JP2001030213A - Manufacture of sulfur composition molding - Google Patents

Manufacture of sulfur composition molding

Info

Publication number
JP2001030213A
JP2001030213A JP11209774A JP20977499A JP2001030213A JP 2001030213 A JP2001030213 A JP 2001030213A JP 11209774 A JP11209774 A JP 11209774A JP 20977499 A JP20977499 A JP 20977499A JP 2001030213 A JP2001030213 A JP 2001030213A
Authority
JP
Japan
Prior art keywords
sulfur
raw material
mold
mineral powder
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11209774A
Other languages
Japanese (ja)
Inventor
Norihiko Misaki
紀彦 三崎
Kiyoshi Oshima
清 大嶋
Satoru Fujii
悟 藤井
Masahiro Kato
将裕 加藤
Takeshi Matsuyoshi
剛 松良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP11209774A priority Critical patent/JP2001030213A/en
Publication of JP2001030213A publication Critical patent/JP2001030213A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/36Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing sulfur, sulfides or selenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure manufacturing stability and at the same time, make it possible to introduce the automation of entire manufacturing processes by performing at least a raw material kneading process and the following steps upto a kneaded product molding process inclusive within a range of specific temperatures. when a molding consisting of a sulfur composition containing sulfur and mineral powder is manufactured. SOLUTION: Water vapor generated by a boiler 12 is supplied through dedicated piping and molten sulfur in a storage tank 2 is supplied to an intermediate tank 5 with a measuring device by an automatic fixed displacement pump in such a state that a raw material passage system of a series of components such as conveying pipes and devices and a sulfur storage tank 2 is heated and heat-retained. On the other hand, a mineral raw material such as fly dust in a storage silo 1 is supplied to an intermediate tank 4 through a preheater 3. Next a specified amount of the raw material automatically weighed is supplied to a kneader 6 together with a specified amount of the molten sulfur to be kneaded at 120-160 deg.C, and the kneaded product is cast into a form 7 made of high-speed steel from an injection pipe 8 to be molded, while the form 7 is vibrated. Thereafter the molding is released from the form 7 by a release device 10 and is slowly cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は硫黄組成物からなる
成形品の製造方法に関する。より詳しくは、製造工程を
自動化し、該成形品を大量に製造するのに適した製造方
法に関する。
The present invention relates to a method for producing a molded article comprising a sulfur composition. More specifically, the present invention relates to a manufacturing method suitable for automating a manufacturing process and manufacturing a large amount of the molded article.

【0002】[0002]

【従来の技術】硫黄に骨材を配合し、硫黄が溶融する温
度まで加熱させたものを混練し、冷却固化させた硫黄モ
ルタルや硫黄コンクリートなどが知られている。これら
硫黄組成物からなる硬化体を製造する場合、硫黄と骨材
とが分離するのを防止し、また固化時の収縮や空隙発生
を少なくするため、硫黄の溶融温度では変質しないフラ
イアッシュ、シリカ、粘土鉱物などの鉱物質粉末を配合
することが通常行われている。このような硫黄組成物か
らなるブロックなどの特定形状の製品を大量に製造する
場合、製造工程を自動化し、連続運転を行って生産性を
高めることが検討されている。
2. Description of the Related Art There are known sulfur mortars and sulfur concretes in which aggregate is mixed with sulfur, heated to a temperature at which sulfur is melted, kneaded, and cooled and solidified. When producing a cured product of these sulfur compositions, to prevent the separation of sulfur and aggregates, and to reduce shrinkage and voids during solidification, fly ash, silica that does not change at the melting temperature of sulfur It is customary to mix mineral powders such as clay minerals. In the case of mass-producing a product having a specific shape such as a block made of such a sulfur composition, it has been studied to increase the productivity by automating the production process and performing continuous operation.

【0003】一般に、硫黄組成物製品の製造にあたって
は、以下の点に留意する必要がある。即ち、(イ)溶融
硫黄の粘性は温度の微妙な変化で大きく変化し易い。
(ロ)更に、硫黄と鉱物質粉末との配合割合によって
も、混合物の流動性(粘性)が大きく変化し易い。
(ハ)混合物を成形型枠に充填した際、空隙が留まると
高強度の硬化体成形物が得られない。(ニ)硫黄と鉱物
質粉末との混合状態が均一でないと、硫黄組成物硬化体
の早期強度が低下し易い。(ホ)型枠からの成形物の離
型は、成形体内部の強度が十分発現するまで固化させて
から行う必要があり、この為の時間が不足すると自重で
変形することがある。硫黄組成物製品を省力化を図りつ
つ効率良く大量製造するには、単に自動化に適応した製
造工程を組むだけではなく、これらの留意点に対し十分
な対応措置が施される必要がある。その対応措置を講ず
るにあたっては、とりわけ原料や混合物の粘性(流動
性)の管理・制御が重要となり、この値が一定になるほ
ど、またバラツキが少ないほど工程操作が簡単になり機
械化・自動化が行い易く、得られる製品の品質も安定し
易い。
[0003] In general, the following points must be taken into consideration in the production of sulfur composition products. That is, (a) the viscosity of the molten sulfur is apt to change greatly due to a slight change in temperature.
(B) Further, the fluidity (viscosity) of the mixture is liable to change greatly depending on the mixing ratio of the sulfur and the mineral substance powder.
(C) When the mixture is filled in a mold, if a void remains, a high-strength cured product cannot be obtained. (D) If the mixing state of the sulfur and the mineral powder is not uniform, the early strength of the cured sulfur composition tends to decrease. (E) It is necessary to release the molded product from the mold after solidifying it until the strength inside the molded product is sufficiently developed. If the time for this is insufficient, the molded product may be deformed by its own weight. In order to efficiently mass-produce sulfur composition products while saving labor, it is necessary to take sufficient measures not only to set up a production process suitable for automation, but also to take note of these points. In taking countermeasures, it is especially important to control and control the viscosity (fluidity) of raw materials and mixtures. The more constant this value and the less the variation, the easier the process operation becomes and the easier it is to implement mechanization and automation. Also, the quality of the obtained product is easily stabilized.

【0004】[0004]

【発明が解決しようとする課題】硫黄組成物製品の製造
に際し、高流動性の硫黄原料を用いても、その後の混合
物から成形終了まで至る間にはかなり流動性が変化し易
い。このため、各工程での製造条件を、原料又は製造過
程中の材料のその時点の流動性に対応させ、微妙に変化
させるか、或いは工程・装置毎に流動性を一定値に留め
るべく調整を行うと良いが、自動化した製造工程では装
置毎に流動性を検出並びに調整制御する機器等を設置す
る必要があり、この分コストが高騰する。また、製造条
件を都度変化させるのは自動化ラインでは甚だ困難であ
り、当該工程毎に最適な粘性調整手段を選定するのも容
易でなく、効率が悪い。一方で、製造条件の許容範囲を
広げて常に一定の製造操作のみで対応すると、安定した
品質の硫黄組成物製品が得られ難くなることがあった。
In the production of a sulfur composition product, even if a highly fluid sulfur raw material is used, the fluidity tends to change considerably from the subsequent mixture to the end of molding. For this reason, the manufacturing conditions in each step are made to correspond to the fluidity of the raw material or the material in the manufacturing process at that time, and may be delicately changed or adjusted to keep the fluidity at a constant value for each process / equipment. It is preferable to perform the process, but in an automated manufacturing process, it is necessary to install a device or the like for detecting and adjusting and controlling the fluidity for each device, which increases the cost. Further, it is extremely difficult to change the manufacturing conditions each time in an automated line, and it is not easy to select an optimal viscosity adjusting means for each process, and the efficiency is low. On the other hand, if the allowable range of the manufacturing conditions is widened and only the certain manufacturing operation is performed, it may be difficult to obtain a stable quality sulfur composition product.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記課題解
決のため検討を重ねた結果、硫黄組成物製品製造に係わ
る特定の製造工程区間で硫黄原料と硫黄を含む混合物を
一定温度に加熱することにより、製造条件を都度調整す
ることなく製造の安定性が確保でき、更に、配合比に起
因する流動性の差異を考慮した上で自動化に適した製造
条件の設計を行うことで、製造工程全般に渡り自動化を
容易に導入することが可能となり、製造物の品質の安定
性と生産性の飛躍的向上が図れたことから、本発明を完
成するに至った。
Means for Solving the Problems As a result of repeated studies for solving the above-mentioned problems, the present inventors have heated a mixture containing a sulfur raw material and sulfur to a certain temperature in a specific production process section relating to the production of a sulfur composition product. In this way, manufacturing stability can be ensured without adjusting the manufacturing conditions each time.Furthermore, by designing the manufacturing conditions suitable for automation in consideration of the difference in fluidity caused by the compounding ratio, the manufacturing Automation can be easily introduced throughout the entire process, and the stability of the product quality and the drastic improvement in productivity have been achieved, thereby completing the present invention.

