrate such as a glass or synthetic resin provided with a transparent electrode such as an FTO film in which tin is doped with fluorine, and then immersing it in a dye solution to adsorb the dye. As a method for applying the paste, a screen printing method, a spin coating method, and other general application methods are properly used depending on the concentration and viscosity of the paste.

上記ペーストに用いられる界面活性剤は、イオン性、ノニオン性、カチオン性いずれのものを用いても構わないが、バインダー樹脂としては、分散性を考慮して、界面活性能の高い水溶性樹脂が好ましい。水溶性樹脂としては、ポリアミック酸、ポリビニルアルコール、(メタ)アクリル酸共重合体、ポリアルキレンオキサイド、ポリビニルピロリドン、ポリアクリルアミド、ポリビニルアセタール、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等があり、特に限定されない。透明基板がガラスの場合、乾燥後、バインダー樹脂を数百度で分解するため、熱分解性に優れたセルロース誘導体の水溶性樹脂がバインダー樹脂として好ましい。透明基板が合成樹脂の場合は、熱分解できないため、バインダー樹脂を可能な限り少なくすることができる、分散性に優れた界面活性能が高い樹脂が好ましい。   The surfactant used in the paste may be any of ionic, nonionic, and cationic, but as the binder resin, a water-soluble resin having high surface active ability is considered in consideration of dispersibility. preferable. Examples of the water-soluble resin include polyamic acid, polyvinyl alcohol, (meth) acrylic acid copolymer, polyalkylene oxide, polyvinyl pyrrolidone, polyacrylamide, polyvinyl acetal, hydroxyethyl cellulose, and hydroxypropyl cellulose, and are not particularly limited. When the transparent substrate is glass, the binder resin is decomposed at several hundred degrees after drying. Therefore, a water-soluble resin of a cellulose derivative excellent in thermal decomposability is preferable as the binder resin. When the transparent substrate is a synthetic resin, since it cannot be thermally decomposed, a resin that can reduce the binder resin as much as possible and that has excellent dispersibility and high surface activity is preferable.

色素としては、カルボキシ基を有するルテニウムのビピリジン錯体に代表されるポリピリジルルテニウム錯体が最も適しているが、中心金属として、鉄、銅、白金等の錯体、或いは、金属を含まないメロシアニン系、シアニン系、フタロシアニン系、ポルフィリン系、アゾ系、クマリン系、インドリン系、トリフェニルアミン系等の有機色素も用いることができる。この色素溶液は、溶媒として、メタノール、エタノール、プロパノール、ブタノール等のアルコール、或いは、これらのアセトニトリル混合溶媒等が、1〜5×10−4mol/l程度の濃度として用いられる。 As the dye, a polypyridylruthenium complex typified by a ruthenium bipyridine complex having a carboxy group is most suitable, but as a central metal, a complex such as iron, copper, or platinum, or a merocyanine-based or cyanine containing no metal is used. Organic pigments such as phthalocyanines, phthalocyanines, porphyrins, azos, coumarins, indolines, and triphenylamines can also be used. In this dye solution, alcohol such as methanol, ethanol, propanol, butanol, or a mixed solvent of these acetonitrile is used as a solvent at a concentration of about 1 to 5 × 10 −4 mol / l.

光電極の対向電極は、上記透明電極を設けた透明基板に、白金や炭素質材料で電極を設けたものが適しているが、導電性ポリマーを皮膜化したものも用いることができる。   As the counter electrode of the photoelectrode, a transparent substrate provided with the above transparent electrode and an electrode provided with platinum or a carbonaceous material is suitable, but a conductive polymer film can also be used.

