JP2001033119A - Multi-room type air conditioner - Google Patents

Multi-room type air conditioner

Info

Publication number
JP2001033119A
JP2001033119A JP11205189A JP20518999A JP2001033119A JP 2001033119 A JP2001033119 A JP 2001033119A JP 11205189 A JP11205189 A JP 11205189A JP 20518999 A JP20518999 A JP 20518999A JP 2001033119 A JP2001033119 A JP 2001033119A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
valve
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11205189A
Other languages
Japanese (ja)
Inventor
Shuntaro Ito
俊太郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP11205189A priority Critical patent/JP2001033119A/en
Publication of JP2001033119A publication Critical patent/JP2001033119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a multi-room type air conditioner in which each indoor unit can be supplied with an appropriate quantity of refrigerant depending on the capacity thereof and the quantity of refrigerant in a circulation refrigerant circuit can be regulated appropriately depending on the operating state of each indoor unit. SOLUTION: The multi-room type air conditioner comprises an indoor unit 2 comprising indoor side heat exchangers 9, 10, 11 having different heat exchanging capacity coupled with electronic expansion valves 12a, 12b, 12c, a refrigerant distribution unit 3, and an outdoor unit 1 comprising a compressor 4 and an accumulator 5 provided, on the suction and delivery sides thereof, with pressure sensors 33b, 33a and a thermister 34, outdoor side heat exchangers 6, 7, 8 provided, in front and rear thereof, with an electronic expansion valve and a solenoid valve and set, respectively, with heat exchanging capacity corresponding to those of the indoor side heat exchangers 9, 10, 11. The quantity of refrigerant in the refrigerant circuit is regulated lower than the measurements of the pressure sensors 33b, 33a and the thermister 34.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一台の室外ユニッ
トが接続された複数台の室内ユニットを冷房運転、ある
いは暖房運転する多室形空気調和装置に係わり、より詳
細には室外ユニット内の室外側熱交換器の構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner for cooling or heating a plurality of indoor units to which one outdoor unit is connected. The present invention relates to a configuration of an outdoor heat exchanger.

【0002】[0002]