【0006】即ち、本発明は、(a)硫黄と鉱物質粉末
を含む硫黄組成物からなる成形品の製造方法であって、
原料貯蔵工程、原料供給工程、原料混練工程、混練物成
形工程、成形物取り出し工程の連続工程からなり、少な
くとも原料混練工程〜混練物成形工程が120〜160
℃で行われることを特徴とする硫黄組成物成形品の製造
方法である。
That is, the present invention relates to a method for producing a molded article comprising (a) a sulfur composition containing sulfur and a mineral powder,
It comprises a raw material storage step, a raw material supply step, a raw material kneading step, a kneaded material forming step, a continuous step of a molded product taking out step, and at least the raw material kneading step to the kneaded material forming step are 120 to 160
A method for producing a molded article of a sulfur composition, characterized in that the method is carried out at ℃.

【0007】また本発明は、(b)硫黄原料貯蔵庫での
硫黄が120〜160℃に保たれていることを特徴とす
る前記(a)の硫黄組成物成形品の製造方法である。
The present invention also provides the method for producing a sulfur composition molded article according to the above (a), wherein (b) the sulfur in the sulfur raw material storage is kept at 120 to 160 ° C.

【0008】また、本発明は、(c)硫黄組成物が硫黄
100重量部と鉱物質粉末又は鉱物質粉末と細骨材10
0〜400重量部からなることを特徴とする前記(a)
又は(b)の硫黄組成物成形品の製造方法である。
The present invention also relates to (c) a sulfur composition comprising 100 parts by weight of sulfur, mineral powder or mineral powder and fine aggregate 10
(A) comprising 0 to 400 parts by weight.
Or (b) a method for producing a sulfur composition molded article.

【0009】また、本発明は、(d)硫黄組成物が硫黄
100重量部と鉱物質粉末又は鉱物質粉末と細骨材25
0〜400重量部からなる混練物に対する混練物成形工
程が振動加圧成形で行われることを特徴とする前記
(a)、(b)又は(c)の何れかの硫黄組成物成形品
の製造方法。
Further, according to the present invention, (d) the sulfur composition comprises 100 parts by weight of sulfur, mineral powder or mineral powder, and fine aggregate 25;
The kneaded material forming step for a kneaded material comprising 0 to 400 parts by weight is performed by vibration pressure molding, and the production of the sulfur composition molded product according to any one of (a), (b) and (c) above is performed. Method.

【0010】[0010]

【発明の実施形態】本発明に於ける硫黄組成物は、硫黄
と硫黄コンクリートなどでフィラー成分として一般に配
合されるような鉱物質粉末からなるものであり、また該
フィラー成分の一部を公知のコンクリート用細骨材に置
換したものであっても良い。最終的に製造してなる成形
品はこの硫黄組成物の硬化体である。
BEST MODE FOR CARRYING OUT THE INVENTION The sulfur composition according to the present invention comprises a mineral powder which is generally blended as a filler component in sulfur and sulfur concrete, and a part of the filler component is a known component. It may be replaced with fine aggregate for concrete. The molded article finally produced is a cured product of this sulfur composition.

【0011】本発明の硫黄組成物成形品の製造方法は、
このような硫黄組成物からなる主に型枠成形等で成形可
能な形状品に関する製造方法であって、各原料貯蔵庫か
らの原料供給工程、原料配合工程、原料混練工程、混練
物成形工程、成形物取り出し工程の連続工程からなるも
のである。以下各工程毎に本発明の製造方法の詳細を述
べる。
[0011] The method for producing a sulfur composition molded article of the present invention comprises:
A method for producing a shaped article composed mainly of such a sulfur composition, which can be formed by mold forming or the like, comprising a raw material supply step from each raw material storage, a raw material blending step, a raw material kneading step, a kneaded material forming step, It consists of a continuous process of taking out an object. Hereinafter, details of the production method of the present invention will be described for each step.

【0012】[原料] 硫黄組成物からなる成形品を製
造するための原料の硫黄は、単体硫黄とし、これは何れ
の製造方法で得たものでも良く、例えば石油精製の工程
で副産された硫黄でも試薬として市販されているもので
も良い。同様に原料に用いる鉱物質粉末は、例えば石灰
石粉、フライアッシュ、ボトムアッシュ、砕石粉や石材
加工粉、各種セラミックス屑粉、高炉スラグの他、各種
可燃性廃棄物の焼却灰なども挙げることができ、また鉱
物質粉末の一部、好ましくは最大その半分の重量までを
細骨材に置換して用いることができる。細骨材は公知の
コンクリート用細骨材であれば何れのものであっても良
い。鉱物質粉末は平均粒径で0.005mm〜0.3m
mのものが望ましく、含有最大粒径が数mmの大きさを
超えない範囲のものが望ましい。
[Raw Materials] The raw material sulfur for producing a molded article made of the sulfur composition is single elemental sulfur, which may be obtained by any production method, for example, by-produced in a petroleum refining process. Sulfur or a reagent commercially available may be used. Similarly, mineral powders used as raw materials include, for example, limestone powder, fly ash, bottom ash, crushed stone powder and stone processed powder, various ceramics dust powder, blast furnace slag, and incinerated ash of various combustible wastes. Alternatively, a part of the mineral powder, preferably up to half its weight, can be replaced with fine aggregate. The fine aggregate may be any known fine aggregate for concrete. Mineral powder has an average particle size of 0.005 mm to 0.3 m
m, and a range in which the maximum content particle size does not exceed a size of several mm.

【0013】[原料貯蔵工程] 前記各原料は、少なく
とも硫黄と硫黄以外の原料に分けて別々の貯蔵施設に保
管する。該原料貯蔵施設は例えばサイロなどの貯蔵庫や
流体化した原料ではタンクなどを挙げることができる。
原料貯蔵施設での硫黄は常温で貯蔵保管しても構わない
が、好ましくは120〜160℃に加熱保存されるのが
良い。また、硫黄以外の原料、即ち鉱物質粉末や細骨材
はホッパー等を備えた貯蔵庫に保管しても良い。原料と
して鉱物質粉末と細骨材を同時に使用する場合、予めブ
レンドしたものを同じ原料貯蔵庫に保管しても、別々に
保管しても良い。鉱物質粉末又は鉱物質粉末と細骨材の
貯蔵は常温保持とするが、硫黄と同様の温度に加熱保存
して貯蔵しても良い。
[Raw Material Storage Step] Each of the above raw materials is separated into at least sulfur and raw materials other than sulfur and stored in separate storage facilities. Examples of the raw material storage facility include a storage such as a silo and a tank for fluidized raw material.
Sulfur in the raw material storage facility may be stored and stored at room temperature, but is preferably heated and stored at 120 to 160 ° C. Raw materials other than sulfur, such as mineral powder and fine aggregate, may be stored in a storage provided with a hopper or the like. When the mineral powder and the fine aggregate are used at the same time as the raw materials, the pre-blend may be stored in the same raw material storage or may be stored separately. Mineral powder or mineral powder and fine aggregate are stored at room temperature, but may be stored by heating to the same temperature as sulfur.