上記両電極の間には、ニトリル系有機溶媒を基本とするハロゲン系酸化還元電解質が封入され、シーリングされて色素増感型有機太陽電池が完成する。特に、液体電解質としては、ヨウ素系酸化還元電解質が最も適しており、アセトリトリル、メトキシアセトニトリル、メトキシプロピオニトリル等のニトリル系有機溶媒に、ヨウ素、ヨウ化リチウムを溶解したものに、逆電流を防ぎ起電力を高めるt−ブチルピリジン等を添加したり、粘性を低くしイオンの拡散をスムーズにする常温溶融塩である1−プロピル−2,3−ジメチルイミダゾリウムアイオダイド等が添加することができる。更に、液体電解質のシーリング性や長期安定性を改良することができる固体電解質を用いることもできる。固体電解質としては、ポリアルキレンオキサイド、ポリアクリロニトリル等の高分子網目に有機溶媒を吸着させるタイプ、イミダゾリウム系等のイオン性液体を用いるタイプ、ポリアセチレン、ポリピロール、ポリチオフェン等の正孔輸送材料を用いるタイプ等がある。   Between the electrodes, a halogen-based redox electrolyte based on a nitrile organic solvent is sealed and sealed to complete a dye-sensitized organic solar cell. In particular, iodine-based redox electrolytes are most suitable as liquid electrolytes, and reverse current is prevented by dissolving iodine and lithium iodide in nitrile organic solvents such as acetolitol, methoxyacetonitrile, and methoxypropionitrile. 1-propyl-2,3-dimethylimidazolium iodide, which is a room temperature molten salt that lowers the viscosity and smoothes the diffusion of ions, can be added. . Furthermore, a solid electrolyte that can improve the sealing property and long-term stability of the liquid electrolyte can also be used. As the solid electrolyte, a type that adsorbs an organic solvent to a polymer network such as polyalkylene oxide and polyacrylonitrile, a type that uses an ionic liquid such as imidazolium, and a type that uses a hole transport material such as polyacetylene, polypyrrole, and polythiophene Etc.

以下、更に、色素増感型太陽電池の場合について、実施例及び比較例を挙げて説明し、本発明の一部をより具体的に説明する。   Hereinafter, examples of the dye-sensitized solar cell will be described with reference to examples and comparative examples, and a part of the present invention will be described more specifically.

まず、図1に示したように、真空蒸着槽1に内に備えられた撹拌槽3の中に、平均粒径約20nmのアナターゼ型酸化チタン粒子を適量投入する。次いで、蒸着源2に平均粒径約10mm、純度99.99%である真空蒸着用銀ペレットを備え付ける。   First, as shown in FIG. 1, an appropriate amount of anatase-type titanium oxide particles having an average particle diameter of about 20 nm is put into a stirring tank 3 provided in the vacuum deposition tank 1. Next, the vapor deposition source 2 is provided with silver pellets for vacuum vapor deposition having an average particle diameter of about 10 mm and a purity of 99.99%.

次いで、上記真空蒸着槽の真空度が1×10〜1torrになるように排気しながら、不活性ガス導入系7からArを真空蒸着槽1に導入する。真空度が安定したら、撹拌槽3のプロペラ4を1〜200rpmの回転速度で撹拌しながら、蒸着源2の銀を、固定された平面基板上において単位面積当たり1Å〜10μm/分の速度で蒸発、シャッター6を開け、酸化チタン表面に1〜10nmの銀ナノ粒子が形成される。そして、酸化チタン粒子1cmあたり約0.001cmの銀ナノ粒子となるように蒸着し、シャッター6を閉じる。生成された銀粒子担持酸化チタン粒子は窒素置換された容器に保存された。 Next, Ar is introduced into the vacuum deposition tank 1 from the inert gas introduction system 7 while evacuating the vacuum deposition tank so that the degree of vacuum is 1 × 10 4 to 1 torr. When the degree of vacuum is stable, the silver of the evaporation source 2 is evaporated at a rate of 1 to 10 μm / min per unit area on a fixed flat substrate while stirring the propeller 4 of the stirring tank 3 at a rotational speed of 1 to 200 rpm. Then, the shutter 6 is opened, and silver nanoparticles of 1 to 10 nm are formed on the titanium oxide surface. Then, deposited to a silver nano particles of about 0.001 cm 3 per titanium oxide particles 1 cm 3, closes the shutter 6. The produced silver particle-carrying titanium oxide particles were stored in a container purged with nitrogen.

この銀粒子担持酸化チタンを用いた光電極、及び、それを用いた色素増感型太陽電池の一例を次に示す。   An example of a photoelectrode using this silver particle-supported titanium oxide and a dye-sensitized solar cell using the same will be described below.

光電極及びその対向電極として使用する導電性の透明電極基板は、FTO膜を透明導電膜とした太陽電池用ガラス(AGCファブリテック社製)を使用した。   As a conductive transparent electrode substrate used as a photoelectrode and its counter electrode, glass for solar cells (manufactured by AGC Fabricec Co., Ltd.) using an FTO film as a transparent conductive film was used.