【従来の技術】図6に従来の多室形空気調和装置の一例
を示す。37は室外ユニット、2は複数の室内ユニット
であり、3は冷媒分流ユニットである。室外ユニット3
7は圧縮機5と、それに接続されるアキュームレータ4
及び室外側熱交換器40とにより構成され、複数の室内
ユニット2は室内側熱交換器9、10及び11と、それ
に接続する電子膨張弁12a、12b、及び12cとに
より構成されている。前記圧縮機5の吐出口は第一配管
13に接続され、同圧縮機5の吸込口は第二配管14に
接続されている。第一配管13は電磁開閉弁21aを経
て室外側熱交換器40の、冷房時には流入側となる流入
口に接続されており同室外熱交換器40の吐出口は電子
膨張弁26を備えた第五配管18に接続し、同配管18
は並列に分岐する第七配管19となり、電子膨張弁12
a、12b及び12cを経て複数の室内側熱交換器9、
10及び11に接続される。同室内熱側交換器9、10
及び11の流出口からは並列に第八配管20が接続され
冷媒分流ユニット3に至る。同冷媒分流ユニット3にお
いて同第八配管20は夫々が分岐し、一方の分岐管29
は電磁開閉弁31a、31b及び31cを経て第四配管
16に接続し、他方の分岐管30は電磁開閉弁32a、
32b及び32cを経て前記第二配管14に接続されて
いる。同構成において、前記室内ユニット2の各室内側
熱交換器9、10及び11の熱容量が異なる場合、同熱
容量に対応して同室内側熱交換器9、10及び11に流
入する冷媒量のコントロールはかなり困難であり各室に
おいては冷房不足あるいは過剰冷房となる恐れがある。
また室外側熱交換器を分割して設けると、ある室内ユニ
ットの運転を停止した場合それに伴い運転を停止した室
外熱交換器内に冷媒溜りが発生し冷媒回路内で冷媒量が
不足あるいは過剰となり冷房能力不足、あるいは冷媒の
圧力上昇または液戻り現象を引き起こす場合がある。
2. Description of the Related Art FIG. 6 shows an example of a conventional multi-room air conditioner. 37 is an outdoor unit, 2 is a plurality of indoor units, and 3 is a refrigerant distribution unit. Outdoor unit 3
7 is a compressor 5 and an accumulator 4 connected thereto.
The indoor unit 2 includes indoor heat exchangers 9, 10, and 11, and electronic expansion valves 12a, 12b, and 12c connected thereto. The discharge port of the compressor 5 is connected to a first pipe 13, and the suction port of the compressor 5 is connected to a second pipe 14. The first pipe 13 is connected via an electromagnetic on-off valve 21a to an inlet of the outdoor heat exchanger 40, which is on the inflow side during cooling, and the discharge port of the outdoor heat exchanger 40 is provided with an electronic expansion valve 26 having an electronic expansion valve 26. Five pipes 18
Is a seventh pipe 19 branched in parallel, and the electronic expansion valve 12
a, a plurality of indoor heat exchangers 9 via 12b and 12c,
10 and 11 are connected. Same-side heat exchanger 9, 10
The eighth pipe 20 is connected in parallel from the outlets of the first and second pipes 11 to the refrigerant distribution unit 3. In the refrigerant distribution unit 3, each of the eighth pipes 20 branches, and one of the branch pipes 29
Is connected to the fourth pipe 16 via electromagnetic on-off valves 31a, 31b and 31c, and the other branch pipe 30 is connected to the electromagnetic on-off valve 32a,
It is connected to the second pipe 14 via 32b and 32c. In the same configuration, when the heat capacities of the indoor heat exchangers 9, 10 and 11 of the indoor unit 2 are different, the amount of refrigerant flowing into the indoor heat exchangers 9, 10 and 11 corresponding to the heat capacities is controlled. It is quite difficult, and each room may be under-cooled or over-cooled.
Also, if the outdoor heat exchanger is divided and provided, when the operation of a certain indoor unit is stopped, a refrigerant pool is generated in the outdoor heat exchanger where the operation is stopped and the refrigerant amount becomes insufficient or excessive in the refrigerant circuit. In some cases, the cooling capacity may be insufficient, or the pressure of the refrigerant may increase or the liquid may return.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点に
鑑み、熱容量の異なる複数の室内側熱交換器を有する多
室形空気調和装置において各室内側熱交換器の熱容量に
適合した冷媒量の供給を可能とする室外ユニットを設け
るとともに、室内ユニットの稼働状況に対応して冷媒回
路内の冷媒量を適切に調整し各室内ユニットの冷房不足
あるいは冷媒の圧力上昇を防止できる多室形空気調和装
置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a multi-room air conditioner having a plurality of indoor heat exchangers having different heat capacities, the amount of refrigerant adapted to the heat capacity of each indoor heat exchanger. Multi-room air that can provide an outdoor unit that can supply air and that can appropriately adjust the amount of refrigerant in the refrigerant circuit in accordance with the operating conditions of the indoor unit and prevent insufficient cooling of each indoor unit or an increase in refrigerant pressure It is intended to provide a harmony device.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するため、 圧縮機の吐出側が第一配管に、吸込側が
第二配管に夫々接続され、同第一配管を第三配管及び第
四配管に分岐させ、同第三配管を並列に分岐し第一の電
磁開閉弁を介して、冷房運転時には第一室外側熱交換
器、第二室外側熱交換器及び第三室外側熱交換器の流入
側となる流入口に夫々接続し、同第一室外側熱交換器、
第二室外側熱交換器及び第三室外側熱交換器の流出口か
ら電磁開閉弁、電子膨張弁を介して第五配管に接続し、
前記第二配管から分岐する第六配管を並列に分岐し第二
電磁開閉弁を介して前記第一室外側熱交換器、第二室外
側熱交換器及び第三室外側熱交換器の流入口に接続する
室外ユニットと、前記第五配管から並列に分岐する第七
配管を電子膨張弁を介して、冷房運転時には流入側とな
る流入口に接続する第一室内側熱交換器、第二室内側熱
交換器及び第三室内側熱交換器を備え、同第一室内側熱
交換器、第二室内側熱交換器及び第三室内側熱交換器の
流出口に、並列に第八配管を接続してなる複数の室内ユ
ニットと、同並列の第八配管を夫々更に分岐させ、分岐
した一方を第三電磁開閉弁を介して前記第二配管に接続
し、他方を第四電磁開閉弁を介して前記第四配管に接続
してなる冷媒分流ユニットとからなる冷媒回路を構成
し、制御部により前記第一電磁開閉弁、第二電磁開閉
弁、第三電磁開閉弁、第四電磁開閉弁及び前記電子膨張
弁を運転モードに応じ開閉することにより前記複数の室
内ユニットの冷暖房同時運転を可能としてなる多室形空
気調和機において、前記第一室内側熱交換器の熱交換能
力に対応して、前記第一室外側熱交換器の熱交換能力を
設定し、前記第二の室内側熱交換器の熱交換能力に対応
して、前記第二室外側熱交換器の熱交換能力を設定し、
前記第三室内側熱交換器の熱交換能力に対応して前記第
三室外側熱交換器の熱交換能力を設定して、前記第一室
内側熱交換器、前記第二室内側熱交換器及び前記第三室
外側熱交換器の状況に応じて前記第一電磁開閉弁及び第
二電磁開閉弁を開閉制御して、同第一室内側熱交換器、
同第二室内側熱交換器及び同第三室内側熱交換器に適正
な冷媒量が循環するようにした構成となっている。
According to the present invention, in order to solve the above-mentioned problems, a discharge side of a compressor is connected to a first pipe, a suction side is connected to a second pipe, and the first pipe is connected to a third pipe and a third pipe. Branched into four pipes, the third pipe was branched in parallel, and the first outdoor heat exchanger, the second outdoor heat exchanger, and the third outdoor heat exchanger during cooling operation via the first solenoid on-off valve. Connected to the inflow port on the inflow side of the vessel, respectively, the first outdoor heat exchanger,
From the outlets of the second outdoor heat exchanger and the third outdoor heat exchanger, connected to the fifth pipe via an electromagnetic on-off valve and an electronic expansion valve,
Inlet of the first outdoor heat exchanger, the second outdoor heat exchanger, and the third outdoor heat exchanger via a second electromagnetic on-off valve and branching in parallel a sixth pipe branched from the second pipe An outdoor unit connected to the first indoor heat exchanger that connects a seventh pipe branching in parallel from the fifth pipe to an inflow side during cooling operation through an electronic expansion valve, and a second chamber. Equipped with an inner heat exchanger and a third indoor heat exchanger, the first indoor heat exchanger, the second indoor heat exchanger and the outlet of the third indoor heat exchanger, the eighth pipe in parallel A plurality of connected indoor units and the same parallel eighth pipe are each further branched, one of the branches is connected to the second pipe via a third solenoid on-off valve, and the other is a fourth solenoid on-off valve. A refrigerant circuit comprising a refrigerant distribution unit connected to the fourth pipe via Simultaneous cooling and heating operation of the plurality of indoor units is enabled by opening and closing the first solenoid on-off valve, the second solenoid on-off valve, the third solenoid on-off valve, the fourth solenoid on-off valve, and the electronic expansion valve according to an operation mode. In the multi-room air conditioner, the heat exchange capacity of the first outdoor heat exchanger is set in accordance with the heat exchange capacity of the first indoor heat exchanger, and the second indoor heat exchanger is set. In accordance with the heat exchange capacity of, the heat exchange capacity of the second outdoor heat exchanger is set,
The heat exchange capacity of the third outdoor heat exchanger is set in accordance with the heat exchange capacity of the third indoor heat exchanger, and the first indoor heat exchanger and the second indoor heat exchanger are set. And, depending on the state of the third outdoor heat exchanger, to control the opening and closing of the first solenoid on-off valve and the second solenoid on-off valve, the first indoor heat exchanger,
An appropriate amount of refrigerant is circulated through the second indoor heat exchanger and the third indoor heat exchanger.