【0014】[原料供給工程] 原料貯蔵庫などの貯蔵
施設からの原料搬出は、鉱物質粉末又は鉱物質粉末と細
骨材ではベルトコンベヤー、バケットエレベーターを用
いベルトフィダーなどで搬出時に所定量供給し、更に必
要に応じて予熱装置を経て、混練工程へと供給する。予
熱装置は貯蔵庫で常温保管された鉱物質原料又は鉱物質
原料と骨材を120〜160℃に集中的に加熱するもの
であり、必ずしも必要ではないが、次工程でバッチ式の
混練機、例えばレディゲ型やヘンシェル型のミキサーを
用いる場合などは予熱装置を経由させるのが好ましい。
予熱装置は、例えば外熱又は内熱キルン、スチームチュ
ーブドライヤー(STD)等を挙げることができる。予
熱装置を経る場合はそこからの搬出経路も予熱装置と同
じ温度に加熱する。一方、硫黄原料は、貯蔵時の加熱有
無に拘わらず、貯蔵庫からの搬出は輸送管を通じて行
い、この輸送管は全て120〜160℃に加熱する。輸
送管内での硫黄搬送の駆動源は定量ポンプなどの所定量
の液体を搬送できる装置を用いる。搬送時の硫黄は、少
なくとも輸送管部或いは既に貯蔵施設内で120〜16
0℃加熱して溶融硫黄にしたものであり、この温度下で
は比較的粘性の低い流動体の状態にある。尚、本工程や
以降の工程を含め、何れの原料や原料調合物(混練物)
を搬送する輸送管類も、その素材を金属、セラミック
ス、難燃性の硬質樹脂など耐熱性に富む材質とし、加え
て熱損失を防ぐために断熱材で覆うことが望ましい。
又、本供給工程中に中間タンクのような秤量調整機能を
付加した原料の一時保管装置を設け、供給を断続的に調
整しても良く、特にバッチ式の混練機を使用する場合は
このタンクを介して一定間隔で所定量の原料を供給する
と便利である。この場合中間タンクも120〜160℃
に加熱する。各原料は配合に必要な所定量が次工程の混
練機へと供給する。
[Material Supply Step] Material is discharged from a storage facility such as a raw material storage by supplying a predetermined amount of mineral powder or mineral powder and fine aggregate at the time of transport using a belt conveyor or a bucket elevator using a belt feeder or the like. Further, it is supplied to a kneading step via a preheating device as required. The preheating device is for intensively heating the mineral raw material or the mineral raw material and the aggregate and the aggregate stored at room temperature in the storage to 120 to 160 ° C., but is not necessarily required, but a batch-type kneader in the next step, for example, When a Loedige type or Henschel type mixer is used, it is preferable to pass through a preheating device.
Examples of the preheating device include an external heat or internal heat kiln, a steam tube dryer (STD), and the like. When passing through the preheating device, the carry-out route from the preheating device is also heated to the same temperature as the preheating device. On the other hand, regardless of whether or not the sulfur raw material is heated during storage, the sulfur is carried out of the storage through a transport pipe, and the transport pipe is all heated to 120 to 160 ° C. As a driving source for sulfur transport in the transport pipe, a device capable of transporting a predetermined amount of liquid, such as a metering pump, is used. At the time of transportation, at least 120 to 16 sulfur is transported in the transport pipe section or in the storage facility.
It is heated to 0 ° C. to form molten sulfur, and at this temperature, it is in a relatively low-viscosity fluid state. In addition, any raw materials or raw material preparations (kneaded materials) including this step and the following steps
It is desirable that the transport pipes for transporting the material be made of a material having high heat resistance such as metal, ceramics, and flame-retardant hard resin, and be covered with a heat insulating material in order to prevent heat loss.
In addition, a temporary storage device such as an intermediate tank with a weighing adjustment function added to the raw material during the supply step may be provided to adjust the supply intermittently, especially when a batch-type kneader is used. It is convenient to supply a predetermined amount of the raw material at regular intervals via the. In this case, the intermediate tank is also 120-160 ° C
Heat to Each raw material is supplied to a kneader in the next step in a predetermined amount required for compounding.

【0015】[原料混練工程] 各原料は本工程で混合
される。混合は混練機を使用し、硫黄100重量部、鉱
物質粉末又は鉱物質粉末と細骨材を100〜400重量
部、好ましくは200〜300重量部を配合したものを
混練する。鉱物質粉末又は鉱物質粉末と細骨材の配合比
が400重量部を超える場合は、結合材の作用を有する
硫黄の量が相対的に低下するため、強固な硬化体が得ら
れないので好ましくなく、また100重量部未満の場合
は硫黄固化時にかなりの収縮を伴い、硬化体に亀裂及び
空隙が発生し易くなるので好ましくない。混練は120
〜160℃の加熱下で行う。混練装置は公知の装置で、
120〜160℃に加温可能なものであれば限定される
ものではないが、自動化による生産効率を高める上で
は、ニーダ型などの連続式混練機が特に推奨される。混
練時間は概ね3〜60分が適当であり、連続式混練機で
は処理量や装置能力、混練物の配合割合などにより前記
範囲内で機内滞留時間を適宜選定し、一般に硫黄成分の
配合割合が少ないものほど長めの時間とするのが良い。
混練装置を2機以上直列に配置連結した連続稼働や、混
練前処理として配合原料の予備混合を行っても良く、混
練時間の短縮を図ることができる。尚、常温の鉱物質粉
末又は鉱物質粉末と細骨材を連続式混練機に投入し、そ
こで前記温度に十分加熱を行った時点で溶融硫黄を混練
機に供給し、混練を行うこともできる。この場合混練前
の鉱物質粉末又は鉱物質粉末と細骨材の混練機供給前の
加熱は不要となり、予加熱系に係わる装置コストや光熱
費が低減できる反面、混練機での滞留時間を長くする必
要があり、単位時間当たりの製造量は低下するので、扱
う製品や生産量等によって適宜選択するのが望ましい。
[Raw Material Kneading Step] Each raw material is mixed in this step. Mixing is carried out using a kneader, and 100 parts by weight of sulfur, 100 to 400 parts by weight, preferably 200 to 300 parts by weight of mineral powder or mineral powder and fine aggregate are mixed and kneaded. When the compounding ratio of the mineral powder or the mineral powder and the fine aggregate exceeds 400 parts by weight, the amount of sulfur having the action of the binder is relatively reduced, so that a hard cured product cannot be obtained, which is preferable. If the amount is less than 100 parts by weight, considerable shrinkage is caused during solidification of sulfur, and cracks and voids are easily generated in the cured product, which is not preferable. Kneading is 120
Performed under heating at 160 ° C. The kneading device is a known device,
Although there is no particular limitation as long as it can be heated to 120 to 160 ° C., a continuous kneader such as a kneader type is particularly recommended for enhancing the production efficiency by automation. The kneading time is suitably about 3 to 60 minutes, and in a continuous kneader, the residence time in the machine is appropriately selected within the above range according to the throughput, the equipment capacity, and the mixing ratio of the kneaded material. The smaller the better, the longer the time.
Continuous operation in which two or more kneading devices are arranged and connected in series, or premixing of the blended raw materials may be performed as a pretreatment for kneading, so that the kneading time can be reduced. Incidentally, the mineral powder at normal temperature or the mineral powder and the fine aggregate are charged into a continuous kneader, and when sufficient heating is performed at the above temperature, molten sulfur is supplied to the kneader to perform kneading. . In this case, it is not necessary to heat the mineral powder or the mineral powder and the fine aggregate before the kneading machine is supplied before kneading, which can reduce the equipment cost related to the preheating system and the utility cost, but also increase the residence time in the kneading machine. And the production volume per unit time is reduced. Therefore, it is desirable to appropriately select according to the product to be handled, the production volume, and the like.