光電極用銀粒子担持酸化チタンペーストは、銀粒子担持酸化チタンが30wt%となるように、ポリエチレングリコール6000を40wt%溶解した、アセチルアセトン10wt%及びエタノール20wt%を含む水に投入し、超音波分散して光電極用ペーストを作製した。これを、上記等電極基板にスクリーン印刷法で塗布し、乾燥膜厚約15μmとし、その後400℃で焼成した。これを、カルボキシ基を有するルテニウムのビピリジン錯体に代表されるルテニウム錯体(RuL(NCS),L=2,2’−ビピリジル−4,4’−ジカルボキシアシッド,Aldrich社製)が、濃度2.0×10−4mol/lとなるように溶解されたアセトリトリル/エタノール=1/1(v/v)混合溶媒に24hr浸漬して、上記酸化チタンの部分に上記ルテニウム錯体を吸着させた後、80℃×24hr乾燥して光電極とした。一方、対向電極は、上記太陽電池用ガラスにスパッタリング法で白金をコーティングして作製した。 The silver particle-carrying titanium oxide paste for photoelectrode is put into water containing 10 wt% acetylacetone and 20 wt% ethanol, in which 40 wt% polyethylene glycol 6000 is dissolved so that the silver particle-carrying titanium oxide is 30 wt%, and ultrasonic dispersion is performed. Thus, a paste for photoelectrodes was produced. This was applied to the above equal electrode substrate by a screen printing method to a dry film thickness of about 15 μm, and then fired at 400 ° C. This is a ruthenium complex represented by a ruthenium bipyridine complex having a carboxy group (RuL 2 (NCS) 2 , L = 2,2′-bipyridyl-4,4′-dicarboxyacid, manufactured by Aldrich) having a concentration of The ruthenium complex was adsorbed on the titanium oxide part by immersing in a mixed solvent of acetitolyl / ethanol = 1/1 (v / v) dissolved to 2.0 × 10 −4 mol / l for 24 hours. Thereafter, it was dried at 80 ° C. for 24 hours to obtain a photoelectrode. On the other hand, the counter electrode was produced by coating platinum on the solar cell glass by a sputtering method.

上記両電極の間隙に注入する電解質は、酸化還元電解質としてヨウ素/ヨウ化リチウム=10/3(w/w)、粘性を低くしイオンの拡散をスムーズにする常温溶融塩として1−プロピル−2,3−ジメチルイミダゾリウムアイオダイド60(w)、逆電流を防ぎ開放起電圧を高める4−t−ブチルピリジン50(w)を、3−メトキシプロピオニトリルに溶解したものを用いた。   The electrolyte injected into the gap between the electrodes is iodine / lithium iodide = 10/3 (w / w) as a redox electrolyte, and 1-propyl-2 as a room temperature molten salt that lowers the viscosity and smoothes the diffusion of ions. , 3-dimethylimidazolium iodide 60 (w), 4-t-butylpyridine 50 (w) which prevents reverse current and increases open electromotive force, dissolved in 3-methoxypropionitrile was used.

最後に、両電極基板間に、ポリイミドフィルム50μmをスペーサーとして挟み、電解液を注入する口と脱気する口を除き、周辺をエポキシ樹脂で封止した後、電解質を注入して、注入口と脱気口を封止して色素増感型太陽電池を作製した。   Finally, a polyimide film of 50 μm is sandwiched between the electrode substrates as a spacer, the opening for injecting the electrolyte and the opening for degassing are removed, the periphery is sealed with epoxy resin, the electrolyte is then injected, The deaeration port was sealed to prepare a dye-sensitized solar cell.

比較例Comparative example

光電極を作製する酸化チタンペーストの酸化チタン粒子を、平均粒径約20nmのアナターゼ型酸化チタン粒子としたことを除き、実施例と同様に、色素増感型太陽電池を作製した。   A dye-sensitized solar cell was produced in the same manner as in the example except that the titanium oxide particles of the titanium oxide paste for producing the photoelectrode were anatase-type titanium oxide particles having an average particle diameter of about 20 nm.

以上の結果、ソーラーシミュレーターで1000W/mの擬似太陽光を照射して、電流電圧特性を測定した結果、実施例は、比較例の約1.5倍の光電変換効率であった。 As a result of the above, as a result of measuring the current-voltage characteristics by irradiating 1000 W / m 2 of pseudo-sunlight with a solar simulator, the example had a photoelectric conversion efficiency about 1.5 times that of the comparative example.