【0005】また、前記制御部が、前記第一室内側熱交
換器、第二室内側熱交換器及び第三室内側熱交換器の運
転状態に対し前記冷媒回路内の適正冷媒量を定めた冷媒
量基準値と、前記冷媒回路の冷媒圧力及び冷媒温度を計
測する圧力センサ及びサーミスタにより計測された計測
値と外気温度により、前記冷媒回路内の冷媒量を推測す
る冷媒量推測部とからなり、前記冷媒量基準値と前記冷
媒量推測部の推測値とを比較し、前記冷媒量回路内の冷
媒量の過少判別を行う冷媒量判別手段と、同冷媒量判別
手段に応じて前記第一電磁開閉弁、前記第二電磁開閉弁
及び他の電磁開閉弁、電子膨張弁の開閉制御をあらかじ
め定めた制御テーブルに従って行う駆動部と、からなる
構成となっている。
[0005] The controller determines an appropriate amount of refrigerant in the refrigerant circuit with respect to an operation state of the first indoor heat exchanger, the second indoor heat exchanger, and the third indoor heat exchanger. A refrigerant amount reference value, a refrigerant amount estimating unit that estimates a refrigerant amount in the refrigerant circuit, based on a measured value and an outside air temperature measured by a pressure sensor and a thermistor for measuring a refrigerant pressure and a refrigerant temperature of the refrigerant circuit. Comparing the refrigerant amount reference value with the estimated value of the refrigerant amount estimating unit, and determining whether the refrigerant amount in the refrigerant amount circuit is too small. A drive unit that performs opening and closing control of the electromagnetic on-off valve, the second electromagnetic on-off valve, other electromagnetic on-off valves, and the electronic expansion valve according to a predetermined control table.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態につい
て、図を用いて説明する。なお従来例と同様の構成部材
には同符号を付し、必要ある場合を除き説明を省略す
る。図1は、本実施例を示す多室形空気調和装置の冷媒
回路図であり、図2はその制御ブロック図、図3は電磁
開閉弁及び電子膨張弁制御の一例を示す制御図である。
図4は後記駆動部による冷媒量調節制御図であり図5は
冷媒量判別基準図の一実施例である。
Embodiments of the present invention will be described below with reference to the drawings. The same components as those in the conventional example are denoted by the same reference numerals, and description thereof will be omitted unless necessary. FIG. 1 is a refrigerant circuit diagram of a multi-chamber air conditioner showing the present embodiment, FIG. 2 is a control block diagram thereof, and FIG. 3 is a control diagram showing an example of control of an electromagnetic on-off valve and an electronic expansion valve.
FIG. 4 is a refrigerant amount adjustment control diagram by a drive unit described later, and FIG. 5 is an embodiment of a refrigerant amount determination reference diagram.

【0007】次に本実施例の冷媒回路の構成を図1によ
り説明する。点線により囲まれた1は室外ユニット、同
様に点線で囲われた2は複数の室内ユニット及び3は冷
媒分流ユニットである。室外ユニット1内には圧縮機4
とそれに接続するアキュームレータ5及び第一室外側熱
交換器6、第二室外側熱交換器7及び第三室外側熱交換
器8が配設されており本実施例においては、同室外側熱
交換器の熱容量別に室外第一熱交換器6には約50%の
熱容量が、第2及び第3の室外熱交換器7、8には約2
5%づつの熱容量が割り当てられている。前記室内ユニ
ット2内には夫々電子膨張弁12a、12b、12cを
接続した第一室内側熱交換器9、第二室内側熱交換器1
0及び第三室内側熱交換器11が各室に配設されてお
り、同室内側熱交換器9、10及び11も前記室外側熱
交換器と同様に第一室内側熱交換器9には約50%の熱
容量が割り当てられ、第二室内側熱交換器10及び第三
室内側熱交換器には夫々25%づつの熱容量が割り当て
られている。
Next, the configuration of the refrigerant circuit of this embodiment will be described with reference to FIG. 1 surrounded by a dotted line is an outdoor unit, 2 is a plurality of indoor units similarly surrounded by a dotted line, and 3 is a refrigerant distribution unit. Compressor 4 in outdoor unit 1
And an accumulator 5 and a first outdoor heat exchanger 6, a second outdoor heat exchanger 7, and a third outdoor heat exchanger 8 connected thereto. In this embodiment, the same outdoor heat exchanger is provided. The first outdoor heat exchanger 6 has a heat capacity of about 50%, and the second and third outdoor heat exchangers 7 and 8 have a heat capacity of about 2%.
5% heat capacity is assigned. In the indoor unit 2, a first indoor heat exchanger 9 and a second indoor heat exchanger 1 to which electronic expansion valves 12a, 12b, and 12c are connected, respectively.
0 and the third indoor heat exchanger 11 are disposed in each room, and the indoor heat exchangers 9, 10 and 11 are also provided in the first indoor heat exchanger 9 like the outdoor heat exchanger. A heat capacity of about 50% is allocated, and a heat capacity of 25% is allocated to each of the second indoor heat exchanger 10 and the third indoor heat exchanger.

【0008】次に配管系統について説明する。前記圧縮
機4の吐出口は、圧力センサ33aとサーミスタ34が
備えられた第一配管13に接続し、該圧縮機4の吸込口
は第二配管14に接続されている。前記第一配管13は
第三配管15と第四配管16とに分岐し、同第三配管1
5は更に分岐管15aと分岐管15bとに分岐し、同分
岐管15aは第一の電磁開閉弁21aを経て配管23a
に接続し、同配管23aは前記第一室外側熱交換器6
の、冷房運転時においては流入側となる流出口に接続さ
れている。前記分岐管15bは更に分岐管15cと分岐
管15dとに分岐し、同分岐管15cは第一の電磁開閉
弁22bを経て配管23bに接続し、同配管23bは前
記第二室外側熱交換器7に接続する一方、前記分岐管1
5dは第一の電磁開閉弁21cを経て配管23cに接続
し、同配管23cは前記第三の室外側熱交換器8の流入
口に接続されている。
Next, the piping system will be described. The discharge port of the compressor 4 is connected to a first pipe 13 provided with a pressure sensor 33a and a thermistor 34, and the suction port of the compressor 4 is connected to a second pipe 14. The first pipe 13 branches into a third pipe 15 and a fourth pipe 16, and the third pipe 1
5 further branches into a branch pipe 15a and a branch pipe 15b, and the branch pipe 15a is connected to a pipe 23a through a first electromagnetic on-off valve 21a.
The pipe 23a is connected to the first outdoor heat exchanger 6.
However, it is connected to the outlet on the inflow side during the cooling operation. The branch pipe 15b further branches into a branch pipe 15c and a branch pipe 15d, and the branch pipe 15c is connected to a pipe 23b via a first electromagnetic on-off valve 22b, and the pipe 23b is connected to the second outdoor heat exchanger. 7 and the branch pipe 1
5d is connected to a pipe 23c via a first electromagnetic on-off valve 21c, and the pipe 23c is connected to an inflow port of the third outdoor heat exchanger 8.