【0016】[混練物成形工程] 混練後の混練物は本
工程で所望の形状に成形される。本工程と以降の工程で
は混練物の構成成分配合割合によって設定条件の一部を
変える必要がある。何れの配合割合の混練物も120〜
160℃に加温した所望の形状の型枠を用いて成形する
ことができるが、含有硫黄100重量部に対し鉱物質粉
末又は鉱物質粉末と細骨材が250重量部未満含有の混
練物では、概ね高い流動性を示すため混練機排出口に連
結した注入口又は混練機から配管で搬送し、成形型枠に
流し込む。流し込む際は型枠を振動して行うと一層良
い。型枠は、熱伝導性や耐久性の点からスチールやハイ
ス鋼などの金属製の金型が望ましい。該温度での粘性が
特に低い混練物の場合は、流し込み後型枠ごと冷却する
だけでも成形することができる。通常は、混練物を流し
込んだ型枠をベルトコンベヤーなどで成形機へと搬送し
て成形を行う。成形機は該型枠に適合した一軸若しくは
多軸の加圧成形機が良く、加圧力は概ね200Kgf/
cm2以下とする。また振動加圧成形機を使用しても良
い。これらの成形機では少なくとも混練物と接触する部
分、例えば上下のパンチ部などは120〜160℃の温
度に保つ必要がある。加圧時間は概ね1〜3分程度とす
る。混練物注入前から加圧完了まで型枠は120〜16
0℃の温度に保つ。尚、使用する型枠には予めシリコン
オイルなどの160℃でも変質しない公知離形剤を内面
に塗布しておくと後の脱型作業が容易に行える。また、
目的とする製品形状によっては押し出し成形機なども使
用できる。この場合、混練物は成形機の成形材料投入口
へ直接供給するが、少なくとも投入口から成形物排出口
まで、120〜160℃の温度に保つ。一方、含有硫黄
100重量部に対し、鉱物質粉末又は鉱物質粉末と細骨
材を250〜400重量部含有する混練物では、加温状
態でも流動性が高くないため混練物の成形は加圧成形、
好ましくは振動加圧成形で行う。型枠への注入は混練機
排出口に連結した注入口から直接行うのが良く、望まし
くは注入時に型枠を振動させる。注入後は型枠を成形機
へと移動し、成形する。この場合も型枠や成形機の上下
のパンチ部などは120〜160℃の温度に保たれてい
る必要がある。加圧力は5Kgf/cm2以上500K
gf/cm2以下、好ましくは20Kgf/cm2以上5
00Kgf/cm2以下とし、振動は1〜1000Gの
出力で少なくとも印加開始から終了まで行う。
[Kneaded Material Forming Step] The kneaded material after kneading is formed into a desired shape in this step. In this step and the subsequent steps, it is necessary to change some of the setting conditions depending on the mixing ratio of the constituent components of the kneaded material. The kneaded material of any mixing ratio is 120 to
Molding can be performed using a mold having a desired shape heated to 160 ° C., but a kneaded material containing less than 250 parts by weight of mineral powder or mineral powder and fine aggregate with respect to 100 parts by weight of sulfur contained. In order to exhibit generally high fluidity, the mixture is conveyed by a pipe from an injection port or a kneader connected to a kneader discharge port and poured into a forming mold. When pouring, it is better to vibrate the mold. The mold is desirably a metal mold such as steel or high-speed steel from the viewpoint of thermal conductivity and durability. In the case of a kneaded material having a particularly low viscosity at the temperature, molding can be performed only by cooling the entire mold after pouring. Usually, the mold into which the kneaded material is poured is conveyed to a molding machine by a belt conveyor or the like to perform molding. The molding machine is preferably a single-shaft or multi-shaft pressure molding machine suitable for the mold, and the pressing force is approximately 200 kgf /
cm 2 or less. Further, a vibration pressure molding machine may be used. In these molding machines, it is necessary to maintain at least a portion in contact with the kneaded material, for example, upper and lower punch portions, at a temperature of 120 to 160 ° C. The pressurization time is approximately 1 to 3 minutes. 120 to 16 molds before kneading
Keep at a temperature of 0 ° C. If a known mold release agent such as silicone oil, which does not deteriorate even at 160 ° C., is applied to the inner surface of the mold used in advance, the subsequent mold removal operation can be easily performed. Also,
Extrusion molding machines and the like can also be used depending on the desired product shape. In this case, the kneaded material is directly supplied to the molding material input port of the molding machine, but the temperature is kept at 120 to 160 ° C. at least from the input port to the molded product discharge port. On the other hand, with respect to 100 parts by weight of sulfur contained, a kneaded material containing 250 to 400 parts by weight of a mineral substance powder or a mineral substance powder and fine aggregate does not have high fluidity even in a heated state. Molding,
Preferably, it is performed by vibration pressure molding. Injection into the mold is preferably performed directly from an inlet connected to the outlet of the kneader, and preferably, the mold is vibrated during the injection. After the injection, the mold is moved to a molding machine and molded. Also in this case, the temperature of the mold and the upper and lower punch portions of the molding machine need to be maintained at 120 to 160 ° C. Pressure is 5Kgf / cm 2 or more and 500K
gf / cm 2 or less, preferably 20 kgf / cm 2 or more 5
And 00Kgf / cm 2 or less, the vibration is carried out until the end of at least the start of application at the output of 1 to 1000 g.

【0017】[成形物取り出し工程] 押し出し成形さ
れた成形品は常温環境下でベルトコンベア等に載せて製
品保管庫まで搬送する。また、型枠成形した製形品は成
分配合割合により成形後の工程条件が異なり、硫黄10
0重量部、鉱物質粉末又は鉱物質粉末と細骨材が100
重量部以上250重量部未満含有の成形物では、直ぐに
は脱型せずに型枠加熱を停止した後、型枠ごと室温近傍
まで冷却し、成形物が十分冷却した段階で成形物を離型
する。冷却は急冷による収縮亀裂を避けるため徐冷が好
ましい。この脱型は成形機から離れた場所で行うと良
く、脱型場所へベルトコンベヤー等で搬送中に自然放冷
させる。或いは搬送経路中に冷却帯を設け、搬送中の型
枠に常温空気を適度に吹き付けて冷却すると冷却時間の
短縮に繋がるので一層良い。一方、硫黄100重量部
と、鉱物質粉末又は鉱物質粉末と細骨材が250〜40
0重量部含有する成形物では、成形終了後、任意の時点
で脱型することができ、ほぼ即時脱型も可能である。脱
型時の温度は限定されず、また特別な冷却処置も必要と
しない。何れの配合比の成形物の場合も型枠と成形物と
の離型は脱型装置を用いて行う。脱型装置は自動化に適
した油圧式のプッシャーなどを用いると良い。脱型後の
型枠は清掃し、次の成形用に使用する。このような型枠
は複数個を製造ラインに備えつけ、連続循環使用すると
良い。最終的に得られた成形物はベルトコンベヤー等で
製品保管庫へ搬送し常温保管する。
[Molded Product Removal Step] The extruded molded product is placed on a belt conveyor or the like under a normal temperature environment and transported to a product storage. Further, the process conditions after the molding of the molded article formed by the mold are different depending on the mixing ratio of the components.
0 parts by weight, 100 of mineral powder or mineral powder and fine aggregate
For molded products containing not less than 250 parts by weight, without immediately removing the mold, after stopping the heating of the mold, cool the mold together with the mold to near room temperature, and release the molded product when the molded product is sufficiently cooled. I do. Cooling is preferably slow cooling to avoid shrinkage cracks due to rapid cooling. This demolding is preferably carried out at a place away from the molding machine, and is allowed to cool naturally while being conveyed to a demolding place by a belt conveyor or the like. Alternatively, it is more preferable to provide a cooling zone in the transport path and to blow the room temperature air to the mold being transported appropriately to cool it, since this leads to a reduction in the cooling time. On the other hand, 100 parts by weight of sulfur, mineral powder or mineral powder and fine aggregate are 250 to 40 parts by weight.
A molded article containing 0 parts by weight can be released from the mold at any time after the completion of molding, and can be released almost immediately. The temperature at the time of demolding is not limited, and no special cooling treatment is required. In the case of a molded product having any mixing ratio, the mold and the molded product are released from the mold using a demolding apparatus. It is preferable to use a hydraulic pusher suitable for automation as the demolding device. The mold after demolding is cleaned and used for the next molding. It is preferable to provide a plurality of such molds on a production line and use them continuously. The finally obtained molded product is transported to a product storage by a belt conveyor or the like and stored at room temperature.

