JP2001027701A - Infrared optical part - Google Patents

Infrared optical part

Info

Publication number
JP2001027701A
JP2001027701A JP19942399A JP19942399A JP2001027701A JP 2001027701 A JP2001027701 A JP 2001027701A JP 19942399 A JP19942399 A JP 19942399A JP 19942399 A JP19942399 A JP 19942399A JP 2001027701 A JP2001027701 A JP 2001027701A
Authority
JP
Japan
Prior art keywords
infrared
window material
optical component
infrared optical
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19942399A
Other languages
Japanese (ja)
Other versions
JP3339001B2 (en
Inventor
Hideo Wada
▲英▼男 和田
Kenichiro Shibata
憲一郎 柴田
Masashi Yamashita
正史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Sumitomo Electric Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Sumitomo Electric Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Sumitomo Electric Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP19942399A priority Critical patent/JP3339001B2/en
Publication of JP2001027701A publication Critical patent/JP2001027701A/en
Application granted granted Critical
Publication of JP3339001B2 publication Critical patent/JP3339001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an IR optical window material having excellent transmittance for IR rays in a specified wavelength band and a small radiation rate of heat and suitable to be used with a non-cooling type IR sensor by constituting the material essentially consisting of a polycrystalline GaAs, having a specified transmittance or higher for straight beams of IR rays at a specified wavelength, and having a specified radiation rate or lower at a specified temperature. SOLUTION: An IR optical element 2 such as a bolometer type non-cooling IR sensor or a semiconductor IR laser and a rotating and scanning mechanism 3 to support the IR optical element 2 are disposed inside of a dome type IR window material 1a consisting of polycrystalline GaAs. The IR optical element 2 with an optical system attached can be rotated and scanned back and forth and in the left and right directions in the IR window material 1a by the rotating and scanning mechanism 3. The IR window material 1a essentially consists of polycrystalline GaAs and has >=70% transmittance for straight beams of IR rays at 10 μm wavelength and <=5% radiation rate at 300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多結晶ガリウム砒
素(GaAs)を主成分とし、赤外線センサー、赤外画
像処理装置、赤外レーザなどの用途に使用される波長8
〜12μm帯用の透過性および耐久性に優れた、赤外線
センサーの保護用窓材および赤外レンズ、および赤外レ
ーザ用窓材等の赤外光学部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline gallium arsenide (GaAs) having a wavelength of 8 which is used for infrared sensors, infrared image processing apparatuses, infrared lasers and the like.
The present invention relates to an infrared optical component such as a protective window material and an infrared lens of an infrared sensor and an infrared laser window material, which are excellent in transmittance and durability for a band of up to 12 μm.

【0002】[0002]

【従来の技術】最近、安全性(セキュリティ)確保など
のための人体検知用赤外線センサーや対象物体の温度分
布を測定して省エネルギーを図ったり、航空機に搭載し
て資源探査を行なったりするための暗視機能のある赤外
画像処理装置、また可視光より長波長でガス分析や加工
に用いられる赤外レーザなど、赤外光を利用した多くの
装置が開発されている。これに伴い、赤外光を透過、屈
折し、種々の光学的機能を有する、窓材、レンズなどの
赤外光学部品に対する要求はさらに高度になってきてい
る。
2. Description of the Related Art Recently, an infrared sensor for detecting a human body for ensuring safety (security) and a temperature distribution of a target object have been measured to save energy, or have been mounted on an aircraft for resource exploration. Many devices utilizing infrared light have been developed, such as an infrared image processing device having a night-vision function and an infrared laser having a wavelength longer than that of visible light and used for gas analysis and processing. Along with this, the demand for infrared optical components, such as window materials and lenses, which transmit and refract infrared light and have various optical functions, has become more sophisticated.

【0003】従来、波長8〜12μm帯用の赤外光学部
品の材料としては、単結晶ゲルマニウム(Ge)やCV
D(化学気相蒸着)法で製造された多結晶セレン化亜鉛
(ZnSe)、多結晶硫化亜鉛(ZnS)や赤外線透過
性ガラスなどが用いられてきた。しかし、Geは資源枯
渇の問題のため極めて高価であり、ZnSeは毒性ガス
を原料とするため高価であり、また法律的に毒物である
などの問題があるため、小型の光学部品や炭酸ガスレー
ザ用などの限定された用途のみに使用されている。単結
晶の光学部品としては、特開昭63−38901号公報
に示されるGaAs単結晶を用いたものもあるが、単結
晶は成長に長時間を必要とするので高価である。また劈
開性であるため小型のレーザ用光学部品等の限られた用
途のみしか用いられていない。
Conventionally, materials for infrared optical components for the wavelength band of 8 to 12 μm include single crystal germanium (Ge) and CV.
Polycrystalline zinc selenide (ZnSe), polycrystalline zinc sulfide (ZnS), infrared transmitting glass, and the like manufactured by a D (chemical vapor deposition) method have been used. However, Ge is extremely expensive because of the problem of resource depletion, and ZnSe is expensive because it uses a toxic gas as a raw material, and has problems such as being legally poisonous. It is used only for limited uses such as. As a single crystal optical component, there is a device using a GaAs single crystal disclosed in JP-A-63-38901, but the single crystal is expensive because it requires a long time for growth. Further, since it is cleaved, it is used only for limited applications such as small laser optical components.