【0009】前記第二配管より分岐する第六配管17
は、更に分岐管17a,17b及び17cに分岐し、同
分岐管17aは第二の電磁開閉弁22aを介して前記配
管23aに接続し、同分岐管17bは第二の電磁開閉弁
22cを介して前記配管23cに接続し、同分岐管17
cは第二の電磁開閉弁22bを介して前記配管23bに
接続されている。前記第一の室外側熱交換器6の流出口
からは電子膨張弁26を経て配管24が、前記第二室外
側熱交換器7からは電磁開閉弁27を経て配管25b
が、前記第三の室外側熱交換器8には配管25aが接続
され、同配管25aと同配管25bは電子膨張弁28を
備えた合流管25となり、同合流管25は前記配管24
と更に合流して第五配管18に接続される。
A sixth pipe 17 branched from the second pipe 17
Further branches into branch pipes 17a, 17b and 17c, which are connected to the pipe 23a via a second electromagnetic on-off valve 22a, and which branch pipe 17b is connected via a second electromagnetic on-off valve 22c. To the pipe 23c,
c is connected to the pipe 23b via a second electromagnetic on-off valve 22b. The pipe 24 from the outlet of the first outdoor heat exchanger 6 passes through an electronic expansion valve 26, and the pipe 25 b passes from the second outdoor heat exchanger 7 via an electromagnetic valve 27.
However, a pipe 25a is connected to the third outdoor heat exchanger 8, and the pipes 25a and 25b become a merging pipe 25 provided with an electronic expansion valve 28, and the merging pipe 25 is connected to the pipe 24.
And is connected to the fifth pipe 18.

【0010】同第五配管18は前記室外ユニット1と前
記室内ユニット2を接続する接続配管であり、同室内ユ
ニット2に接続される前に並列に分岐し複数の第七配管
19となり、同七配管19は夫々が、電子膨張弁12
a,12b及び12cを経て前記室内側熱交換器9、前
記室内側熱交換器10及び前記室内側熱交換器11の冷
房運転時においては流入側となる流出口に接続される。
同室内側熱交換器9、同室内側熱交換器10及び同室内
側熱交換器11の流出口には夫々第八配管20が接続さ
れ、同第八配管20は前記冷媒分流ユニット3に接続さ
れる。同冷媒分流ユニット3内で同第八配管20は更
に、第三の電磁開閉弁31a,31b及び31cを介す
る分岐管29と、第四の電磁開閉弁32a、32b、及
び32cを介する分岐管30とに分岐し、同分岐管29
は夫々前記第四配管16に接続し、同分岐管30は夫々
前記配管2に接続され同多室形空気調和装置の冷媒回路
を構成している。
The fifth pipe 18 is a connection pipe for connecting the outdoor unit 1 and the indoor unit 2 and is branched in parallel before being connected to the indoor unit 2 to form a plurality of seventh pipes 19. The pipes 19 are each provided with the electronic expansion valve 12.
a, 12b, and 12c are connected to the outlets on the inlet side during the cooling operation of the indoor heat exchanger 9, the indoor heat exchanger 10, and the indoor heat exchanger 11.
Eighth pipes 20 are connected to the outlets of the indoor heat exchanger 9, the indoor heat exchanger 10, and the indoor heat exchanger 11, respectively. The eighth pipe 20 is connected to the refrigerant distribution unit 3. In the refrigerant distribution unit 3, the eighth pipe 20 further includes a branch pipe 29 via third electromagnetic on-off valves 31a, 31b and 31c and a branch pipe 30 via fourth electromagnetic on-off valves 32a, 32b and 32c. And the branch pipe 29
Are respectively connected to the fourth pipe 16, and the branch pipes 30 are respectively connected to the pipes 2 to form a refrigerant circuit of the multi-room air conditioner.

【0011】次に、本実施例の冷房運転時の動作につい
て説明する。前記室内ユニット2が全て運転状態である
場合は、前記室外ユニット1内の前記第一室外側熱交換
器6、前記第二室外側熱交換器7及び前記第三室外側熱
交換器8も全稼働状態であり、前記電磁開閉弁及び電子
膨張弁の開閉状態は図3の100%運転時に示す通りで
ある。同運転時においては前記室外ユニット1内の前記
電磁開閉弁21a,21b、及び21cが開状態であり
前記電磁開閉弁22a、22b、及び22cは閉状態で
ある。前記室外側熱交換器6、7及び8の吐出口側に配
設された前記電子膨張弁26、28及び前記電磁開閉弁
27は開状態であり前記室内ユニット2内の前記電子膨
張弁12a、12b、及び12cも同様に開状態であ
る。前記冷媒分流ユニット3内の前記電磁開閉弁32
a、32b、32cは開状態であり、前記電磁開閉弁3
1a,31b、及び31cは閉状態である。
Next, the operation of the present embodiment during the cooling operation will be described. When all of the indoor units 2 are in the operating state, the first outdoor heat exchanger 6, the second outdoor heat exchanger 7, and the third outdoor heat exchanger 8 in the outdoor unit 1 are all In the operating state, the open / closed states of the electromagnetic on-off valve and the electronic expansion valve are as shown at the time of 100% operation in FIG. During the same operation, the electromagnetic on-off valves 21a, 21b, and 21c in the outdoor unit 1 are in the open state, and the electromagnetic on-off valves 22a, 22b, and 22c are in the closed state. The electronic expansion valves 26 and 28 and the electromagnetic on-off valve 27 disposed on the discharge port side of the outdoor heat exchangers 6, 7 and 8 are open, and the electronic expansion valves 12a and 12a in the indoor unit 2 are opened. 12b and 12c are also open. The electromagnetic on-off valve 32 in the refrigerant distribution unit 3
a, 32b, and 32c are open, and the electromagnetic on-off valve 3
1a, 31b and 31c are in the closed state.

【0012】この状態において、前記圧縮機4より吐出
された高温高圧の冷媒蒸気は前記第一配管13を経て前
記室外側熱交換器6、7及び8に流入し同室外側熱交換
器6、7及び8にて室外に放熱することにより凝縮し高
温高圧の冷媒液となり前記第五配管18を経て前記電子
膨張弁12a、12b及び12cにより膨張し低温低圧
の冷媒液となり前記室内側熱交換器9、10及び11に
て室内の熱を吸収し蒸発して低温低圧の冷媒蒸気へと変
化し前記分岐管20を経て第二配管14に流入し前記圧
縮器4により再び圧縮され高温高圧の冷媒蒸気となり冷
房運転時の一サイクルが完了する。上記のように熱容量
の異なる複数の室内側熱交換器9、10及び11がすべ
て稼働する状態においては、各室内側熱交換器の熱容量
に対応する室外ユニット1の各室外側熱交換器6、7及
び8が夫々に対応することにより、各室内側熱交換器
9、10及び11の能力に対し適正な冷媒量を確保する
ことが可能となり各室の冷房不足あるいは過剰冷房また
は暖房不足を引き起こす恐れを非常に小さくすることが
できる。
In this state, the high-temperature and high-pressure refrigerant vapor discharged from the compressor 4 flows into the outdoor heat exchangers 6, 7 and 8 through the first pipe 13, and flows into the outdoor heat exchangers 6, 7 and 8. And 8, which are condensed by radiating heat to the outside of the room, become high-temperature and high-pressure refrigerant liquid, and expand through the fifth pipe 18 by the electronic expansion valves 12a, 12b, and 12c to become low-temperature and low-pressure refrigerant liquid, and become , 10 and 11 absorb the indoor heat and evaporate to change into low-temperature and low-pressure refrigerant vapor, flow into the second pipe 14 through the branch pipe 20 and are compressed again by the compressor 4 to be re-compressed by the high-temperature and high-pressure refrigerant vapor. One cycle during the cooling operation is completed. In a state in which the plurality of indoor heat exchangers 9, 10 and 11 having different heat capacities are all operating as described above, each outdoor heat exchanger 6, of the outdoor unit 1 corresponding to the heat capacity of each indoor heat exchanger, Since each of 7 and 8 corresponds to each other, it is possible to secure an appropriate amount of refrigerant for the capacity of each indoor side heat exchanger 9, 10 and 11, resulting in insufficient cooling of each room or excessive cooling or insufficient heating. Fear can be made very small.

