KR101352330B1 - Method for manufacturing metal nano-structures of dye-sensitized solar cell - Google Patents

Method for manufacturing metal nano-structures of dye-sensitized solar cell Download PDF

Info

Publication number
KR101352330B1
KR101352330B1 KR1020120027549A KR20120027549A KR101352330B1 KR 101352330 B1 KR101352330 B1 KR 101352330B1 KR 1020120027549 A KR1020120027549 A KR 1020120027549A KR 20120027549 A KR20120027549 A KR 20120027549A KR 101352330 B1 KR101352330 B1 KR 101352330B1
Authority
KR
South Korea
Prior art keywords
metal nanoparticles
dye
layer
metal
forming
Prior art date
Application number
KR1020120027549A
Other languages
Korean (ko)
Other versions
KR20130105986A (en
Inventor
기현철
김두근
김선훈
김회종
이동길
정유라
박아름
김상기
김선재
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020120027549A priority Critical patent/KR101352330B1/en
Publication of KR20130105986A publication Critical patent/KR20130105986A/en
Application granted granted Critical
Publication of KR101352330B1 publication Critical patent/KR101352330B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 염료감응형 태양전지의 금속 나노 구조체 제조방법에 관한 것으로서, 플라즈마 공명 현상을 적용하여 염료감응형 태양전지의 효율을 향상시키도록 함에 그 목적이 있다.
이러한 목적을 달성하기 위한 본 발명은, (a) 베이스 기판 상에 전도성 물질(FTO)로 이루어진 전도성 기판을 형성하는 단계; (b) 상기 전도성 기판과 금속 나노입자의 접착력을 향상시키기 위한 층으로서, 상기 전도성 기판 상에 버퍼(Buffer)층을 형성하는 단계; (c) 상기 버퍼층 상에 금속 나노입자를 형성하는 단계; 및 (d) 상기 금속 나노입자에 보호층을 형성하는 단계; 를 포함하되, 상기 (c) 단계에서, 전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속 나노입자를 형성하되, 상기 금속 나노 구조층의 가열 온도 및 두께에 따라 금속 나노입자의 크기를 조절하는 것을 특징으로 하며, 상기 (d) 단계에서, 이산화티타늄(TiO2)을 전자빔 증착방식(E-beam evaporation) 및 이온빔 보조증착방식(Ion-Beam assisted deposition) 중, 어느 하나의 방식을 이용하여 상기 보호층을 형성하는 것을 특징으로 한다.
The present invention relates to a method for manufacturing a metal nanostructure of a dye-sensitized solar cell, the object of which is to improve the efficiency of the dye-sensitized solar cell by applying a plasma resonance phenomenon.
The present invention for achieving the above object, (a) forming a conductive substrate made of a conductive material (FTO) on the base substrate; (b) forming a buffer layer on the conductive substrate as a layer for improving adhesion between the conductive substrate and the metal nanoparticles; (c) forming metal nanoparticles on the buffer layer; And (d) forming a protective layer on the metal nanoparticles; Including, but in the step (c), by depositing and heat treating the metal nanostructure layer using an electron beam evaporator (E-beam evaporator) to form metal nanoparticles, the heating temperature and thickness of the metal nanostructure layer It characterized in that to control the size of the metal nanoparticles, in the step (d), titanium dioxide (TiO2) of the electron beam evaporation method (E-beam evaporation) and ion-beam assisted deposition (Ion-Beam assisted deposition), The protective layer is formed by using any one method.

Description

염료감응형 태양전지의 금속 나노 구조체 제조방법{METHOD FOR MANUFACTURING METAL NANO-STRUCTURES OF DYE-SENSITIZED SOLAR CELL}METHOD FOR MANUFACTURING METAL NANO-STRUCTURES OF DYE-SENSITIZED SOLAR CELL}

본 발명은 염료감응형 태양전지의 금속 나노 구조체 제조방법에 관한 것으로서, 더욱 상세하게는 염료감응형 태양전지의 효율을 향상시키기 위하여, 은(Ag)과 다른 금속이 전도성 기판 상에 비주기적으로 형성된 금속 나노 구조체 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a metal nanostructure of a dye-sensitized solar cell, and more particularly, in order to improve the efficiency of the dye-sensitized solar cell, silver (Ag) and other metals are formed aperiodically on a conductive substrate. It relates to a method for producing a metal nanostructure.