【0004】またZnSや上記の赤外線透過性ガラス系
材料は、強度が低いため、航空機などに搭載して高速で
飛しょうした場合に雨滴衝突による損傷で表面が荒れて
透光性が低下したり、空力加熱による熱衝撃に弱く破損
したりするおそれもある、あるいは熱放射率が数10%
と高いので窓材が空力加熱で昇温した場合には熱放射に
よる窓材自身からのノイズで対象の赤外画像が不明瞭に
なるなど、多くの問題点があった。
[0004] Further, ZnS and the above-mentioned infrared-transmissive glass-based material have low strength, so that when they are mounted on an aircraft or the like and fly at high speed, the surface is roughened due to the impact of raindrops and the translucency is reduced. , May be easily damaged by thermal shock due to aerodynamic heating, or may have a thermal emissivity of tens of percent
Therefore, when the temperature of the window material is increased by aerodynamic heating, there are many problems such as the noise from the window material itself due to heat radiation, which makes the infrared image of the object unclear.

【0005】これに対し、文献「SPIE Vol.1760 Window
and Dome Technologies and Materials III(1992)」
pp.74−85では、多結晶のGaAs製赤外光学部
品が提示されている。これによれば、最大寸法約300
mm角の平板窓材が得られており、厚さ3.18mm材
で波長8〜10μm帯での赤外透過率は約57%であ
り、結晶粒径が数cmで、強度は13.3kg/m
2、ワイブル係数は4.7の機械的特性を有し、導電
性と高抵抗の両方の電気特性が調整できるとされてい
る。
[0005] On the other hand, the document "SPIE Vol.1760 Window"
and Dome Technologies and Materials III (1992) "
pp. 74-85, a polycrystalline GaAs infrared optical component is presented. According to this, the maximum dimension is about 300
A square window material of mm square is obtained. The material has a thickness of 3.18 mm, an infrared transmittance of about 57% in a wavelength band of 8 to 10 μm, a crystal grain size of several cm, and a strength of 13.3 kg. / M
It is said that m 2 and the Weibull coefficient have a mechanical property of 4.7, and both electrical properties of conductivity and high resistance can be adjusted.

【0006】また同文献によれば、上記の平板型窓材の
他にわずかな曲面を呈する窓材も写真で提示されてい
る。しかし、その窓材は、曲率半径がかなり大きく、平
板窓材を熱間鍛造法によりわずかに曲面状に変形させて
製造されたことが記載されている。
Further, according to the document, in addition to the above-mentioned flat window material, a window material having a slightly curved surface is presented in a photograph. However, it is described that the window material has a considerably large radius of curvature, and is manufactured by deforming a flat window material into a slightly curved shape by hot forging.

【0007】[0007]

【発明が解決しようとする課題】しかし、航空機搭載用
赤外機器などで要求される赤外光学部品は、比較的大型
で急峻な曲面を有し、空力抵抗が小さく、曲率半径も小
さな半球殻(ドーム)状の赤外窓材であり、この内部で
センサーやレーザが回転可能で走査できる構造になって
いる。このため、このドーム状の赤外窓材を製造するた
めには上記の熱間鍛造法によるわずかな曲面では不十分
であった。
However, an infrared optical component required for an infrared device mounted on an aircraft is a hemispherical shell having a relatively large and steep curved surface, a small aerodynamic resistance and a small radius of curvature. This is a (dome) -shaped infrared window material, inside which a sensor and laser can rotate and scan. For this reason, in order to manufacture this dome-shaped infrared window material, a slight curved surface by the hot forging method described above was insufficient.

【0008】一方、赤外窓材と組合せて使用される赤外
センサーの技術も、最近になって大きく進歩している。
すなわち、従来の赤外センサーには波長10μm帯用と
してはHgCdTe系の材質が使用されており、この材
質では液体窒素などにより作動可能な低温にまで冷却す
ることが必要であった。しかし、近年になってボロメー
タ型素子などを用いた非冷却式のセンサーが実用化され
始めた。
On the other hand, the technology of an infrared sensor used in combination with an infrared window material has recently made great progress.
That is, the conventional infrared sensor uses a HgCdTe-based material for the wavelength band of 10 μm, and it is necessary to cool the material to a low temperature that can be operated with liquid nitrogen or the like using this material. However, in recent years, non-cooling type sensors using a bolometer type element and the like have been put into practical use.

【0009】しかし、この非冷却式赤外センサーは、従
来の冷却式センサーに比べて赤外のノイズに弱い特性を
有しており、従来のZnSなどの従来窓材を使用した場
合には、空力加熱により昇温した場合、窓材自身の熱放
射により赤外画像の識別能力が低下するという問題があ
った。
However, this uncooled infrared sensor has a characteristic that is less susceptible to infrared noise than a conventional cooled sensor, and when a conventional window material such as conventional ZnS is used, When the temperature is increased by aerodynamic heating, there is a problem that the thermal radiation of the window material itself deteriorates the identification capability of the infrared image.

【0010】本発明の1の目的は、各種の赤外線利用機
器に用いられ、比較的経済的に製造が可能で、毒物では
なく、高強度で熱衝撃に強く、かつ熱放射率の小さい多
結晶GaAsを主成分とする赤外光学部品のさらなる改
良、応用およびそれにかかわる特殊形状光学部品を提供
するものである。
An object of the present invention is to provide a polycrystalline material which is used for various infrared devices and can be manufactured relatively economically, is not a poison, has high strength, is resistant to thermal shock, and has a low thermal emissivity. Another object of the present invention is to provide a further improvement and application of an infrared optical component mainly composed of GaAs and a specially shaped optical component related thereto.