【0013】次に、上記の全稼働状態より前記室内側熱
交換器10あるいは11のいずれか一方の運転を停止し
た場合について説明する。同運転状態においては、室内
側熱交換器容量としては50%+25%=約75%運転
状態であり電磁開閉弁の開閉状態は図3の75%運転時
に示す通りである。前記室外ユニット1内の電磁開閉弁
は前記電磁開閉弁21a、21cが開状態であり前記電
磁開閉弁22a、21b、22b、22cは閉状態であ
る。前記室外熱交換器7の吐出口に位置する電磁開閉弁
27は閉状態となり、前記電子膨張弁26、28は開状
態である。前記室内ユニット2の電子膨張弁12aは開
状態であり、前記電子膨張弁12b及び12cは、いず
れか一方が開状態となる。前記電磁開閉弁31a、31
b及び31cは閉状態であり前記電磁開閉弁32cは開
状態、前記電磁開閉弁32b、32aはいずれか一方が
開状態となる。
Next, a case where the operation of one of the indoor heat exchangers 10 and 11 is stopped from the above-mentioned full operation state will be described. In the same operation state, the capacity of the indoor heat exchanger is 50% + 25% = about 75% operation state, and the open / close state of the solenoid on-off valve is as shown at 75% operation in FIG. The electromagnetic on-off valves in the outdoor unit 1 are such that the electromagnetic on-off valves 21a, 21c are in an open state, and the electromagnetic on-off valves 22a, 21b, 22b, 22c are in a closed state. The electromagnetic on-off valve 27 located at the discharge port of the outdoor heat exchanger 7 is closed, and the electronic expansion valves 26 and 28 are open. The electronic expansion valve 12a of the indoor unit 2 is open, and one of the electronic expansion valves 12b and 12c is open. The electromagnetic on-off valves 31a, 31
b and 31c are in a closed state, the electromagnetic on / off valve 32c is in an open state, and one of the electromagnetic on / off valves 32b and 32a is in an open state.

【0014】この状態においては、前記室外熱交換器7
が未使用状態となり同室外熱交換器7内に冷媒溜りが発
生する。同冷媒溜の発生量は全稼働時状態の負荷あるい
は電磁開閉弁や電子膨張弁の閉じるタイミング等により
様々である。同室外熱交換器7内に溜まる冷媒量が多い
場合には冷媒回路内の冷媒量が不足し前記圧縮器5の吐
出冷媒温度の上昇より冷房能力の低下を引き起す。ある
いは同室外熱交換器7に溜まる冷媒量が適正量より少な
い場合には、冷媒回路内の冷媒量が過剰となり冷媒液あ
るいは冷媒蒸気の圧力上昇、液戻り等の不具合が発生す
る。
In this state, the outdoor heat exchanger 7
Becomes unused, and a refrigerant pool is generated in the outdoor heat exchanger 7. The amount of the refrigerant reservoir varies depending on the load in the full operation state or the timing of closing the electromagnetic on-off valve or the electronic expansion valve. When the amount of refrigerant accumulated in the outdoor heat exchanger 7 is large, the amount of refrigerant in the refrigerant circuit is insufficient, and a decrease in cooling capacity is caused by an increase in the temperature of refrigerant discharged from the compressor 5. Alternatively, if the amount of refrigerant accumulated in the outdoor heat exchanger 7 is smaller than an appropriate amount, the amount of refrigerant in the refrigerant circuit becomes excessive, and problems such as an increase in pressure of the refrigerant liquid or refrigerant vapor and liquid return occur.

【0015】上記の状態において、図2に示すように前
記第一配管及び第二配管に設けられた前記圧力センサ3
3a、33b及び前記サーミスタ34により冷媒回路の
冷媒温度、冷媒圧力が計測され、その計測値は制御部4
0内の冷媒量推測部41に送られる。同冷媒量推測部4
1では外気温度及び冷媒の温度値、圧力値を比較し冷媒
回路内の冷媒量の推測を行う。
In the above state, as shown in FIG. 2, the pressure sensors 3 provided on the first pipe and the second pipe are provided.
3a, 33b and the thermistor 34 measure the refrigerant temperature and the refrigerant pressure in the refrigerant circuit.
It is sent to the refrigerant amount estimating unit 41 within 0. Same refrigerant amount estimation unit 4
In step 1, the outside air temperature and the temperature value and pressure value of the refrigerant are compared to estimate the amount of refrigerant in the refrigerant circuit.

【0016】上記冷媒量推測部41が冷媒回路内の冷媒
量を推測した推測値は、冷媒量判別手段42内におい
て、冷媒回路内の適正冷媒量を定める冷媒量基準値43
と比較される。冷房運転時において、上記冷媒量判別手
段42が冷媒回路内冷媒量を少と判定した場合には、図
2に示すように同冷媒量判別手段42より駆動部44に
信号情報が送られ、同駆動部44では、図4に示す冷房
運転時の制御テーブルに従い各電子膨張弁及び電磁開閉
弁の開閉の再制御を行い、一例として冷房75%運転時
においては閉状態となっていた前記第一の電磁開閉弁2
2bが開状態となる。同電磁開閉弁22bが開くことに
より前記分岐管17c内が開放され未使用状態である前
記室外側熱交換器7内に残留していた冷媒溜りが前記分
岐管17cを通り前記第六配管17を経て冷媒回路内の
前記第二配管14内に流入する。これにより冷媒回路内
の冷媒量が適正な値に回復し同多室形空気調和装置の空
調能力不足を引き起こすことが防止される。他の冷房運
転時状態において前記冷媒量判別手段42が、どのよう
な制御を行うかは図4の制御テーブルによる。
The estimated value obtained by estimating the amount of refrigerant in the refrigerant circuit by the refrigerant amount estimating unit 41 is used as a refrigerant amount reference value 43 for determining an appropriate amount of refrigerant in the refrigerant circuit.
Is compared to In the cooling operation, when the refrigerant amount determining means 42 determines that the amount of refrigerant in the refrigerant circuit is small, signal information is sent from the refrigerant amount determining means 42 to the drive section 44 as shown in FIG. The drive unit 44 re-controls the opening and closing of each of the electronic expansion valves and the solenoid on-off valves in accordance with the control table during the cooling operation shown in FIG. 4, and as an example, the first state, which has been closed during the 75% cooling operation. Solenoid on-off valve 2
2b is opened. When the solenoid on-off valve 22b is opened, the refrigerant pool remaining in the outdoor heat exchanger 7 that is open and the unused inside the branch pipe 17c passes through the branch pipe 17c and passes through the sixth pipe 17 is removed. After that, it flows into the second pipe 14 in the refrigerant circuit. This prevents the amount of the refrigerant in the refrigerant circuit from recovering to an appropriate value and preventing the multi-room air conditioner from having an insufficient air conditioning capacity. The control performed by the refrigerant amount determining means 42 in other cooling operation states is based on the control table shown in FIG.