本発明の金属ナノ粒子担持金属酸化物粒子及び/または金属粒子は、有機系太陽電池の電極だけでなく、様々な有機太陽電池の構成材料に応用することができる。   The metal nanoparticle carrying | support metal oxide particle and / or metal particle of this invention are applicable not only to the electrode of an organic type solar cell but to the component material of various organic solar cells.

特に、本発明の金属ナノ粒子担持金属酸化物粒子は、透明導電膜を形成した透明基板上に白金若しくは炭素質材料をコーティングした対向電極と、透明導電膜を形成した透明基板上に酸化チタン等の金属酸化物膜を形成し、この金属酸化物膜の表面にルテニウム錯体等の色素を担持した光電極とを、酸化還元電解質を介して対向させ、光の吸収によりこれら電極間に電圧が発生するようにした色素増感型太陽電池において、負極金属酸化物皮膜の構成材料として利用される。また、本発明の金属ナノ粒子担持金属酸化物粒子及び/または金属粒子は、有機半導体系太陽電池の電極材料としても利用される。更に、本発明の金属ナノ粒子担持金属酸化物粒子及び/または金属粒子を、色素増感型太陽電池の電解質として、有機半導体系太陽の半導体層として利用できる。従って、本発明の金属ナノ粒子担持金属酸化物粒子及び/または金属粒子を用いた有機系太陽電池は、光電変換効率に優れ、低コスト化・大面積化を実現し、持続可能な社会を実現しうる住宅発電システムに適したものである。   In particular, the metal nanoparticle-supported metal oxide particles of the present invention include a counter electrode obtained by coating platinum or a carbonaceous material on a transparent substrate on which a transparent conductive film is formed, titanium oxide or the like on a transparent substrate on which a transparent conductive film is formed. A metal oxide film is formed, and a photoelectrode carrying a dye such as a ruthenium complex is placed on the surface of the metal oxide film through a redox electrolyte, and voltage is generated between these electrodes by light absorption. In the dye-sensitized solar cell thus made, it is used as a constituent material of the negative electrode metal oxide film. Moreover, the metal nanoparticle carrying | support metal oxide particle and / or metal particle of this invention are utilized also as an electrode material of an organic-semiconductor type solar cell. Furthermore, the metal nanoparticle carrying | support metal oxide particle and / or metal particle of this invention can be utilized as a semiconductor layer of an organic semiconductor type | system | group solar as an electrolyte of a dye-sensitized solar cell. Therefore, the organic solar cell using the metal oxide particle-supported metal oxide particle and / or metal particle of the present invention is excellent in photoelectric conversion efficiency, realizes low cost and large area, and realizes a sustainable society. It is suitable for a possible residential power generation system.

1 真空蒸着槽
2 蒸着源
3 撹拌槽
4 プロペラ
5 モーター
6 シャッター
7 不活性ガス導入系
8 真空排気系
9 透明基板
10 透明電極
11 白金あるいは炭素質材料
12 酸化物粒子
13 物理蒸着法により生成した金属ナノ粒子
14 色素
15 酸化還元電解質
16 太陽
DESCRIPTION OF SYMBOLS 1 Vacuum deposition tank 2 Deposition source 3 Stirring tank 4 Propeller 5 Motor 6 Shutter 7 Inert gas introduction system 8 Vacuum exhaust system 9 Transparent substrate 10 Transparent electrode 11 Platinum or carbonaceous material 12 Oxide particle 13 Metal produced by physical vapor deposition Nanoparticle 14 Dye 15 Redox electrolyte 16 Sun

Claims (3)