【0011】この中でも特に今後の赤外センサーの主流
となる非冷却式センサーに用いられる赤外窓材は、その
感度特性から高い赤外透過率と低い熱放射率とが要求さ
れる。したがって具体的には、ZnSやGeなどの従来
材料は、波長8〜12μm帯での赤外光の高い透過率と
高温での低い放射率とを必要とする同センサー用窓材と
して用いられる場合、前述のような問題に加え性能上十
分とはいえなかった。
[0011] Among them, the infrared window material used for the uncooled sensor, which will be the mainstream of the infrared sensor in the future, is required to have high infrared transmittance and low thermal emissivity due to its sensitivity characteristics. Therefore, specifically, when a conventional material such as ZnS or Ge is used as a window material for the same sensor that requires high transmittance of infrared light in a wavelength band of 8 to 12 μm and low emissivity at high temperature. However, in addition to the problems described above, the performance was not sufficient.

【0012】それゆえ、本発明の他の目的は、非冷却式
センサー用窓材として用いた場合でも、赤外光の高い透
過率と高温での低い放射率とを有する赤外光学部品を提
供することである。
Therefore, another object of the present invention is to provide an infrared optical component having high transmittance of infrared light and low emissivity at high temperature even when used as a window material for an uncooled sensor. It is to be.

【0013】また本発明の他の目的は、従来材料および
従来方法では経済的な製造が困難であった比較的大型の
殻状の窓材、たとえば急峻な曲面を有し曲率半径の小さ
なドーム状のものを提供することであり、中でも特に高
速で飛行する航空機などに搭載され、センサーやレーザ
がドーム内部で回転可能な赤外機器用ドームに適した窓
材となる赤外光学部品を提供することである。
Another object of the present invention is to provide a relatively large shell-like window material, such as a dome shape having a steep curved surface and a small radius of curvature, which has been difficult to produce economically with conventional materials and methods. Infrared optical components that are suitable for use in infrared equipment domes that are mounted on aircraft that fly at high speeds and that allow sensors and lasers to rotate inside the dome. That is.

【0014】さらに本発明の他の目的は、たとえば上記
と同様の機能を有するドーム状以外の形状の殻状部品、
たとえば角錐形およびその一部が切断されたような形状
の窓材となる赤外光学部品を提供することである。
Still another object of the present invention is to provide, for example, a shell-like component having a function other than the dome shape having the same function as described above,
For example, it is an object of the present invention to provide an infrared optical component serving as a window material having a pyramid shape and a shape obtained by cutting a part thereof.

【0015】[0015]

【課題を解決するための手段】本発明の赤外光学部品
は、多結晶GaAsを主成分とし、波長10μmの赤外
光の直線透過率が70%以上であり、300℃での放射
率が5%以下である。
The infrared optical component of the present invention is mainly composed of polycrystalline GaAs, has a linear transmittance of 70% or more for infrared light having a wavelength of 10 μm, and has an emissivity at 300 ° C. 5% or less.

【0016】本発明の赤外光学部品は、多結晶GaAs
を主成分としているため、比較的経済的に製造が可能
で、毒物でなく、かつ高強度で熱衝撃に強い赤外光学部
品を得ることができる。また、本発明の赤外光学部品を
窓材として用いる場合には通常、その表面に反射防止被
膜が施され、これによって窓材の透過率が波長10μm
で70%以上となる。さらに本発明の光学部品では、3
00℃に昇温した場合の放射率が5%以下である。した
がって、本発明の光学部品を窓材に用いることによっ
て、赤外のノイズに弱い非冷却式センサーの欠点をカバ
ーでき、これらの組合せで良好な赤外画像を得ることが
できる。
The infrared optical component of the present invention is a polycrystalline GaAs
As a main component, an infrared optical component that is relatively economical to manufacture, is free of poison, has high strength, and is resistant to thermal shock can be obtained. When the infrared optical component of the present invention is used as a window material, an antireflection coating is usually applied to the surface of the component, whereby the transmittance of the window material is reduced to a wavelength of 10 μm.
Becomes 70% or more. Further, in the optical component of the present invention, 3
The emissivity when the temperature is raised to 00 ° C. is 5% or less. Therefore, by using the optical component of the present invention for a window material, it is possible to cover the disadvantages of an uncooled sensor that is susceptible to infrared noise, and it is possible to obtain a good infrared image by combining these.

【0017】上記の赤外光学部品において好ましくは、
GaAsの結晶粒子の平均粒径は1mm以上50mm以
下の範囲内である。
Preferably, in the above infrared optical component,
The average particle size of the GaAs crystal particles is in the range of 1 mm or more and 50 mm or less.