【0017】次に、暖房運転時の本実施例の動作につい
て説明する。室内全ユニットが稼働状態においては電磁
開閉弁及び電子膨張弁の開閉状態は図3の暖房運転時の
100%運転時に示す通りである。この状態より前記室
内側熱交換器10あるいは11のいずれかを停止した場
合、前記電磁開閉弁21b、22b及び27が閉状態と
なり前記熱交換器7が未使用状態となる。この状態にお
いて同熱交換器7内に溜まる冷媒量が少ない場合には冷
媒回路内の冷媒量が過剰となり冷媒液あるいは冷媒蒸気
の圧力上昇または液戻り現象を引き起こす恐れが発生す
る。
Next, the operation of this embodiment during the heating operation will be described. When all the indoor units are operating, the open / close states of the electromagnetic on-off valve and the electronic expansion valve are as shown in FIG. 3 during the 100% operation during the heating operation. When either of the indoor heat exchangers 10 or 11 is stopped from this state, the electromagnetic on-off valves 21b, 22b and 27 are closed, and the heat exchanger 7 is unused. In this state, if the amount of the refrigerant accumulated in the heat exchanger 7 is small, the amount of the refrigerant in the refrigerant circuit becomes excessive, and there is a possibility that the pressure of the refrigerant liquid or refrigerant vapor increases or the liquid returns.

【0018】この状態においても、上記したように前記
圧力センサ33a、33b及び前記サーミスタ34、3
5より冷媒の圧力値及び温度値が、前記制御部40内の
前記冷媒量判別推測部41に送られ、前記冷媒量判別手
段42により冷媒回路内の冷媒量が適切であるかどうか
が判別される。冷媒回路内の冷媒量が過剰であると判別
された場合には、同冷媒量判別手段42より駆動部44
に信号が送られ、一例として75%暖房運転時において
冷媒回路内の冷媒量が過剰と判別された場合には、前記
電磁開閉弁27が開状態に変更され冷媒回路内の過剰な
冷媒が未使用状態にある前記熱交換器7内に流入し同冷
媒回路内の冷媒量が減少し、冷媒液あるいは冷媒蒸気の
圧力上昇または液戻り現象を防止することができる。他
の暖房状態時の制御については図4による。
In this state, the pressure sensors 33a, 33b and the thermistors 34, 3
The pressure value and the temperature value of the refrigerant are sent to the refrigerant amount discriminating and estimating unit 41 in the control unit 40 from 5, and the refrigerant amount discriminating unit 42 determines whether the refrigerant amount in the refrigerant circuit is appropriate. You. If it is determined that the amount of refrigerant in the refrigerant circuit is excessive, the refrigerant
If, for example, it is determined that the amount of refrigerant in the refrigerant circuit is excessive during the 75% heating operation, the electromagnetic on-off valve 27 is changed to the open state and excess refrigerant in the refrigerant circuit is not discharged. The amount of the refrigerant flowing into the heat exchanger 7 in the used state and the amount of the refrigerant in the refrigerant circuit is reduced, so that the pressure rise or the liquid return phenomenon of the refrigerant liquid or the refrigerant vapor can be prevented. FIG. 4 shows the control in the other heating state.

【0019】[0019]

【発明の効果】以上説明したように、本発明による多室
形空気調和装置においては、容量の異なる複数の室内側
熱交換器に対応する複数の容量の異なる室外側熱交換器
を夫々設けることにより室内ユニットの全運転状態に対
応し、適正な冷媒量供給を可能とする多室型空気調和装
置とするとともに、室内ユニットの運転状態により冷媒
回路内の冷媒量に過少が生じた場合には圧力センサ及び
サーミスタよりの計測値を冷媒量判別手段により判別
し、判別基準、制御基準により電磁開閉弁あるいは電子
膨張弁の開閉を行い冷媒回路内の冷媒量を最適な値に調
整することが可能な多室形空気調和装置である。
As described above, in the multi-room air conditioner according to the present invention, a plurality of outdoor heat exchangers having different capacities corresponding to a plurality of indoor heat exchangers having different capacities are provided. A multi-room air conditioner that can supply an appropriate amount of refrigerant in response to all operating conditions of the indoor unit, and if the amount of refrigerant in the refrigerant circuit is insufficient due to the operating condition of the indoor unit The value measured by the pressure sensor and the thermistor is discriminated by the refrigerant amount discriminating means, and the solenoid on-off valve or the electronic expansion valve is opened and closed according to the discrimination standard and control standard, and the refrigerant amount in the refrigerant circuit can be adjusted to the optimum value A multi-room air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多室形空気調和装置の一実施例を
示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing one embodiment of a multi-room air conditioner according to the present invention.

【図2】本発明による多室形空気調和装置の一実施例を
示す制御ブロック図である。
FIG. 2 is a control block diagram showing one embodiment of a multi-room air conditioner according to the present invention.

【図3】(A)本発明による多室形空気調和装置の冷房
運転時における電磁開閉弁及び電子膨張弁の開閉状態を
示す制御図である。 (B)本発明による多室形空気調和装置の暖房運転時に
おける電磁開閉弁及び電子膨張弁の開閉状態を示す制御
図である。
FIG. 3A is a control diagram showing an open / closed state of an electromagnetic on-off valve and an electronic expansion valve during a cooling operation of the multi-room air conditioner according to the present invention. (B) is a control diagram showing an open / closed state of an electromagnetic on-off valve and an electronic expansion valve during a heating operation of the multi-room air conditioner according to the present invention.

【図4】本発明による多室形空気調和装置の一実施例を
示す制御テーブルである。
FIG. 4 is a control table showing an embodiment of the multi-room air conditioner according to the present invention.