【0018】[加熱系] 以上の工程で、装置、配管系
などを120〜160℃に加熱保持するには、各装置毎
に電熱ヒーターなどの個別の加熱装置を取り付けたもの
であっても良いが、熱媒体発生用の加熱ボイラーを用
い、そこから専用配管により熱を加熱を要する各工程・
装置に同時に供給するのが好ましい。配管材質はできる
だけ高い熱伝導性を有する耐熱金属が良い。熱媒体は特
に限定されないが安価で高い熱量を有する水蒸気が望ま
しい。但し、成形機のパンチや型枠などの稼働性・移動
性が高いものでは電熱式のヒーターを個別に取り付けた
ものとする。
[Heating System] In the above steps, in order to heat and maintain the apparatus and the piping system at 120 to 160 ° C., an individual heating apparatus such as an electric heater may be attached to each apparatus. However, using a heating boiler for generating a heat medium, each process that requires heat from there using a dedicated pipe
Preferably, they are fed simultaneously to the device. The pipe material is preferably a heat-resistant metal having high thermal conductivity as much as possible. The heating medium is not particularly limited, but is preferably steam which is inexpensive and has a high calorific value. However, for those having high operability and mobility such as punches and molds of a molding machine, it is assumed that an electric heater is individually attached.

【0019】[製造工程の自動化] 本発明の製造方法
は、特に自動化に適したものであり、各工程の装置並び
に機器類の稼働と運転管理には例えばシーケンサーなど
を取り付けて行う公知の集中制御システムを導入するこ
とにより、ほぼ全自動の製造ラインとすることができ
る。
[Automation of Manufacturing Process] The manufacturing method of the present invention is particularly suitable for automation, and a known centralized control performed by attaching a sequencer or the like to the operation and operation management of devices and devices in each process. By introducing the system, the production line can be made almost fully automatic.

【0020】[0020]

【実施例】本発明の製造方法を、全製造工程の流れの一
例を表した概略図を用いて具体的に説明する。 [実施例1] 水蒸気製造用のボイラー(12)で、蒸
気圧5気圧、150℃の水蒸気を発生させ、専用配管を
介し、図1に表す点線枠内の輸送管と装置類、硫黄の貯
蔵タンク(1)などの一連の原料通過系を約150℃に
加熱保温した。貯蔵タンクには溶融硫黄の状態で購入し
た硫黄が貯蔵され、この溶融硫黄を、貯蔵タンクから駆
動源として自動定量ポンプを用い、同様の温度に加熱し
た輸送管を通して計量機付の中間タンク(5)へ供給
し、次いで、成形品製造毎に所定量(43リットル/製
品製造1ヶ当たり)を加熱した輸送管を通して混練機
(6)へ供給搬送した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing method of the present invention will be specifically described with reference to a schematic diagram showing an example of the flow of all manufacturing steps. [Example 1] In a steam producing boiler (12), steam having a vapor pressure of 5 atm and 150 ° C was generated, and via a dedicated pipe, a transport pipe and devices in a dotted frame shown in Fig. 1 and storage of sulfur. A series of raw material passing systems such as the tank (1) were heated and kept at about 150 ° C. In the storage tank, sulfur purchased in the form of molten sulfur is stored, and the molten sulfur is transferred from the storage tank to an intermediate tank (5) with a weighing machine through a transport pipe heated to the same temperature using an automatic metering pump as a driving source. ), And then supplied and conveyed to the kneading machine (6) through a heated transport pipe at a predetermined amount (43 liters / per product production) for each molded product production.

【0021】一方、鉱物質粉末として、粉砕機で予め
0.1mm以下に粉砕調整したフライアッシュ粉を専用
の貯蔵サイロ(1)で常温保管したものをバケットエレ
ベーターでベルトフィダー上に積載し、そのまま予熱装
置(3)に圧送した。予熱装置はSTD(月島機械社
製)で行った。予熱装置で150℃約10分間予熱した
後、これを計量機能付の150℃に加熱した中間タンク
(4)へ搬送し、そこで自動秤量した所定量(167K
g/製品製造1ヶ当たり)のフライアッシュ粉を、加温
状態を保ちつつベルトフィダーで混練機(6)へ供給搬
送した。
On the other hand, fly ash powder, which has been preliminarily adjusted to 0.1 mm or less by a pulverizer and stored at room temperature as a mineral powder in a dedicated storage silo (1), is loaded on a belt feeder by a bucket elevator, and It was pumped to the preheating device (3). The preheating apparatus was performed by STD (manufactured by Tsukishima Kikai). After preheating at 150 ° C. for about 10 minutes by a preheating device, this was conveyed to an intermediate tank (4) heated to 150 ° C. with a measuring function, where it was automatically weighed to a predetermined amount (167 K).
g / per product manufactured) of fly ash powder was supplied to and conveyed to the kneading machine (6) by a belt feeder while maintaining a heated state.

【0022】搬送した溶融硫黄と加熱フライアッシュ粉
を、150℃蒸気を流通加熱したレディゲミキサーに同
時に投入し、約3分間混練した。
The transported molten sulfur and the heated fly ash powder were simultaneously charged into a Loedige mixer in which steam was heated at 150 ° C. and kneaded for about 3 minutes.

【0023】混練後の混練物は、混練機に直結した注入
管(8)から、予め内面にシリコンオイルの離型剤を塗
布した上面開口の内寸が縦500mm、横500mm、
高さ1000mmの角柱状のハイス鋼製型枠(7)に、
720Gの振動を振動テーブルで加えながら流し込み、
特に加圧等を行わずに型枠内を混練物で満たすことによ
って成形を行った。型枠への振動は混練物流し込み終了
後数秒程度経た後停止した。尚、該型枠は個別に取り付
けた電熱ヒーターで混練物充填前から振動停止までの間
150℃に加温保持した。
The kneaded material after kneading is filled with a silicone oil releasing agent on the inner surface in advance through an injection pipe (8) directly connected to the kneader so that the inner diameter of the upper surface is 500 mm long, 500 mm wide,
A 1000 mm high prismatic high-speed steel formwork (7)
Pouring while applying the vibration of 720G on the vibration table,
In particular, molding was performed by filling the inside of the mold frame with the kneaded material without applying pressure or the like. The vibration to the mold was stopped several seconds after the completion of the kneading and distribution. The mold was heated to 150 ° C. by an individually attached electric heater from before filling the kneaded material until the vibration was stopped.