【0018】結晶粒子の平均粒径を上記範囲にコントロ
ールするのは次の理由に基づく。1mm未満では、急速
な冷却が必要となるため多結晶内部に気泡が残留しやす
くなり、光散乱により透過率が低下しやすいためであ
る。また50mmを超えると、多結晶体自体の曲げ強度
が低くなり、仕上げ加工、アッセンブリー時または実用
時の外力に対し弱くなるからである。この範囲内に平均
粒径をコントロールすることによって、10MPa以上
の3点曲げ強度のものが得られる。特にドーム状などの
殻状の形の大型の部品では同じ理由から5mm以上10
mm以下の範囲とするのがより望ましい。
The average particle size of the crystal grains is controlled within the above range for the following reason. If it is less than 1 mm, rapid cooling is required, so that air bubbles are likely to remain inside the polycrystal, and light transmittance tends to lower the transmittance. On the other hand, if it exceeds 50 mm, the bending strength of the polycrystal itself becomes low, and it becomes weak against external force during finishing, assembly or practical use. By controlling the average particle size within this range, a three-point bending strength of 10 MPa or more can be obtained. Especially for large parts in the shape of a shell such as a dome, 5 mm or more 10
It is more preferable that the thickness be within the range of mm or less.

【0019】不純物量は遷移金属などの陽イオン量とし
てその合計で200ppm以下にコントロールするの
が、高い赤外光直線透過率を維持するためには望まし
い。なお、これらの不純物は主にGaAsの結晶粒界に
存在する。またその気孔率は0.5%以下とするのが望
ましく、したがってその相対密度(理論密度に対する実
測密度の割合)は99.5%以上であるのが望ましい。
It is desirable to control the amount of impurities as a total amount of cations such as transition metals to 200 ppm or less in order to maintain a high infrared linear transmittance. Note that these impurities mainly exist at the crystal grain boundaries of GaAs. The porosity is desirably 0.5% or less, and therefore, the relative density (the ratio of the measured density to the theoretical density) is desirably 99.5% or more.

【0020】上記の赤外光学部品において好ましくは、
その赤外光学部品は赤外光またはレーザ光透過用の窓材
に用いられる。
In the above infrared optical component, preferably,
The infrared optical component is used as a window material for transmitting infrared light or laser light.

【0021】上記の赤外光学部品において好ましくは、
窓材は殻状をなしている。上記の赤外光学部品において
好ましくは、窓材は半球殻形状をなしている。
Preferably, in the above infrared optical component,
The window material has a shell shape. In the infrared optical component described above, the window material preferably has a hemispherical shell shape.

【0022】上記の赤外光学部品において好ましくは、
半球殻形状の曲率半径が25mm以上150mm以下で
あり、肉厚が2mm以上10mm以下である。
Preferably, in the above infrared optical component,
The radius of curvature of the hemispherical shell shape is 25 mm or more and 150 mm or less, and the thickness is 2 mm or more and 10 mm or less.

【0023】ドーム状赤外窓材の曲率半径および肉厚を
上記範囲とするのは次の理由に基づく。曲率半径が25
mm未満では、内部の回転スペースが小さくなりすぎ、
赤外センサーや赤外レーザ、回転機構などを収納しがた
いためである。曲率半径が150mmを超える大型ドー
ムでは、空力抵抗が大きくなり、また多結晶GaAsの
製造は実用上可能でも、生産コスト、生産品質を考慮す
ると現実的でないためである。
The reason why the radius of curvature and the thickness of the dome-shaped infrared window member are set in the above ranges is based on the following reason. Curvature radius 25
mm, the internal rotation space becomes too small,
This is because it is difficult to store an infrared sensor, an infrared laser, a rotation mechanism, and the like. This is because, in a large dome having a radius of curvature exceeding 150 mm, aerodynamic resistance increases, and production of polycrystalline GaAs is practically feasible, but is not realistic in consideration of production cost and production quality.

【0024】肉厚が2mm未満では、航空機などが高速
で飛行する場合の空力加熱による耐圧強度が不十分であ
ると考えられる。肉厚が10mmを超えると、窓材の重
量が必要以上に大きくなり、航空機などに搭載するのに
適当でない。また、あまりに肉厚が厚すぎると赤外光の
透過率が低下しやすくなる。むろん上記の寸法上の制約
については、航空機用などの大型形状を想定したもので
あり、その用途以外のものについては、必ずしもこの限
りではない。
When the thickness is less than 2 mm, it is considered that the pressure resistance by aerodynamic heating when an aircraft or the like flies at a high speed is insufficient. If the wall thickness exceeds 10 mm, the weight of the window material becomes unnecessarily large, which is not suitable for mounting on an aircraft or the like. If the thickness is too large, the transmittance of infrared light tends to decrease. Of course, the above dimensional restrictions are based on the assumption of a large-sized shape for an aircraft or the like, and are not necessarily limited to other purposes.

【0025】上記の赤外光学部品において好ましくは、
窓材をなす赤外光学部品の外形が錐殻状またはその一部
が切断された形状をなしている。
In the above infrared optical component, preferably,
The outer shape of the infrared optical component forming the window material has a conical shape or a partially cut shape.

【0026】上記の赤外光学部品において好ましくは、
赤外光学部品の肉厚が2mm以上10mm以下である。
In the above infrared optical component, preferably,
The thickness of the infrared optical component is 2 mm or more and 10 mm or less.

【0027】多結晶GaAsを用いた多角錐殻は各々の
平板を加工し、組合せて接着する方法によっても製造で
きるため、角錐の底面の対角線の長さで300mm程度
のかなり大きな寸法のものまで製造可能である。しか
し、肉厚についてはドームと同様な理由で2mm以上1
0mm以下であることが望ましい。
Since a polygonal pyramid shell using polycrystalline GaAs can be manufactured by processing each flat plate and bonding them together, a diagonal line of the bottom surface of the pyramid can be manufactured to a size as large as about 300 mm. It is possible. However, the wall thickness is 2 mm or more for the same reason as the dome.
It is desirable that it is 0 mm or less.