【図5】本発明による多室形空気調和装置の一実施例を
示す冷媒量判別基準図である。
FIG. 5 is a refrigerant amount discrimination reference diagram showing one embodiment of a multi-room air conditioner according to the present invention.

【図6】従来例による多室型空気調和装置の一実施例を
示す冷媒回路図である。
FIG. 6 is a refrigerant circuit diagram showing one embodiment of a conventional multi-room air conditioner.

【符号の説明】[Explanation of symbols]

1 室外ユニット 2 室内ユニット 3 冷媒分流ユニット 4 圧縮器 5 アキュムレータ 6 第一室外側熱交換器 7 第二室外側熱交換器 8 第三室外側熱交換器 9 第一室内側熱交換器 10 第二室内側熱交換器 11 第三室内側熱交換器 12a 電子膨張弁 12b 電子膨張弁 12c 電子膨張弁 13 第一配管 14 第二配管 15 第三配管 16 第四配管 17 第六配管 18 第五配管 19 第七配管 20 第八配管 21 第一電磁開閉弁 22 第二電磁開閉弁 23 接続配管 24 第一室外側熱交換器吐出側配管 25 第二、第三室外側熱交換器吐出側配管 26 電子膨張弁 27 電磁開閉弁 28 電子膨張弁 29 分岐管 30 分岐管 31a 電磁開閉弁 31b 電磁開閉弁 31c 電磁開閉弁 32a 電子膨張弁 32b 電子膨張弁 32c 電子膨張弁 33a 圧力センサ 33b 圧力センサ 34 サーミスタ 35 サーミスタ 40 制御部 41 冷媒量推測部 42 冷媒量判別手段 43 冷媒量基準値 44 駆動部 DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Refrigerant division unit 4 Compressor 5 Accumulator 6 First outdoor heat exchanger 7 Second outdoor heat exchanger 8 Third outdoor heat exchanger 9 First indoor heat exchanger 10 Second Indoor heat exchanger 11 Third indoor heat exchanger 12a Electronic expansion valve 12b Electronic expansion valve 12c Electronic expansion valve 13 First pipe 14 Second pipe 15 Third pipe 16 Fourth pipe 17 Sixth pipe 18 Fifth pipe 19 Seventh pipe 20 Eighth pipe 21 First electromagnetic on-off valve 22 Second electromagnetic on-off valve 23 Connection pipe 24 First outdoor heat exchanger discharge side pipe 25 Second and third outdoor heat exchanger discharge side pipe 26 Electronic expansion Valve 27 Electromagnetic on-off valve 28 Electronic expansion valve 29 Branch pipe 30 Branch pipe 31a Electromagnetic on-off valve 31b Electromagnetic on-off valve 31c Electromagnetic on-off valve 32a Electronic expansion valve 32b Electronic expansion valve 32c Electronic expansion valve 3 3a Pressure sensor 33b Pressure sensor 34 Thermistor 35 Thermistor 40 Control unit 41 Refrigerant amount estimating unit 42 Refrigerant amount determining unit 43 Refrigerant amount reference value 44 Drive unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出側が第一配管に、吸込側が
第二配管に夫々接続され、同第一配管を第三配管及び第
四配管に分岐させ、同第三配管を並列に分岐し第一の電
磁開閉弁を介して、冷房運転時には第一室外側熱交換
器、第二室外側熱交換器及び第三室外側熱交換器の流入
側となる流入口に夫々接続し、同第一室外側熱交換器、
第二室外側熱交換器及び第三室外側熱交換器の流出口か
ら電磁開閉弁、電子膨張弁を介して第五配管に接続し、
前記第二配管から分岐する第六配管を並列に分岐し第二
電磁開閉弁を介して前記第一室外側熱交換器、第二室外
側熱交換器及び第三室外側熱交換器の流入口に接続する
室外ユニットと、前記第五配管から並列に分岐する第七
配管を電子膨張弁を介して、冷房運転時には流入側とな
る流入口に接続する第一室内側熱交換器、第二室内側熱
交換器及び第三室内側熱交換器を備え、同第一室内側熱
交換器、第二室内側熱交換器及び第三室内側熱交換器の
流出口に、並列に第八配管を接続してなる複数の室内ユ
ニットと、同並列の第八配管を夫々更に分岐させ、分岐
した一方を第三電磁開閉弁を介して前記第二配管に接続
し、他方を第四電磁開閉弁を介して前記第四配管に接続
してなる冷媒分流ユニットとからなる冷媒回路を構成
し、制御部により前記第一電磁開閉弁、第二電磁開閉
弁、第三電磁開閉弁、第四電磁開閉弁及び前記電子膨張
弁を運転モードに応じ開閉することにより前記複数の室
内ユニットの冷暖房同時運転を可能としてなる多室形空
気調和機において、 前記第一室内側熱交換器の熱交換能力に対応して、前記
第一室外側熱交換器の熱交換能力を設定し、前記第二の
室内側熱交換器の熱交換能力に対応して、前記第二室外
側熱交換器の熱交換能力を設定し、前記第三室内側熱交
換器の熱交換能力に対応して前記第三室外側熱交換器の
熱交換能力を設定して、前記第一室内側熱交換器、前記
第二室内側熱交換器及び前記第三室外側熱交換器の状況
に応じて前記第一電磁開閉弁及び第二電磁開閉弁を開閉
制御して、同第一室内側熱交換器、同第二室内側熱交換
器及び同第三室内側熱交換器に適正な冷媒量が循環する
ようにしてなることを特徴とする多室形空気調和装置。
1. The compressor has a discharge side connected to a first pipe and a suction side connected to a second pipe. The first pipe is branched into a third pipe and a fourth pipe, and the third pipe is branched in parallel. Via a first solenoid on-off valve, during the cooling operation, respectively connected to the inflow port of the first outdoor heat exchanger, the second outdoor heat exchanger and the inflow side of the third outdoor heat exchanger, Outdoor heat exchanger,
From the outlets of the second outdoor heat exchanger and the third outdoor heat exchanger, connected to the fifth pipe via an electromagnetic on-off valve and an electronic expansion valve,
Inlet of the first outdoor heat exchanger, the second outdoor heat exchanger, and the third outdoor heat exchanger via a second electromagnetic on-off valve and branching in parallel a sixth pipe branched from the second pipe An outdoor unit connected to the first indoor heat exchanger that connects a seventh pipe branching in parallel from the fifth pipe to an inflow side during cooling operation through an electronic expansion valve, and a second chamber. Equipped with an inner heat exchanger and a third indoor heat exchanger, the first indoor heat exchanger, the second indoor heat exchanger and the outlet of the third indoor heat exchanger, the eighth pipe in parallel A plurality of connected indoor units and the same parallel eighth pipe are each further branched, one of the branches is connected to the second pipe via a third solenoid on-off valve, and the other is a fourth solenoid on-off valve. A refrigerant circuit comprising a refrigerant distribution unit connected to the fourth pipe via Simultaneous cooling and heating operation of the plurality of indoor units is enabled by opening and closing the first solenoid on-off valve, the second solenoid on-off valve, the third solenoid on-off valve, the fourth solenoid on-off valve, and the electronic expansion valve according to an operation mode. In the multi-room air conditioner, a heat exchange capacity of the first outdoor heat exchanger is set in accordance with a heat exchange capacity of the first indoor heat exchanger, and the second indoor heat exchanger is set. The heat exchange capacity of the second outdoor heat exchanger is set according to the heat exchange capacity of the third outdoor heat exchanger, and the heat exchange capacity of the third outdoor heat exchanger is set according to the heat exchange capacity of the third indoor heat exchanger. Setting the heat exchange capacity, the first electromagnetic on-off valve and the second electromagnetic on-off valve according to the status of the first indoor heat exchanger, the second indoor heat exchanger and the third outdoor heat exchanger Opening and closing the valves, the first indoor heat exchanger, the second indoor heat exchanger and the third indoor heat exchanger Multi-room air conditioning apparatus proper refrigerant quantity in the exchanger is characterized by being to circulate.
【請求項2】 前記制御部が、前記第一室内側熱交換
器、第二室内側熱交換器及び第三室内側熱交換器の運転
状態に対し前記冷媒回路内の適正冷媒量を定めた冷媒量
基準値と、前記冷媒回路の冷媒圧力及び冷媒温度を計測
する圧力センサ及びサーミスタにより計測された計測値
と外気温度により、前記冷媒回路内の冷媒量を推測する
冷媒量推測部とからなり、前記冷媒量基準値と前記冷媒
量推測部の推測値とを比較し、前記冷媒量回路内の冷媒
量の過少判別を行う冷媒量判別手段と、同冷媒量判別手
段に応じて前記第一電磁開閉弁、前記第二電磁開閉弁及
び他の電磁開閉弁、電子膨張弁の開閉制御をあらかじめ
定めた制御テーブルに従って行う駆動部と、からなるこ
とを特徴とする請求項1記載の多室形空気調和装置。
2. The control unit determines an appropriate amount of refrigerant in the refrigerant circuit with respect to an operation state of the first indoor heat exchanger, the second indoor heat exchanger, and the third indoor heat exchanger. A refrigerant amount reference value, a refrigerant amount estimating unit that estimates a refrigerant amount in the refrigerant circuit, based on a measured value and an outside air temperature measured by a pressure sensor and a thermistor for measuring a refrigerant pressure and a refrigerant temperature of the refrigerant circuit. Comparing the refrigerant amount reference value with the estimated value of the refrigerant amount estimating unit, and determining whether the refrigerant amount in the refrigerant amount circuit is too small. 2. The multi-chamber type as claimed in claim 1, further comprising: a drive unit for performing on / off control of an electromagnetic on / off valve, the second electromagnetic on / off valve, another electromagnetic on / off valve, and an electronic expansion valve according to a predetermined control table. Air conditioner.
JP11205189A 1999-07-19 1999-07-19 Multi-room type air conditioner Pending JP2001033119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11205189A JP2001033119A (en) 1999-07-19 1999-07-19 Multi-room type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11205189A JP2001033119A (en) 1999-07-19 1999-07-19 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
JP2001033119A true JP2001033119A (en) 2001-02-09