金属ナノ粒子特有の表面プラズモン効果により光電変換効率を向上させることができる有機系太陽電池用材料において、平均粒子径15〜50nmの金属酸化物粒子及び/または金属粒子一つ一つの表面に、平均粒子径3〜5nmの金、銀、白金、白金合金、パラジウム、パラジウム合金、チタン、及び、チタン合金、の中から選ばれる少なくとも1種以上の金属ナノ粒子が、前記金属酸化物粒子及び/または金属粒子1cm あたり0.00001〜0.5cm 担持されていることを特徴とする有機系太陽電池用材料。 In the organic solar cell material capable of improving the photoelectric conversion efficiency by the surface plasmon effect peculiar to the metal nanoparticles , the average of the surface of each metal oxide particle and / or metal particle having an average particle diameter of 15 to 50 nm At least one or more kinds of metal nanoparticles selected from gold, silver, platinum, platinum alloy, palladium, palladium alloy, titanium, and titanium alloy having a particle diameter of 3 to 5 nm are the metal oxide particles and / or organic solar cell material, characterized by being 0.00001~0.5Cm 3 supported per metal particle 1 cm 3. 請求項1に記載の前記金属ナノ粒子担持された金属酸化物粒子及び/または金属粒子を有機系太陽電池の構成材料の少なくとも一つとして用いることを特徴とする有機系太陽電池。 The organic solar cell which is characterized by using as at least one metal nanoparticle metal oxide is supported particles and / or the constituent material of the organic solar cell of the metal particles of claim 1. 金属ナノ粒子特有の表面プラズモン効果により光電変換効率を向上させることができる有機系太陽電池用材料において、物理蒸着槽内に、前記物理蒸着槽上部に設けられた蒸発源、前記蒸発源下部に設けられた蒸発物質が堆積する母材を投入する撹拌槽、前記拌槽内に設けられた前記蒸発物質が母材に略均一に堆積するための拌機を少なくとも設置し、前記母材として、平均粒子径15〜50nmの金属酸化物粒子及び/または金属粒子を、前記蒸発源として金、銀、白金、白金合金、パラジウム、パラジウム合金、チタン、及び、チタン合金、の中から選ばれる少なくとも1種以上の金属を用い、前記金属酸化物粒子及び/または金属粒子を撹拌しながら、前記金属を蒸発させることによって、前記金属酸化物粒子及び/または金属粒子の一つ一つの表面に平均粒子径3〜5nmの前記金属ナノ粒子を堆積させることを特徴とする有機系太陽電池用材料の製造方法。 In the organic solar cell material that can improve the photoelectric conversion efficiency by the surface plasmon effect peculiar to metal nanoparticles , provided in the physical vapor deposition tank, the evaporation source provided in the upper part of the physical vapor deposition tank, and the lower part of the evaporation source stirring tank for introducing base material was evaporated substance is deposited, said evaporating material provided in 拌槽is at least placed agitator for substantially uniformly deposited on the base material, as the base material The metal oxide particles and / or metal particles having an average particle diameter of 15 to 50 nm are selected from gold, silver, platinum, platinum alloy, palladium, palladium alloy, titanium, and titanium alloy as the evaporation source. using one or more metals, while stirring the metal oxide particles and / or metallic particles, by evaporating the metal, the metal oxide particles and / or metal particles Method for manufacturing an organic solar cell materials, wherein the one one surface to deposit said metal nanoparticles with an average particle diameter 3~5nm of.
JP2014124282A 2014-06-17 2014-06-17 Material for organic solar cell, organic solar cell using the same, and method for producing the material Active JP5661965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124282A JP5661965B1 (en) 2014-06-17 2014-06-17 Material for organic solar cell, organic solar cell using the same, and method for producing the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124282A JP5661965B1 (en) 2014-06-17 2014-06-17 Material for organic solar cell, organic solar cell using the same, and method for producing the material

Publications (2)

Publication Number Publication Date
JP5661965B1 true JP5661965B1 (en) 2015-01-28
JP2016004901A JP2016004901A (en) 2016-01-12

Family

ID=52437567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124282A Active JP5661965B1 (en) 2014-06-17 2014-06-17 Material for organic solar cell, organic solar cell using the same, and method for producing the material

Country Status (1)

Country Link
JP (1) JP5661965B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107722966A (en) * 2017-10-18 2018-02-23 五邑大学 A kind of oxide/metal nuclear shell structure quantum point and preparation method thereof, application
JP2018536769A (en) * 2015-12-09 2018-12-13 サン−ゴバン グラス フランス Method and production facility for obtaining colored glazing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102193206B1 (en) * 2019-02-01 2020-12-18 한국과학기술연구원 Method for preparing dielectric substrates comprising metal nanoparticles with controlled size on their curved surface by thermal evaporation followed by solid dewetting