【0028】上記の赤外光学部品は非冷却式赤外センサ
ーの窓材として用いられる。このように高い赤外線透過
率と低い熱放射率を有する赤外光学部品を窓材として用
いるため、非冷却式赤外センサーに要求される高い感度
特性が満たされる。
The above-mentioned infrared optical component is used as a window material of an uncooled infrared sensor. Since such an infrared optical component having a high infrared transmittance and a low thermal emissivity is used as a window material, high sensitivity characteristics required for an uncooled infrared sensor are satisfied.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態につい
て図に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0030】図1は、本発明の一実施の形態における半
球殻形状の赤外光学部品を非冷却式赤外センサーの赤外
透過窓材として使用した例を示す模式的断面図である。
図1を参照して、多結晶GaAs製のドーム状赤外窓材
1aの内部には、ボロメータ型の非冷却式赤外センサー
または半導体赤外レーザなどの赤外光学素子2と、その
赤外光学素子2を支持する回転走査機構3とが配置され
ている。この回転走査機構3により、赤外窓材1a内で
赤外光学素子2を付随の光学系とともに前後左右に回転
し走査することができる。
FIG. 1 is a schematic sectional view showing an example in which a hemispherical shell-shaped infrared optical component according to an embodiment of the present invention is used as an infrared transmitting window material of an uncooled infrared sensor.
Referring to FIG. 1, inside a dome-shaped infrared window material 1a made of polycrystalline GaAs, an infrared optical element 2 such as a bolometer-type uncooled infrared sensor or a semiconductor infrared laser, A rotary scanning mechanism 3 that supports the optical element 2 is provided. By the rotary scanning mechanism 3, the infrared optical element 2 can be rotated and scanned back and forth and right and left together with the associated optical system in the infrared window member 1a.

【0031】この赤外窓材1aは、多結晶GaAsを主
成分として、波長10μmの赤外光の直線透過率が70
%以上であり、300℃での放射率が5%以下である。
またこの赤外窓材1aの表面には反射防止被膜が施され
ている。
The infrared window material 1a is mainly composed of polycrystalline GaAs and has a linear transmittance of 70 μm for infrared light having a wavelength of 10 μm.
% And the emissivity at 300 ° C. is 5% or less.
The surface of the infrared window 1a is coated with an antireflection coating.

【0032】図2は、本発明の一実施の形態における角
錐形状の赤外光学部品を非冷却式赤外センサーの赤外透
過窓材として使用した例を示す模式的断面図である。角
錐形状の場合、半球殻形状に比較して空力抵抗が小さく
なるため、より高速度の飛しょう体に適している。
FIG. 2 is a schematic sectional view showing an example in which a pyramid-shaped infrared optical component according to one embodiment of the present invention is used as an infrared transmission window material of an uncooled infrared sensor. In the case of a pyramid shape, the aerodynamic resistance is smaller than that of a hemispherical shell shape, so that the pyramid shape is suitable for a higher speed flying object.

【0033】これらの多結晶GaAsの結晶粒子の平均
粒径は1mm以上50mm以下の範囲内であり、結晶粒
界には不可避不純物が存在することが好ましい。また不
純物量は遷移金属などの陽イオン量としてその合計で2
00mmp以下にコントロールするのが、高い赤外光直
線透過率を維持するためには望ましい。また、その気孔
率は0.5%以下にするのが望ましく、したがってその
相対密度(理論密度に対する実測密度の割合)は99.
5%以上であるのが望ましい。
The average grain size of these polycrystalline GaAs crystal grains is in the range of 1 mm or more and 50 mm or less, and it is preferable that unavoidable impurities exist in the crystal grain boundaries. The amount of impurities is 2 as the amount of cations such as transition metals.
It is desirable to control it to not more than 00 mmp in order to maintain a high infrared linear transmittance. Further, the porosity is desirably 0.5% or less, so that the relative density (the ratio of the measured density to the theoretical density) is 99.
It is desirable that it be 5% or more.

【0034】[0034]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0035】実施例1 長さ100mmの半円柱形(曲率半径50mm)の石英
ガラス製ボートに液体ガリウム(Ga)を満たし、近辺
に当量の砒素(As)を配置し、全体を石英管内に真空
封入した。この石英管を炉中に入れ、Asを石英管内で
蒸発させ、石英ボート内のGaと反応せしめ、GaAs
融液を生成した。1300℃でGaAs融液の均一性を
確認した後、炉冷し、凝固させた。
Example 1 A semi-cylindrical quartz glass boat (with a radius of curvature of 50 mm) having a length of 100 mm was filled with liquid gallium (Ga), an equivalent amount of arsenic (As) was placed in the vicinity, and the whole was vacuumed in a quartz tube. Enclosed. This quartz tube was placed in a furnace, As was evaporated in the quartz tube, and reacted with Ga in the quartz boat, and GaAs was formed.
A melt was formed. After confirming the uniformity of the GaAs melt at 1300 ° C., it was cooled in a furnace and solidified.