염료감응형 태양전지는 염료분자가 화학적으로 흡착된 나노입자 반도체 산화물 전극에 광을 조사함으로써 exaction을 형성하고 이 중 전자가 반도체 산화물의 전도띠로 주입되어 전류를 발생시키는 원리이다.The dye-sensitized solar cell is a principle in which an exaction is formed by irradiating light to a nanoparticle semiconductor oxide electrode in which dye molecules are chemically adsorbed, and electrons are injected into the conduction band of the semiconductor oxide to generate current.

또한, 염료감응형 태양전지는 이론적으로 30%이상의 광전변화 효율을 나타낼 수 있으나, 태양전지의 소재 특성 상 현재는 11%대의 효율을 가지고 있다. 이러한 특징 때문에 실리콘 태양전지, 박막 태양전지보다 상용화가 늦어지고 있다. In addition, the dye-sensitized solar cell may theoretically exhibit photoelectric change efficiency of 30% or more, but currently has an efficiency of about 11% due to the material properties of the solar cell. Due to these characteristics, commercialization is slower than silicon solar cells and thin film solar cells.

염료감응형 태양전지의 효율 향상을 위해서는 염료감응형 태양전지 소재인 광전극, 염료, 전해질, 상대전극의 기술 개발도 필요하지만 태양전지의 구조 개선에 따른 효율 향상을 하는 노력이 진행되고 있다.In order to improve the efficiency of the dye-sensitized solar cell, it is also necessary to develop the technology of the photoelectrode, dye, electrolyte, and counter electrode, which are dye-sensitized solar cell materials, but efforts are being made to improve the efficiency by improving the structure of the solar cell.

플라즈몬은 금속 내의 자유전자 집단적으로 진동하는 유사 입자를 말하며, 금속의 나노입자에서는 플라즈몬이 표면에 국부적으로 존재하기 때문에 표면 플라즈몬(Surface Plasmon)이이라고 한다. 빛에너지가 표면플라즈몬에 변환되어 금속의 나노 입자표면에 축적되었음을 말하며 빛의 회절 한계보다 작은 영역에서 광 제어가 가능하다.Plasmons are analogous particles that vibrate collectively of free electrons in metals, and are called surface plasmons because plasmons are locally present on the surface of metal nanoparticles. Light energy is converted into surface plasmon and accumulated on the surface of metal nanoparticles, and light control is possible in a region smaller than the diffraction limit of light.

한편, 염료감응형 태양전지의 제작에 관한 기술과 관련해서는, 한국공개특허 10-2006-0033158호(이하, '선행문헌')외 다수 출원 및 공개되어 있다.In connection with the technology relating to the fabrication of a dye-sensitized solar cell, Korean Patent Laid-Open No. 10-2006-0033158 (hereinafter referred to as "prior art") and others are filed and disclosed.

선행문헌에 따른 염료감응형 태양전지는, 상, 하부 투명기판과, 상부 투명기판의 내측 표면에 형성된 도전성 투명전극과, 도전성 투명전극 위에 형성된 것으로 그 표면에는 염료가 흡착된 산화물반도체 다공질 음극전극과, 하부 투명기판 위에 박막형태로 형성된 것으로 상기 음극전극에 대응하는 양극부로서의 상대전극과, 상기 음극전극과 상대전극 사이에 충전된 전해질을 구비하는 염료감응형 태양전지에 있어서, 상기 상대전극은 탄소나노튜브층으로 구성되어 있는 것을 특징으로 하고 있다. The dye-sensitized solar cell according to the prior art comprises an upper and a lower transparent substrate, a conductive transparent electrode formed on the inner surface of the upper transparent substrate, an oxide semiconductor porous cathode electrode formed on the conductive transparent electrode, A counter electrode formed as a thin film on a lower transparent substrate and serving as an anode portion corresponding to the cathode electrode and an electrolyte filled between the cathode electrode and the counter electrode, And a nanotube layer.