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153068A (en) * 1988-06-09 1990-06-12 Nisshin Steel Co Ltd Method and apparatus for coating fine powder
JPH11229115A (en) * 1998-02-09 1999-08-24 Nisshin Steel Co Ltd Preparation of powder having surface covered with fine powder
JP2001035551A (en) * 1999-07-21 2001-02-09 Sumitomo Metal Mining Co Ltd Pigment-sensitized type solar cell
JP2007042419A (en) * 2005-08-03 2007-02-15 Takayuki Abe Transparent conductive particles, its manufacturing method and electrophotographic apparatus
JP2007335222A (en) * 2006-06-15 2007-12-27 Ipb:Kk Photoelectrode, dye-sensitized solar cell using it, and its manufacturing method
JP2009046741A (en) * 2007-08-22 2009-03-05 Ulvac Japan Ltd Method for forming fine-particle film
JP2009511754A (en) * 2005-10-26 2009-03-19 ピー アンド アイ コーポレーション Method of manufacturing powder by uniformly vacuum-depositing metal, alloy and ceramic nanoparticles, and apparatus for manufacturing the same
JP2010225478A (en) * 2009-03-24 2010-10-07 Ulvac Japan Ltd Photoelectric conversion element and its manufacturing method
JP2012089510A (en) * 2011-12-13 2012-05-10 Takayuki Abe Transparent conductive particles, and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153068A (en) * 1988-06-09 1990-06-12 Nisshin Steel Co Ltd Method and apparatus for coating fine powder
JPH11229115A (en) * 1998-02-09 1999-08-24 Nisshin Steel Co Ltd Preparation of powder having surface covered with fine powder
JP2001035551A (en) * 1999-07-21 2001-02-09 Sumitomo Metal Mining Co Ltd Pigment-sensitized type solar cell
JP2007042419A (en) * 2005-08-03 2007-02-15 Takayuki Abe Transparent conductive particles, its manufacturing method and electrophotographic apparatus
JP2009511754A (en) * 2005-10-26 2009-03-19 ピー アンド アイ コーポレーション Method of manufacturing powder by uniformly vacuum-depositing metal, alloy and ceramic nanoparticles, and apparatus for manufacturing the same
JP2007335222A (en) * 2006-06-15 2007-12-27 Ipb:Kk Photoelectrode, dye-sensitized solar cell using it, and its manufacturing method
JP2009046741A (en) * 2007-08-22 2009-03-05 Ulvac Japan Ltd Method for forming fine-particle film
JP2010225478A (en) * 2009-03-24 2010-10-07 Ulvac Japan Ltd Photoelectric conversion element and its manufacturing method
JP2012089510A (en) * 2011-12-13 2012-05-10 Takayuki Abe Transparent conductive particles, and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014032597; Chuen-Shii Chou: 'Preparation of TiO2/Nano-metal composite particles and thier applications in dye-sensitized solar ce' Powder Technology Volume 194, 20090825, Page 95-105 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536769A (en) * 2015-12-09 2018-12-13 サン−ゴバン グラス フランス Method and production facility for obtaining colored glazing
CN107722966A (en) * 2017-10-18 2018-02-23 五邑大学 A kind of oxide/metal nuclear shell structure quantum point and preparation method thereof, application

Also Published As

Publication number Publication date
JP2016004901A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
Ramasubbu et al. Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells
Xie et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells
Zhu et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method
Wang et al. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency
Lee et al. Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
Hwang et al. Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control
Wu et al. BaCO3 modification of TiO2 electrodes in quasi-solid-state dye-sensitized solar cells: performance improvement and possible mechanism
KR20080045025A (en) Dye-sensitized solar cell
KR20080079894A (en) Dye-sensitized solar cell and preparing method thereof
CN102332356A (en) DSSC and manufacturing approach thereof
Khan A study on the optimization of dye-sensitized solar cells
Cheema et al. Harnessing photovoltage: Effects of film thickness, TiO2 nanoparticle size, MgO and surface capping with DSCs
Somdee et al. Effect of precipitating agent NaOH on the synthesis of SrTiO3/TiO2 heterostructure for dye-sensitized solar cells
Park et al. Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye‐Sensitized Solar Cells
Bian et al. Efficient CsPbIBr2 perovskite solar cells: precise control of film growth through the application of organic iodized salt and anti-solvent
JP5661965B1 (en) Material for organic solar cell, organic solar cell using the same, and method for producing the material
Huang et al. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition
Cai et al. Carbon-based all-inorganic CsPbI2Br perovskite solar cells using TiO2 nanorod arrays: interface modification and the enhanced photovoltaic performance
Chou et al. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell
JP4716636B2 (en) Compound semiconductor
Kiran et al. Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells
Kang et al. Electrochemically synthesized mesoscopic nickel oxide films as photocathodes for dye-sensitized solar cells
Chen et al. Electron transport dynamics in TiO2 films deposited on Ti foils for back-illuminated dye-sensitized solar cells
Hou et al. Stable and near-infrared absorption enhanced dye-sensitized solar cell based on silver nanoplates@ silica nanocrystals

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250