【0024】振動停止以降は型枠加熱も停止し、以降は
全て常温環境下の工程とした。成形後の型枠はベルトコ
ンベヤーで冷却帯(10)を経て脱型装置(11)に移
動させ、冷却帯では、約9.6Kgf/cm2の圧搾空
気を3m3/分の流量で搬送中の型枠表面に吹き付けて
概ね型枠全体を放冷し、冷却帯領域を通過する間に型枠
内に充填した成形物が室温近傍の温度になるまで徐冷し
た。
After the vibration was stopped, the heating of the mold was also stopped, and thereafter, all the steps were performed in a normal temperature environment. The molded form is moved to a demolding device (11) by a belt conveyor through a cooling zone (10), and in the cooling zone, compressed air of about 9.6 kgf / cm 2 is being conveyed at a flow rate of 3 m 3 / min. The mold was sprayed on the surface of the mold to allow the entire mold to cool, and the molded product filled in the mold was gradually cooled to a temperature near room temperature while passing through the cooling zone.

【0025】徐冷後、概ね35℃以下の温度となった段
階でブロック状成形物を型枠から脱型した。該脱型装置
は、マグネットを備えた油圧式のプッシャーにより、金
型型枠底部をマグネットに吸着させると同時に上方に押
し上げ、成形体を突出させて金型との離型を行い、離型
した成形品成形物は別のプッシャーにてベルトコンベヤ
ー上に押し出して製品貯蔵庫に搬送した。また、使用後
の型枠は型枠清掃工程に搬送した。以上の製造装置は工
程間の搬送装置を含め、その運転に関してはシーケンサ
ーを用いて集中制御による連続自動運転を行った。
After gradually cooling, the block-shaped molded product was released from the mold when the temperature reached approximately 35 ° C. or less. In the demolding apparatus, the bottom of the mold frame was attracted to the magnet by a hydraulic pusher equipped with a magnet, and at the same time, was lifted upward to release the mold from the mold by projecting the molded body and releasing the mold. The molded article was extruded onto a belt conveyor by another pusher and conveyed to a product storage. Further, the used mold was transported to a mold cleaning step. In the above manufacturing apparatus, including the transport device between processes, continuous automatic operation was performed by centralized control using a sequencer.

【0026】このようにして毎時20個の硬化体ブロッ
クを連続製造し、24時間の間に製造したブロック製品
から任意に6個採取して、材令1日後の圧縮強度(JI
SA1108に準拠した方法)と嵩密度(JIS Z8
401に準拠した方法)を調べたところ、圧縮強度は3
8N/mm2、嵩密度は1.94g/cm3となり、何れ
も採取時期による特性値の差異は無く、一定であった。
In this way, 20 hardened material blocks were continuously manufactured per hour, and six blocks were arbitrarily sampled from the block products manufactured during 24 hours, and the compressive strength (JI 1 day after) was obtained.
SA1108) and bulk density (JIS Z8)
401 method, the compression strength was 3
8N / mm 2 , the bulk density was 1.94 g / cm 3 , and in each case there was no difference in the characteristic value depending on the sampling time, and the values were constant.

【0027】[実施例2] 実施例1と同様の水蒸気製
造用のボイラー(12)で、蒸気圧5気圧、150℃の
水蒸気を発生させ、専用配管を介し、図2に表す太線枠
内の輸送管と装置類、硫黄の貯蔵タンク(1)などの一
連の原料通過系を約150℃に加熱保温した。貯蔵タン
クには溶融硫黄の状態で購入した硫黄が貯蔵され、この
溶融硫黄を、貯蔵タンクから駆動源として自動定量ポン
プを用い、同様の温度に加熱した輸送管を通して計量機
付の中間タンク(5)へ供給し、次いで、成形品製造毎
に所定量(36リットル/製品製造1ヶ当たり)を加熱
した輸送管を通して毎分約12リットルの流量で混練機
(6)へ供給搬送した。
Example 2 A boiler (12) for producing steam similar to that in Example 1 generates steam having a vapor pressure of 5 atm and a temperature of 150 ° C., and through a dedicated pipe, a bold line shown in FIG. A series of raw material passing systems such as transport pipes and equipment, a sulfur storage tank (1), and the like were heated and maintained at about 150 ° C. In the storage tank, sulfur purchased in the form of molten sulfur is stored, and the molten sulfur is transferred from the storage tank to an intermediate tank (5) with a weighing machine through a transport pipe heated to the same temperature using an automatic metering pump as a driving source. ), And a predetermined amount (36 liters / per product production) was supplied and conveyed to the kneading machine (6) at a flow rate of about 12 liters per minute through a heated transport pipe every time a molded article was produced.

【0028】一方、鉱物質粉末として、粉砕機で予め
0.1mm以下に粉砕調整した石炭灰粉を専用の貯蔵サ
イロ(1)で常温保管したものをバケットエレベーター
でベルトフィダー上に積載し、そのまま予熱装置(3)
に圧送した。予熱装置はSTD(月島機械社製)で行っ
た。予熱装置で150℃約10分間予熱した後、これを
計量機能付の150℃に加熱した中間タンク(4)へ搬
送し、そこで自動秤量した所定量(180Kg/製品製
造1ヶ当たり)の石炭灰粉を、加温状態を保ちつつベル
トフィダーで混練機(6)へ毎分60Kgの投入量とな
るよう供給搬送した。
On the other hand, coal ash powder, which has been crushed and adjusted to 0.1 mm or less in advance by a crusher and stored at room temperature in a dedicated storage silo (1), is loaded on a belt feeder by a bucket elevator, and Preheating device (3)
Pumped. The preheating apparatus was performed by STD (manufactured by Tsukishima Kikai). After preheating at 150 ° C for about 10 minutes with a preheating device, this is conveyed to an intermediate tank (4) heated to 150 ° C with a measuring function, where it is automatically weighed and a predetermined amount (180 kg / product production) of coal ash The powder was fed and fed to the kneading machine (6) by a belt feeder at a rate of 60 kg / min while maintaining the heated state.

【0029】連続して搬送された溶融硫黄と石炭灰を1
50℃蒸気を流通させ加熱した連続式ニーダ型混練機に
同時に投入し、約5分間の滞留時間で連続混練した。混
練後の混練物は、混練機に直結した注入管(8)から、
予め内面にシリコンオイルの離型剤を塗布した上面開口
の内寸が縦500mm、横500mm、高さ1000m
mの角柱状のハイス鋼製型枠(7)に、720Gの振動
を振動テーブルで加えながら流し込み、この混練物が入
った型枠を成形機(9)にベルトコンベヤーで搬送し
た。尚、該型枠は個別に取り付けた電熱ヒーターで混練
物充填前から成形終了までの間150℃に加温保持し
た。
[0029] The molten sulfur and coal ash conveyed continuously are
The mixture was simultaneously charged into a continuous kneader-type kneader heated by flowing steam at 50 ° C. and kneaded continuously for a residence time of about 5 minutes. The kneaded material after kneading is supplied from the injection pipe (8) directly connected to the kneader.
The inner dimensions of the upper surface opening with the silicone oil release agent applied to the inner surface in advance are 500 mm long, 500 mm wide, and 1000 m high
The mixture was poured into a square column-shaped high-speed steel mold (7) while applying a vibration of 720 G using a vibration table, and the mold containing the kneaded material was conveyed to a molding machine (9) by a belt conveyor. The mold was heated and maintained at 150 ° C. from before the filling of the kneaded material to the end of molding by means of an electric heater individually attached.