현재 이러한 표면 플라즈몬은 현재 태양전지에서 많이 적용하고 있으나, 선행문헌과 같은 염료감응형 태양전지의 경우, 전해질 성분인 요오드 성분이 금속 나노입자와 반응을 일으키는 문제점이 있기 때문에 사용을 하지 못하고 있다. Currently, such surface plasmons are applied to solar cells at present, but in the case of dye-sensitized solar cells as in the prior art, iodine, which is an electrolyte component, reacts with metal nanoparticles.

이러한 문제점을 해결하기 위하여 금속 나노입자를 보호할 수 있는 방법과 금속 나노입자를 구현하고자 한다.In order to solve this problem, a method for protecting metal nanoparticles and a metal nanoparticle are provided.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 플라즈마 공명 현상을 적용하여 염료감응형 태양전지의 효율을 향상시키도록 함에 그 목적이 있다.The present invention has been made in view of the above problems, and an object thereof is to improve the efficiency of a dye-sensitized solar cell by applying a plasma resonance phenomenon.

구체적으로는, 금속 나노 입자의 접착력을 향상시키기 위하여 버퍼층을 형성하고, 태양전지의 전해질로부터 금속을 보호하기 위한 보호층이 형성된 금속 나노 구조체를 제공한다. 그리고, 수열합성법을 이용하여 금속 나노 입자를 침전시킴으로써 전도성 기판에 직접적으로 금속 나노 구조체를 형성시킨다. Specifically, the present invention provides a metal nanostructure in which a buffer layer is formed to improve adhesion of metal nanoparticles, and a protective layer for protecting a metal from an electrolyte of a solar cell is formed. Then, metal nanoparticles are precipitated using hydrothermal synthesis to form metal nanostructures directly on the conductive substrate.

이러한 기술적 과제를 달성하기 위한 본 발명은 염료감응형 태양전지의 금속 나노 구조체 제조방법에 관한 것으로서, (a) 베이스 기판 상에 전도성 물질(FTO)로 이루어진 전도성 기판을 형성하는 단계; (b) 상기 전도성 기판과 금속 나노입자의 접착력을 향상시키기 위한 층으로서, 상기 전도성 기판 상에 버퍼(Buffer)층을 형성하는 단계; (c) 상기 버퍼층 상에 금속 나노입자를 형성하는 단계; 및 (d) 상기 금속 나노입자에 보호층을 형성하는 단계; 를 포함하되, 상기 (c) 단계에서, 전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속 나노입자를 형성하되, 상기 금속 나노 구조층의 가열 온도 및 두께에 따라 금속 나노입자의 크기를 조절하는 것을 특징으로 하며, 상기 (d) 단계에서, 이산화티타늄(TiO2)을 전자빔 증착방식(E-beam evaporation) 및 이온빔 보조증착방식(Ion-Beam assisted deposition) 중, 어느 하나의 방식을 이용하여 상기 보호층을 형성하는 것을 특징으로 한다. The present invention for achieving the technical problem relates to a method for manufacturing a metal nanostructure of a dye-sensitized solar cell, (a) forming a conductive substrate made of a conductive material (FTO) on the base substrate; (b) forming a buffer layer on the conductive substrate as a layer for improving adhesion between the conductive substrate and the metal nanoparticles; (c) forming metal nanoparticles on the buffer layer; And (d) forming a protective layer on the metal nanoparticles; Including, but in the step (c), by depositing and heat treating the metal nanostructure layer using an electron beam evaporator (E-beam evaporator) to form metal nanoparticles, the heating temperature and thickness of the metal nanostructure layer It characterized in that to control the size of the metal nanoparticles, in the step (d), titanium dioxide (TiO2) of the electron beam evaporation method (E-beam evaporation) and ion-beam assisted deposition (Ion-Beam assisted deposition), The protective layer is formed by using any one method.

삭제delete

상기와 같은 본 발명에 따르면, 금속 나노입자를 보호할 수 있으며, 플라즈마 공명 현상을 적용하여 염료감응형 태양전지의 효율을 향상시킬 수 있는 효과가 있다.According to the present invention as described above, it is possible to protect the metal nanoparticles, there is an effect that can improve the efficiency of the dye-sensitized solar cell by applying the plasma resonance phenomenon.