【0036】半球状の多結晶GaAsインゴットを取出
し、内外球面を加工し、外半径45mm、内半径38m
m、厚さ7mmの半球状ドームとした。さらにこの両面
をきれいに加工して厚さ5mmに仕上げた。
A hemispherical polycrystalline GaAs ingot is taken out, the inner and outer spherical surfaces are processed, and the outer radius is 45 mm and the inner radius is 38 m.
m, a hemispherical dome having a thickness of 7 mm. Further, both surfaces were finely processed and finished to a thickness of 5 mm.

【0037】この多結晶GaAsの結晶粒径は5〜10
mmと観察された。また、この多結晶体の比重をアルキ
メデス法にて測定したところ、5.32であり、気孔等
などの欠陥は認められなかった。また、この多結晶体の
曲げ強度を、JIS R1601の3点曲げ法に準じて
測定したところ、平均値で約100MPaが得られた。
The crystal grain size of this polycrystalline GaAs is 5-10.
mm. The specific gravity of this polycrystal was measured by the Archimedes method and found to be 5.32, and no defects such as pores were found. When the bending strength of this polycrystal was measured according to the three-point bending method of JIS R1601, an average value of about 100 MPa was obtained.

【0038】上記の多結晶GaAsインゴットから、テ
ストピースを切り出し、厚さ4mmに加工して、赤外透
過率スペクトルの温度依存性をFTIR装置を用いて測
定した結果を図3に示す。波長8〜12μm帯で安定し
た赤外透過率を示しており、常温から300℃の範囲で
の透過率低下は良好であり、実用上問題ない範囲である
と判った。
A test piece was cut out from the above polycrystalline GaAs ingot, processed into a thickness of 4 mm, and the temperature dependence of the infrared transmittance spectrum was measured using an FTIR apparatus. FIG. 3 shows the result. It shows a stable infrared transmittance in the wavelength band of 8 to 12 μm, and shows a good decrease in transmittance in the range from room temperature to 300 ° C., which is a practically acceptable range.

【0039】上記の多結晶GaAsインゴットから、テ
ストピースを切り出し、厚さ2mmに加工して、赤外放
射率スペクトルの温度依存性をFTIR装置を用いて測
定した結果を図4に示す。室温から300℃の範囲で
は、波長8〜12μm帯で低い放射率を示しており、波
長10μmでは、さらに低い放射率であることが判っ
た。
A test piece was cut out from the above polycrystalline GaAs ingot, processed into a thickness of 2 mm, and the temperature dependence of the infrared emissivity spectrum was measured using an FTIR apparatus. FIG. 4 shows the result. In the range from room temperature to 300 ° C., a low emissivity was exhibited in the wavelength band of 8 to 12 μm, and it was found that the emissivity was even lower at the wavelength of 10 μm.

【0040】次に、このドーム状赤外窓材の両面に波長
10μmの赤外光に対応した反射防止コーティングを行
なった。赤外透過率を上記と同様に測定したところ、波
長10μmで約90%の高い透過率が得られ、上記の放
射率の測定結果も合わせて、非冷却赤外センサー用窓材
として最適であることを確認した。
Next, an antireflection coating corresponding to infrared light having a wavelength of 10 μm was applied to both surfaces of the dome-shaped infrared window material. When the infrared transmittance was measured in the same manner as described above, a high transmittance of about 90% was obtained at a wavelength of 10 μm, and the measurement results of the above emissivity were combined with the above, and thus, it was optimal as a window material for an uncooled infrared sensor. It was confirmed.

【0041】実施例2 長方形石英ガラス製ボート(100×150mm)に液
体Gaを満たし、実施例1と同様にして、平板状の多結
晶GaAsインゴットを作製した。各種加工により、8
0×130×6mmの平板状赤外窓材とした。この板を
さらに三角形状に切り出し、各平板が正六角錐殻状ドー
ムの一面を形成するように加工した。両面に反射防止コ
ーティングを行なった後、6枚の板を接着して組立て、
図2に示す正六角錐殻状ドームを作製した。
Example 2 A rectangular quartz glass boat (100 × 150 mm) was filled with liquid Ga, and a flat polycrystalline GaAs ingot was produced in the same manner as in Example 1. By various processing, 8
A flat infrared window material of 0 × 130 × 6 mm was used. This plate was further cut into a triangular shape, and each plate was processed so as to form one surface of a regular hexagonal pyramid-shaped dome. After applying anti-reflective coating on both sides, assemble by bonding 6 plates,
The regular hexagonal pyramidal shell dome shown in FIG. 2 was produced.

【0042】上記の方法で得られた多結晶GaAs六角
錐殻は、外周が直径150mmの円に内接する正六角形
で、高さが100mm、厚さが8mmの素材で、割れ、
欠け、気泡などの欠陥は認められなかった。B23を除
去した後、六角錐殻の一部を切断し、厚さ6mmに加工
し測定を行なった。
The polycrystalline GaAs hexagonal pyramid shell obtained by the above method is a regular hexagon having an outer periphery inscribed in a circle having a diameter of 150 mm, a material having a height of 100 mm and a thickness of 8 mm.
No defects such as chipping and bubbles were observed. After removing B 2 O 3 , a part of the hexagonal pyramid shell was cut, processed to a thickness of 6 mm, and measured.

【0043】赤外透過率は波長10μmで約57%(反
射防止膜なし)であったが、多層膜の反射防止コーティ
ングを行なうことにより約85%に向上した。
The infrared transmittance was about 57% (without an antireflection film) at a wavelength of 10 μm, but was improved to about 85% by applying a multilayer antireflection coating.