【0030】成形機(9)は、振動一軸加圧式成形機を
用い、この上パンチと下パンチ部分のみ電熱ヒーターを
取り付け150℃に加温保持し、他の本体部はボイラー
からの水蒸気を通した加熱用配管を取り付け、概ね同様
の温度に加温保持した。搬送設置した型枠中の混練物上
面に上パンチを接触させ、成形圧5Kgf/cm2で加
圧し、同時に720Gの振動力を加えて成形した。加圧
・振動時間は3分とし、加圧後は振動及び加熱を直ちに
停止した。
As the molding machine (9), an oscillating uniaxial press molding machine is used. Only the upper punch and the lower punch are equipped with electric heaters and are heated to 150 ° C., and the other main body is provided with steam from the boiler. The heated piping was attached and heated to approximately the same temperature. The upper punch was brought into contact with the upper surface of the kneaded material in the conveyed and set mold, pressurized at a molding pressure of 5 kgf / cm 2 , and simultaneously molded by applying a vibration force of 720 G. The pressurization / vibration time was 3 minutes, and after the pressurization, the vibration and heating were stopped immediately.

【0031】成形後は、型枠の加熱を直ちに停止し、以
降の工程並びに工程間移動路は常温環境下とした。成形
後の型枠はベルトコンベヤーで脱型装置(11)に移動
させた。
After the molding, the heating of the mold was immediately stopped, and the subsequent steps and the inter-step moving path were placed in a normal temperature environment. The molded form was moved to a demolding device (11) by a belt conveyor.

【0032】脱型装置に移動させたブロック状成形物は
直ちに型枠から脱型した。該脱型装置は、マグネットを
備えた油圧式のプッシャーにより、金型型枠底部をマグ
ネットに吸着させると同時に上方に押し上げ、成形体を
突出させて金型との離型を行い、離型した成形品成形物
は別のプッシャーにてベルトコンベヤー上に押し出して
製品貯蔵庫に搬送した。また、使用後の型枠は型枠清掃
工程に搬送した。以上の製造装置は工程間の搬送装置を
含め、その運転に関してはシーケンサーを用いて集中制
御による連続自動運転を行った。
The block-like molded product moved to the demolding device was immediately demolded from the mold. In the demolding apparatus, the bottom of the mold frame was attracted to the magnet by a hydraulic pusher equipped with a magnet, and at the same time, was lifted upward to release the mold from the mold by projecting the molded body and releasing the mold. The molded article was extruded onto a belt conveyor by another pusher and conveyed to a product storage. Further, the used mold was transported to a mold cleaning step. In the above manufacturing apparatus, including the transport device between processes, continuous automatic operation was performed by centralized control using a sequencer.

【0033】このようにして毎時20個の硬化体ブロッ
クを連続製造し、24時間の間に製造したブロック制品
から任意に6個採取して、材令1日後の圧縮強度(JI
SA1108に準拠した方法)と嵩密度(JIS Z8
401に準拠した方法)を調べたところ、圧縮強度は4
2N/mm2、嵩密度は1.96g/cm3となり、何れ
も採取時期による特性値の差異は無く、一定であった。
In this manner, 20 hardened body blocks were continuously produced per hour, and six blocks were arbitrarily sampled from the block product manufactured during 24 hours, and the compressive strength (JI) one day after the material age was determined.
SA1108) and bulk density (JIS Z8)
401), the compression strength was 4
The bulk density was 2 N / mm 2 , and the bulk density was 1.96 g / cm 3. In each case, there was no difference in the characteristic value depending on the sampling time, and the values were constant.

【0034】[比較例] 実施例1と同様の装置・工程
を配し、水蒸気製造用のボイラーで、蒸気圧5気圧、1
50℃の水蒸気を発生させ、専用配管を介し、硫黄の貯
蔵タンクのみ約150℃に加熱した以外は、全ての装置
・原料や混練物の輸送管とも加熱せず常温のままとし
た。貯蔵タンクには溶融硫黄の状態で購入した硫黄が貯
蔵され、この溶融硫黄を、貯蔵タンクから駆動源として
自動定量ポンプを用い、輸送管を通して計量機付の中間
タンクへ供給し、成形品製造毎に所定量(43リットル
/製品製造1ヶ当たり)を輸送管を通して混練機へ供給
搬送を試みたが、輸送管の管壁に硫黄原料の固結が起こ
り、暫くすると管内が閉塞し、硫黄原料の搬送供給がで
きなくなった。
[Comparative Example] An apparatus and a process similar to those in Example 1 were provided, and a boiler for producing steam was used.
Except for generating steam at 50 ° C. and heating only the sulfur storage tank to about 150 ° C. via a dedicated pipe, all the equipment, the transport pipes for the raw materials and the kneaded material were not heated and kept at room temperature. In the storage tank, sulfur purchased in the form of molten sulfur is stored, and the molten sulfur is supplied from the storage tank to an intermediate tank equipped with a weighing machine through a transport pipe by using an automatic metering pump as a driving source, and is used for producing each molded article. , A predetermined amount (43 liters / per product) was supplied to the kneading machine through the transport pipe, but solidification of the sulfur raw material occurred on the pipe wall of the transport pipe. Can no longer be transported.

【0035】[0035]

【発明の効果】本発明の製造方法によれば、工程毎に都
度製造条件を仔細に調整することなく、硫黄組成物成形
品を極めて優れた生産性と安定した品質で製造すること
が容易に行うことができ、またそれ故、製造工程の連続
自動化を容易に導入することができる。
According to the production method of the present invention, it is easy to produce a sulfur composition molded article with extremely excellent productivity and stable quality without finely adjusting the production conditions each time in each step. Can be performed and, therefore, continuous automation of the manufacturing process can be easily introduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造工程の流れの一態様例を説明した
図である。
FIG. 1 is a diagram illustrating an example of an embodiment of a flow of a manufacturing process according to the present invention.

【図2】本発明の製造工程の流れの他の一態様例を説明
した図である。
FIG. 2 is a diagram illustrating another example of the flow of the manufacturing process of the present invention.

【符号の説明】[Explanation of symbols]

1 鉱物質原料貯蔵サイロ 2 硫黄貯蔵タンク 3 予熱装置 4 中間タンク・鉱物質原料用 5 中間タンク・溶融硫黄用 6 混練機 7 型枠 8 混練物注入管 9 振動加圧成形機 10 冷却帯 11 脱型装置 12 ボイラー DESCRIPTION OF SYMBOLS 1 Mineral raw material storage silo 2 Sulfur storage tank 3 Preheating device 4 For intermediate tank / mineral raw material 5 Intermediate tank / molten sulfur 6 Kneader 7 Formwork 8 Kneaded material injection pipe 9 Vibration press forming machine 10 Cooling zone 11 Desorption Molding device 12 Boiler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 将裕 山口県小野田市大字小野田6276番地 太平 洋セメント株式会社内 (72)発明者 松良 剛 山口県小野田市大字小野田6276番地 太平 洋セメント株式会社内 Fターム(参考) 4G012 PA26 PA27 PD01 PE04 4G054 AA00 AC00 BA02 BA29 DA02 DA03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Kato 6276 Onoda Hiroshi Onoda, Onoda City, Yamaguchi Prefecture Inside (72) Inventor Tsuyoshi Matsura 6276 Onoda, Onoda City, Yamaguchi Prefecture Hiroshi Taihei Cement Co., Ltd. F term (reference) 4G012 PA26 PA27 PD01 PE04 4G054 AA00 AC00 BA02 BA29 DA02 DA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫黄と鉱物質粉末を含む硫黄組成物から
なる成形品の製造方法であって、原料貯蔵工程、原料供
給工程、原料混練工程、混練物成形工程、成形物取り出
し工程の連続工程からなり、少なくとも原料混練工程〜
混練物成形工程が120〜160℃で行われることを特
徴とする硫黄組成物成形品の製造方法。
1. A method for producing a molded article comprising a sulfur composition containing sulfur and a mineral powder, comprising: a raw material storage step, a raw material supply step, a raw material kneading step, a kneaded product molding step, and a molded product taking-out step. Consisting of at least a raw material kneading step
A method for producing a sulfur composition molded product, wherein the kneaded product molding step is performed at 120 to 160 ° C.
【請求項2】 硫黄原料貯蔵庫での硫黄が120〜16
0℃に保たれていることを特徴とする請求項1記載の硫
黄組成物成形品の製造方法。
2. Sulfur in a sulfur raw material storage is 120 to 16
The method for producing a molded article of a sulfur composition according to claim 1, wherein the temperature is maintained at 0 ° C.
【請求項3】 硫黄組成物が硫黄100重量部と鉱物質
粉末又は鉱物質粉末と細骨材100〜400重量部から
なることを特徴とする請求項1又は2記載の硫黄組成物
成形品の製造方法。
3. The sulfur composition molded article according to claim 1, wherein the sulfur composition comprises 100 parts by weight of sulfur and mineral powder or mineral powder and 100 to 400 parts by weight of fine aggregate. Production method.
【請求項4】 硫黄組成物が硫黄100重量部と鉱物質
粉末又は鉱物質粉末と細骨材250〜400重量部から
なる混練物に対する混練物成形工程が振動加圧成形で行
われることを特徴とする請求項1〜3の何れか記載の硫
黄組成物成形品の製造方法。
4. A kneaded material forming step for a kneaded material in which the sulfur composition is composed of 100 parts by weight of sulfur and mineral powder or mineral powder and 250 to 400 parts by weight of fine aggregate is performed by vibration pressure molding. The method for producing a molded article of a sulfur composition according to claim 1.
JP11209774A 1999-07-23 1999-07-23 Manufacture of sulfur composition molding Pending JP2001030213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11209774A JP2001030213A (en) 1999-07-23 1999-07-23 Manufacture of sulfur composition molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11209774A JP2001030213A (en) 1999-07-23 1999-07-23 Manufacture of sulfur composition molding