도 1 은 본 발명에 따른 염료감응형 태양전지의 금속 나노 구조체 제조방법에 관한 전체 흐름도. 1 is an overall flow chart of a metal nanostructure manufacturing method of the dye-sensitized solar cell according to the present invention.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

본 발명에 따른 염료감응형 태양전지의 금속 나노 구조체 제조방법에 관하여 도 1 을 참조하여 설명하면 다음과 같다. A method of manufacturing a metal nanostructure of a dye-sensitized solar cell according to the present invention will be described with reference to FIG. 1.

본 발명에서는 상술한 바와 같은 목적을 달성하기 위하여, 전도성 기판 위에 버퍼층을 형성하고, 금속 나노 입자를 형성하며, 금속 나노 입자를 보호하기 위한 보호층을 형성한다.In the present invention, to achieve the object as described above, to form a buffer layer on the conductive substrate, to form metal nanoparticles, and to form a protective layer for protecting the metal nanoparticles.

이하에서, 상술한 제조방법을 구체적으로 살피면 다음과 같다. In the following, the manufacturing method described above will be described in detail.

도 1 은 본 발명에 따른 염료감응형 태양전지의 금속 나노 구조체의 제 1 제조방법(S100)에 관한 전체 흐름도로서, 도시된 바와 같이 베이스 기판(10) 상에 전도성 물질(FTO)로 이루어진 전도성 기판(20)을 형성하고(S110), 상기 전도성 기판(20) 상에 버퍼(Buffer)층(30)을 형성한다(S120). FIG. 1 is an overall flowchart of a first method (S100) of manufacturing a metal nanostructure of a dye-sensitized solar cell according to the present invention, and as illustrated, a conductive substrate made of a conductive material (FTO) on a base substrate 10. 20 is formed (S110), and a buffer layer 30 is formed on the conductive substrate 20 (S120).

이때, 상기 베이스 기판(10)은 유리(Glass) 또는 유연성(Flexible) 기판일 수 있으며, 상기 버퍼층(30)은 전도성 기판(20)과 금속 나노입자의 접착력을 향상시키기 위한 층으로서, 전도성 물질의 투과율에 많은 영향을 주지 않는 이산화티타늄(TiO2)로 형성될 수 있다. In this case, the base substrate 10 may be a glass or flexible substrate, and the buffer layer 30 is a layer for improving adhesion between the conductive substrate 20 and the metal nanoparticles. It may be formed of titanium dioxide (TiO 2) that does not significantly affect the transmittance.

또한, 상기 버퍼층(30) 상에 금속 나노입자(40)를 형성한다(S130).In addition, the metal nanoparticles 40 are formed on the buffer layer 30 (S130).

구체적으로, 전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속 나노입자(40)를 형성한다. Specifically, metal nanoparticles 40 are formed by depositing and heat treating a metal nanostructure layer using an E-beam evaporator.

이때, 금속 나노입자는 은(Ag)이 사용되며, 가열 시, 얇은 은(Ag) 박막이 원형의 은(Ag) 입자형태로 변형된다.
또한, 금속 나노 구조층의 가열 온도 및 두께 등에 따라 입자 크기를 조절할 수 있다.
In this case, silver (Ag) is used as the metal nanoparticle, and when heated, the thin silver (Ag) thin film is transformed into a circular silver (Ag) particle form.
In addition, the particle size may be adjusted according to the heating temperature and the thickness of the metal nanostructure layer.

또한, 금속 나노입자(40)를 전해질 성분인 요오드로부터 보호하기 위해, 상기 금속 나노입자(40)에 보호층(50)을 형성함으로써 금속 나노 구조체를 형성한다(S140). 이후, 광전극 및 상대전극 형성, 염료 흡착, 전해질 주입 등을 통해 염료감응형 태양전지를 제작한다.
이때, 보호층(50)은 이산화티타늄(TiO2)을 전자빔 증착방식(E-beam evaporation) 및 이온빔 보조증착방식(Ion-Beam assisted deposition) 등을 이용하여 형성할 수 있다.
In addition, in order to protect the metal nanoparticles 40 from iodine which is an electrolyte component, the metal nanostructures are formed by forming the protective layer 50 on the metal nanoparticles 40 (S140). Thereafter, a dye-sensitized solar cell is manufactured by forming a photoelectrode and a counter electrode, dye adsorption, and electrolyte injection.
In this case, the protective layer 50 may be formed of titanium dioxide (TiO 2) by using an electron beam evaporation method and an ion beam assisted deposition method.