【0044】素材の300℃での放射率は2.7%(波
長10μm)であり、アルキメデス法による密度は、
5.32g/cm3で、外観的に気孔は認められなかっ
た。エッチングにより結晶粒径を測定したところ、平均
で約10mmであり、JISR1601による3点曲げ
強度は100MPaであった。本実施例で得られた錐形
赤外窓材は、波長10μmでの高い透過率と高温での低
い放射率とを有することから、非冷却赤外センサー用窓
材として最適であることを確認した。
The emissivity of the material at 300 ° C. is 2.7% (wavelength 10 μm), and the density according to the Archimedes method is:
At 5.32 g / cm 3 , no pores were observed in appearance. The crystal grain size measured by etching was about 10 mm on average, and the three-point bending strength according to JISR1601 was 100 MPa. Since the cone-shaped infrared window material obtained in this example has a high transmittance at a wavelength of 10 μm and a low emissivity at a high temperature, it has been confirmed that it is optimal as an uncooled infrared sensor window material. did.

【0045】今回開示された実施の形態および実施例は
すべての点で例示であって制限的なものではないと考え
られるべきである。本発明の範囲は上記した説明ではな
くて特許請求の範囲によって示され、特許請求の範囲と
均等の意味および範囲内でのすべての変更が含まれるこ
とが意図される。
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0046】[0046]

【発明の効果】本発明の赤外光学部品は、波長10μm
帯で優れた赤外透過率を示し、かつ小さい熱放射率を示
すので、非冷却式赤外センサーとともに使用するのに最
適な赤外光学窓材を得ることができる。材質的には多結
晶GaAsが主成分とされているため、高強度で空力加
熱などの熱衝撃に強く、法律的な毒物でないので取扱い
やすい。また、形状的にはドーム状や多角錐状が採られ
るため、空力抵抗が小さくその内部でセンサーなどを回
転走査することができる。
The infrared optical component of the present invention has a wavelength of 10 μm.
Since the band exhibits excellent infrared transmittance and low thermal emissivity, an infrared optical window material optimal for use with an uncooled infrared sensor can be obtained. The material is mainly composed of polycrystalline GaAs, so that it is high in strength, resistant to thermal shock such as aerodynamic heating, and easy to handle because it is not a legal poison. In addition, since the shape is a dome shape or a polygonal pyramid shape, the aerodynamic resistance is small, and a sensor or the like can be rotationally scanned inside thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態におけるドーム形状多結
晶GaAs赤外光学部品を非冷却赤外センサーの窓材と
して使用した一事例を示す図である。
FIG. 1 is a diagram showing an example in which a dome-shaped polycrystalline GaAs infrared optical component according to an embodiment of the present invention is used as a window material of an uncooled infrared sensor.

【図2】本発明の他の実施の形態における多角錐形状多
結晶GaAs赤外光学部品を非冷却赤外センサーの窓材
として使用した一事例を示す図である。
FIG. 2 is a diagram showing an example in which a polygonal pyramid-shaped polycrystalline GaAs infrared optical component according to another embodiment of the present invention is used as a window material of an uncooled infrared sensor.

【図3】本発明の多結晶GaAs赤外光学部品(コーテ
ィングなし)の赤外透過率スペクトルの温度依存性を示
す図である。
FIG. 3 is a diagram showing the temperature dependence of an infrared transmittance spectrum of a polycrystalline GaAs infrared optical component (without coating) of the present invention.

【図4】本発明の多結晶GaAs赤外光学部品(コーテ
ィングなし)の赤外放射率スペクトルの温度依存性を示
す図である。
FIG. 4 is a diagram showing the temperature dependence of the infrared emissivity spectrum of the polycrystalline GaAs infrared optical component (without coating) of the present invention.

【符号の説明】[Explanation of symbols]