Family

ID=16502888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11205189A Pending JP2001033119A (en) 1999-07-19 1999-07-19 Multi-room type air conditioner

Country Status (1)

Country Link
JP (1) JP2001033119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412411B1 (en) * 2001-09-13 2003-12-31 위니아만도 주식회사 Method for controlling inner case of multi-airconditioner
CN103104964A (en) * 2011-11-09 2013-05-15 财团法人工业技术研究院 Refrigerant circulation system with heat recovery function
JP2014016097A (en) * 2012-07-09 2014-01-30 Fujitsu General Ltd Air conditioner
JP2016142453A (en) * 2015-02-02 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2017094173A1 (en) * 2015-12-03 2017-06-08 三菱電機株式会社 Air conditioner
JP2022535197A (en) * 2019-05-23 2022-08-05 エルジー エレクトロニクス インコーポレイティド Air conditioner and its control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412411B1 (en) * 2001-09-13 2003-12-31 위니아만도 주식회사 Method for controlling inner case of multi-airconditioner
CN103104964A (en) * 2011-11-09 2013-05-15 财团法人工业技术研究院 Refrigerant circulation system with heat recovery function
JP2014016097A (en) * 2012-07-09 2014-01-30 Fujitsu General Ltd Air conditioner
JP2016142453A (en) * 2015-02-02 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2017094173A1 (en) * 2015-12-03 2017-06-08 三菱電機株式会社 Air conditioner
JP2022535197A (en) * 2019-05-23 2022-08-05 エルジー エレクトロニクス インコーポレイティド Air conditioner and its control method

Similar Documents

Publication Publication Date Title
EP2128541B1 (en) Refrigeration device
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
KR101917941B1 (en) Air conditioner and control method thereof
CN102345949A (en) Refrigerant flow regulating system of multi-connected air-conditioning heat exchanger and regulating method thereof
CN109341125B (en) Refrigeration system and control method
JPH08254376A (en) Air conditioner
JP2001033119A (en) Multi-room type air conditioner
JP2989491B2 (en) Air conditioner
JPH11173698A (en) Refrigeration cycle
JP7034325B2 (en) Air conditioner
JP3249099B2 (en) Multi-room air conditioner having two or more bypass lines and method of controlling bypass amount thereof
JP3356386B2 (en) Environmental test equipment using refrigerant switching type refrigerator
CN114857662A (en) Multi-split air conditioning system and control method thereof
JPH10103834A (en) Refrigerator
JP3485679B2 (en) Air conditioner
JP2023510358A (en) air conditioner
WO2022259396A1 (en) Air-conditioning apparatus
JP6989788B2 (en) Refrigeration cycle device
JP7493678B2 (en) Outdoor unit for refrigeration device and refrigeration device equipped with same
CN219037061U (en) Air conditioning system
JP2004286253A (en) Refrigerant high-pressure avoidance method and air-conditioning system using it
CN107606693A (en) Air conditioner and control method and device thereof
JP6835116B2 (en) Refrigeration equipment
JP7098513B2 (en) Environment forming device and cooling device
JPH0752053B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090129