삭제delete

삭제delete

삭제delete

삭제delete

지금까지 상술한 바와 같은, 본 발명에 따른 염료감응형 태양전지의 금속 나노 구조체 제조방법은, 은(Ag)과 다른 금속을 전도성 기판 상에 비주기적인 나노 구조를 형성함으로써, 플라즈몬 공명 효과를 적용할 수 있어, 염료감응형 태양전지의 효율을 높일 수 있는 특징적인 장점을 가진다. As described above, the method for manufacturing a metal nanostructure of a dye-sensitized solar cell according to the present invention applies a plasmon resonance effect by forming an aperiodic nanostructure on a conductive substrate with silver (Ag) and another metal. It can be, has a characteristic advantage that can increase the efficiency of the dye-sensitized solar cell.

-S100-
10: 베이스 기판 20: 전도성 기판
30: 버퍼층 40: 금속 나노입자
50: 보호층
-S100-
10: base substrate 20: conductive substrate
30: buffer layer 40: metal nanoparticles
50: protective layer

Claims (9)

삭제delete (a) 베이스 기판 상에 전도성 물질(FTO)로 이루어진 전도성 기판을 형성하는 단계;
(b) 상기 전도성 기판과 금속 나노입자의 접착력을 향상시키기 위한 층으로서, 상기 전도성 기판 상에 버퍼(Buffer)층을 형성하는 단계;
(c) 상기 버퍼층 상에 금속 나노입자를 형성하는 단계; 및
(d) 상기 금속 나노입자에 보호층을 형성하는 단계; 를 포함하되,
상기 (c) 단계에서,
전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속 나노입자를 형성하되, 상기 금속 나노 구조층의 가열 온도 및 두께에 따라 금속 나노입자의 크기를 조절하는 것을 특징으로 하며,
상기 (d) 단계에서,
이산화티타늄(TiO2)을 전자빔 증착방식(E-beam evaporation) 및 이온빔 보조증착방식(Ion-Beam assisted deposition) 중, 어느 하나의 방식을 이용하여 상기 보호층을 형성하는 것을 특징으로 하는 염료감응형 태양전지의 금속 나노 구조체 제조방법.
(a) forming a conductive substrate made of a conductive material (FTO) on the base substrate;
(b) forming a buffer layer on the conductive substrate as a layer for improving adhesion between the conductive substrate and the metal nanoparticles;
(c) forming metal nanoparticles on the buffer layer; And
(d) forming a protective layer on the metal nanoparticles; , ≪ / RTI &
In the step (c)
Forming metal nanoparticles by depositing and heating the metal nanostructure layer using an E-beam evaporator, wherein the size of the metal nanoparticles is controlled according to the heating temperature and thickness of the metal nanostructure layer. ,
In the step (d)
Dye-sensitized solar, characterized in that the protective layer is formed of titanium dioxide (TiO 2) by using any one of an electron beam evaporation method and an ion beam assisted deposition method. Method for producing a metal nanostructure of a battery.
제 2 항에 있어서,
상기 베이스 기판은,
유리(Glass) 또는 유연성(Flexible) 기판인 것을 특징으로 하는 염료감응형 태양전지의 금속 나노 구조체 제조방법.
3. The method of claim 2,
The base substrate includes:
Method of manufacturing a metal nanostructure of a dye-sensitized solar cell, characterized in that the glass (Flases) or flexible (Flexible) substrate.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020120027549A 2012-03-19 2012-03-19 Method for manufacturing metal nano-structures of dye-sensitized solar cell KR101352330B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120027549A KR101352330B1 (en) 2012-03-19 2012-03-19 Method for manufacturing metal nano-structures of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120027549A KR101352330B1 (en) 2012-03-19 2012-03-19 Method for manufacturing metal nano-structures of dye-sensitized solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130101545A Division KR20130106334A (en) 2013-08-27 2013-08-27 Method for manufacturing metal nano-structures of dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
KR20130105986A KR20130105986A (en) 2013-09-27
KR101352330B1 true KR101352330B1 (en) 2014-01-17

Family

ID=49454073

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120027549A KR101352330B1 (en) 2012-03-19 2012-03-19 Method for manufacturing metal nano-structures of dye-sensitized solar cell