Publications (1)

Publication Number Publication Date
JP2001030213A true JP2001030213A (en) 2001-02-06

Family

ID=16578398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11209774A Pending JP2001030213A (en) 1999-07-23 1999-07-23 Manufacture of sulfur composition molding

Country Status (1)

Country Link
JP (1) JP2001030213A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037116A (en) * 2003-10-17 2005-04-21 주식회사 삼성산업 Mixer having heating device and methods for manufacturing concrete products
KR100640274B1 (en) * 2004-12-13 2006-11-01 주식회사 보림에쓰에쓰 Pouring apparatus for MSPC mixture
KR100651168B1 (en) 2004-12-13 2006-12-01 주식회사 보림에쓰에쓰 MSPC composition mixing apparatus
JP2007152569A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Modified sulfur material manufacturing apparatus
KR100731805B1 (en) 2006-02-27 2007-06-22 주식회사 대건산업 Corrosion-resistance tube and molding method of the same
KR100738905B1 (en) * 2005-12-29 2007-07-12 (주)서우 The concrete manufacturing method which uses the sulfur and Manufacturing method of the engineering works infrastructure which uses the concrete
EP1886781A1 (en) * 2005-05-13 2008-02-13 Nippon Oil Corporation System for production of solid modified sulfur products
WO2009119560A1 (en) * 2008-03-25 2009-10-01 新日本石油株式会社 Production method and production system of solidified sulfur
JP2010228445A (en) * 2009-03-02 2010-10-14 Jx Nippon Oil & Energy Corp Method for manufacturing solidified sulfur panel, sulfur solidified sulfur panel, and method for mounting solidified sulfur panel
WO2011144287A1 (en) * 2010-05-17 2011-11-24 Faehndrich Wilfried Sulphur concrete production plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037116A (en) * 2003-10-17 2005-04-21 주식회사 삼성산업 Mixer having heating device and methods for manufacturing concrete products
KR100640274B1 (en) * 2004-12-13 2006-11-01 주식회사 보림에쓰에쓰 Pouring apparatus for MSPC mixture
KR100651168B1 (en) 2004-12-13 2006-12-01 주식회사 보림에쓰에쓰 MSPC composition mixing apparatus
EP1886781A1 (en) * 2005-05-13 2008-02-13 Nippon Oil Corporation System for production of solid modified sulfur products
EP1886781A4 (en) * 2005-05-13 2009-08-05 Nippon Oil Corp System for production of solid modified sulfur products
JP2007152569A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Modified sulfur material manufacturing apparatus
KR100738905B1 (en) * 2005-12-29 2007-07-12 (주)서우 The concrete manufacturing method which uses the sulfur and Manufacturing method of the engineering works infrastructure which uses the concrete
KR100731805B1 (en) 2006-02-27 2007-06-22 주식회사 대건산업 Corrosion-resistance tube and molding method of the same
WO2009119560A1 (en) * 2008-03-25 2009-10-01 新日本石油株式会社 Production method and production system of solidified sulfur
JP2009227551A (en) * 2008-03-25 2009-10-08 Nippon Oil Corp Production method and production device for sulfur solidified body
CN101952219A (en) * 2008-03-25 2011-01-19 新日本石油株式会社 Production method and production system of solidified sulfur
US8235705B2 (en) 2008-03-25 2012-08-07 Nippon Oil Corporation Apparatus for producing a sulfur concrete substance
KR101472165B1 (en) * 2008-03-25 2014-12-12 제이엑스 닛코닛세키에너지주식회사 Production method and production system of solidified sulfur
JP2010228445A (en) * 2009-03-02 2010-10-14 Jx Nippon Oil & Energy Corp Method for manufacturing solidified sulfur panel, sulfur solidified sulfur panel, and method for mounting solidified sulfur panel
WO2011144287A1 (en) * 2010-05-17 2011-11-24 Faehndrich Wilfried Sulphur concrete production plant

Similar Documents

Publication Publication Date Title
JP5474036B2 (en) Coal ash granule production method, concrete product production method using coal ash granulation product, high density / high strength concrete product produced by these production methods, high density / high strength concrete product Method for producing recycled aggregate, and recycled aggregate produced by this production method
US9597818B2 (en) Geopolymer brick fabrication system
KR101233690B1 (en) Reformed sulfur solidified substance producing system
CN112654592B (en) Multistep curing of green bodies
JP2001030213A (en) Manufacture of sulfur composition molding
CN100532045C (en) Full automatic block production line
JPH10502574A (en) Method for applying castable refractory material with low cement content
CZ277704B6 (en) Tubes from sulfur-containing concrete and process for producing thereof
CN203566841U (en) Full-automatic production line for compound self-thermal-insulating blocks
CN103507154A (en) Automatic production line of U-shaped reinforced concrete water tanks
JP5081426B2 (en) Method and apparatus for producing granular solid using coal ash as raw material
CN104193370A (en) Preparation method of steel ladle carbon-free precast block
WO1993010926A1 (en) Method for controlling the oxidation and calcination of waste foundry sands
JPH08318244A (en) Method and apparatus for producing sulfur solidified molded article
JP2007008094A (en) Apparatus for casting modified sulfur cement
JP4238976B2 (en) Method for producing porous ceramics and molding apparatus for producing the same
CN111571768B (en) Method for producing fine iron powder waste residue foamed brick
KR20200106271A (en) Method and Automatic System for Manufacturing Flange Based Ceramic
KR960005876B1 (en) Device for preparing self-hardening casting mold using organic binder
JPH0839231A (en) Method for cooling product by circulating molding sand and apparatus thereof
CN214082036U (en) Wet production line that takes off of railway assembled component
KR20180046489A (en) Casting manufacturing device for elevator using the waste synthetic resine, method using the same and the product manufactured by the device
JPH05245359A (en) Production of moldings of aluminum dross and equipment thereof
JP2005186280A (en) Precast block manufacturing method
JPH05325694A (en) Manufacture of resinous insulator