1a ドーム形状多結晶GaAs赤外光学窓材 1b 多角錐形状多結晶GaAs赤外光学窓材 2 非冷却式赤外センサー 3 回転走査機構 1a Dome-shaped polycrystalline GaAs infrared optical window material 1b Polygonal pyramidal polycrystalline GaAs infrared optical window material 2 Uncooled infrared sensor 3 Rotary scanning mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 憲一郎 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 山下 正史 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4G048 AA01 AB01 AB04 AC08 AD01 AE05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kenichiro Shibata 1-1-1, Koyokita, Itami-shi, Hyogo Prefecture Inside the Itami Works, Sumitomo Electric Industries, Ltd. (72) Inventor Masashi Yamashita 1-1-1, Konokita-Kita, Itami-shi, Hyogo No. 1 Sumitomo Electric Industries, Ltd. Itami Works F term (reference) 4G048 AA01 AB01 AB04 AC08 AD01 AE05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 多結晶ガリウム砒素を主成分とし、波長
10μmの赤外光の直線透過率が70%以上であり、3
00℃での放射率が5%以下である、赤外光学部品。
An infrared light having a wavelength of 10 μm and having a linear transmittance of 70% or more, which is mainly composed of polycrystalline gallium arsenide.
An infrared optical component having an emissivity at 00 ° C. of 5% or less.
【請求項2】 前記ガリウム砒素の結晶粒子の平均粒径
は1mm以上50mm以下の範囲内である、請求項1に
記載の赤外光学部品。
2. The infrared optical component according to claim 1, wherein the average particle diameter of the gallium arsenide crystal particles is in a range of 1 mm or more and 50 mm or less.
【請求項3】 赤外光またはレーザ光透過用の窓材に用
いられる、請求項1に記載の赤外光学部品。
3. The infrared optical component according to claim 1, which is used as a window material for transmitting infrared light or laser light.
【請求項4】 前記窓材は殻状をなしている、請求項3
に記載の赤外光学部品。
4. The window material has a shell shape.
2. The infrared optical component according to 1.
【請求項5】 前記窓材は半球殻形状をなしている、請
求項4に記載の赤外光学部品。
5. The infrared optical component according to claim 4, wherein the window material has a hemispherical shell shape.
【請求項6】 前記半球殻形状の曲率半径が25mm以
上150mm以下であり、肉厚が2mm以上10mm以
下である、請求項5に記載の赤外光学部品。
6. The infrared optical component according to claim 5, wherein the radius of curvature of the hemispherical shell shape is 25 mm or more and 150 mm or less, and the thickness is 2 mm or more and 10 mm or less.
【請求項7】 前記窓材は錐殻状またはその一部が切断
された形状をなしている、請求項4に記載の赤外光学部
品。
7. The infrared optical component according to claim 4, wherein the window material has a conical shape or a shape in which a part thereof is cut.
【請求項8】 前記窓材の肉厚が2mm以上10mm以
下である、請求項7に記載の赤外光学部品。
8. The infrared optical component according to claim 7, wherein the thickness of the window material is 2 mm or more and 10 mm or less.
【請求項9】 前記窓材は非冷却式赤外センサーの窓材
として用いられる、請求項3〜8のいずれかに記載の赤
外光学部品。
9. The infrared optical component according to claim 3, wherein said window material is used as a window material of an uncooled infrared sensor.
JP19942399A 1999-07-13 1999-07-13 Infrared optical components Expired - Lifetime JP3339001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19942399A JP3339001B2 (en) 1999-07-13 1999-07-13 Infrared optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19942399A JP3339001B2 (en) 1999-07-13 1999-07-13 Infrared optical components

Publications (2)

Publication Number Publication Date
JP2001027701A true JP2001027701A (en) 2001-01-30
JP3339001B2 JP3339001B2 (en) 2002-10-28

Family

ID=16407573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19942399A Expired - Lifetime JP3339001B2 (en) 1999-07-13 1999-07-13 Infrared optical components

Country Status (1)

Country Link
JP (1) JP3339001B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255564A (en) * 2008-03-28 2009-11-05 Fujifilm Corp Inkjet recording method
US10309670B2 (en) * 2015-05-20 2019-06-04 Panasonic Intellectual Property Management Co., Ltd. Radiation receiving sensor and air conditioner, electronic cooker, and transport device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255564A (en) * 2008-03-28 2009-11-05 Fujifilm Corp Inkjet recording method
US10309670B2 (en) * 2015-05-20 2019-06-04 Panasonic Intellectual Property Management Co., Ltd. Radiation receiving sensor and air conditioner, electronic cooker, and transport device including the same
US10641511B2 (en) 2015-05-20 2020-05-05 Panasonic Intellectual Property Management Co., Ltd. Radiation receiving sensor and air conditioner, electronic cooker, and transport device including the same
US11041645B2 (en) 2015-05-20 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Radiation receiving sensor and air conditioner, electronic cooker, and transport device including the same

Also Published As

Publication number Publication date
JP3339001B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US9086229B1 (en) Optical components from micro-architected trusses
JP6602487B2 (en) Radiant cooling device
Chae et al. High‐performance daytime radiative cooler and near‐ideal selective emitter enabled by transparent sapphire substrate
EP2412685B1 (en) Method of manufacturing a thermochromic smart window
AU2024202059A1 (en) Fabrication methods, structures, and uses for passive radiative cooling
JP7395442B2 (en) optical parts
CN109791016B (en) Radiation cooling device and its application in cooling of cooled body
US20080206534A1 (en) Thermal Control Film for Spacecraft
US6038065A (en) Infrared-transparent window structure
JP3339001B2 (en) Infrared optical components
CN109943810A (en) A kind of three-dimensional taper nanometer film structure, preparation method and applications
KR102225804B1 (en) Radiative cooling device utilizing optical properties of substrate
CN114787096B (en) Glass for vehicle and camera unit
Liu et al. Superhydrophobic nanoparticle mixture coating for highly efficient all-day radiative cooling
Gentle et al. Angular selectivity: impact on optimised coatings for night sky radiative cooling
Zhu et al. Infrared Antireflective and Protective Coatings
Donadio et al. New advances in chemical vapor deposited (CVD) infrared transmitting materials
US5541010A (en) Optical solar reflector
Sood et al. Nanostructured antireflection coating technology for enhanced MWIR and LWIR band sensing performance
US20220228919A1 (en) Infrared Transparent Constructs and Methods of Making Them
Fleming et al. Carbon Nanotube Flat Plate Blackbody Calibrator
LIVINGSTON et al. 4-Meter Upgrade of the McMath-Pierce Telescope and the Detection of Space Debris
Kreysa et al. Micromachined Bolometer-Arrays with Silicon-Nitride Membranes
JP2697389B2 (en) Dome for flying objects
JPH09159339A (en) Device for natural cooling

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

R150 Certificate of patent or registration of utility model

Ref document number: 3339001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term