Country Status (1)

Country Link
KR (1) KR101352330B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001890A (en) * 2014-06-27 2016-01-07 연세대학교 원주산학협력단 Anti-aging skin theragnostic system using ultrasound and OCT
KR101686970B1 (en) * 2015-05-19 2016-12-28 부경대학교 산학협력단 Flexible photoelectrode, preparation method thereof and dye-sensitized solar cell comprising the same
KR101709014B1 (en) * 2015-09-17 2017-03-09 한양대학교 산학협력단 Photoelectrochemical Electrode and Device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035551A (en) 1999-07-21 2001-02-09 Sumitomo Metal Mining Co Ltd Pigment-sensitized type solar cell
KR20090019609A (en) * 2007-08-21 2009-02-25 엘지전자 주식회사 High efficient solar cell including nano particle layer and fabrication method thereof
KR20110070578A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Dye-sensitized solar cells module and method for fabricating the same
KR101110364B1 (en) 2010-02-19 2012-02-15 한국세라믹기술원 Electrode of dye sensitized solar cell using metal nanoparticles and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035551A (en) 1999-07-21 2001-02-09 Sumitomo Metal Mining Co Ltd Pigment-sensitized type solar cell
KR20090019609A (en) * 2007-08-21 2009-02-25 엘지전자 주식회사 High efficient solar cell including nano particle layer and fabrication method thereof
KR20110070578A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Dye-sensitized solar cells module and method for fabricating the same
KR101110364B1 (en) 2010-02-19 2012-02-15 한국세라믹기술원 Electrode of dye sensitized solar cell using metal nanoparticles and manufacturing method of the same

Also Published As

Publication number Publication date
KR20130105986A (en) 2013-09-27

Similar Documents

Publication Publication Date Title
Warwick et al. Vapor phase processing of α-Fe2O3 photoelectrodes for water splitting: an insight into the structure/property interplay
Kang et al. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells
Feng et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications
Suryawanshi et al. Vapor–liquid–solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior
Im et al. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition
Yang et al. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties
JPWO2010090226A1 (en) Dye-sensitized solar cell
Li et al. Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO 2 compact layer on the conversion efficiency of perovskite solar cells
KR101352330B1 (en) Method for manufacturing metal nano-structures of dye-sensitized solar cell
Venkatachalam et al. Preparation and characterization of nanostructured TiO2 thin films by hydrothermal and anodization methods
CN102097497A (en) Solar cell with high conversion efficiency
Zhou et al. Photoelectrochemical Performance of Quantum dot-Sensitized TiO 2 Nanotube Arrays: a Study of Surface Modification by Atomic Layer Deposition Coating
KR101087266B1 (en) Method for preparing silicon nanowire/zinc oxide core/shell nanocomposite and solar cell comprising the nanocomposite
Wei et al. Enhanced electrochemical catalytic efficiencies of electrochemically deposited platinum nanocubes as a counter electrode for dye-sensitized solar cells
KR101453605B1 (en) Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells
Ghani et al. Highly ordered combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles prepared by a novel route for dye-sensitized solar cells
Kim et al. Acid-free approach towards the growth of vertically aligned TiO2 nanorods as an efficient photoanode for dye-sensitized solar cells
KR101282291B1 (en) Method for forming zno concavo-convex structure and solar cell using the same
Muduli et al. Shape preserving chemical transformation of ZnO mesostructures into anatase TiO 2 mesostructures for optoelectronic applications
JP2011091032A (en) Manufacturing method of electrode for quantum dot sensitized solar cell, electrode for quantum dot sensitized solar cell, and quantum dot sensitized solar cell
Endo et al. Structural and chemical analysis of TiO2 nanotube surface for dye-sensitized solar cells
Unni et al. Photovoltaic application of rice flake-shaped ZnO nanostructures
KR101474549B1 (en) Method for manufacturing ar thin film and metal nano-structures of dye-sensitized solar cell
CN103310992A (en) Photo-anode of dye-sensitized solar cell and preparation method for photo-anode
Khan et al. Nano gold-coated surface patterned mesoporous titanium tin oxide sol–gel thin film: fabrication, optical and photoelectrochemical properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 7