JP2001027103A - Stationary blade structure for axial turbo-machine - Google Patents

Stationary blade structure for axial turbo-machine

Info

Publication number
JP2001027103A
JP2001027103A JP11200066A JP20006699A JP2001027103A JP 2001027103 A JP2001027103 A JP 2001027103A JP 11200066 A JP11200066 A JP 11200066A JP 20006699 A JP20006699 A JP 20006699A JP 2001027103 A JP2001027103 A JP 2001027103A
Authority
JP
Japan
Prior art keywords
blades
blade
stationary
turbomachine
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11200066A
Other languages
Japanese (ja)
Inventor
Jiyunsuke Okamura
淳輔 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11200066A priority Critical patent/JP2001027103A/en
Publication of JP2001027103A publication Critical patent/JP2001027103A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the resonance of moving blades without changing the shape of the moving blades at all and without adding a damper by providing half-blades suspended toward the shaft center line from the outer periphery in the middle between the stationary blades at the outlet of the stationary blade cascade installed in the front of the moving blade cascade of an axial turbo-machine. SOLUTION: Half-blades 5 are suspended toward the shaft center from an outer peripheral shroud 3 on the outer peripheral side in the middle between stationary blades 1 at the outlet 6 of a stationary blade cascade 6. When the half-blades 5 are provided, such vibratory force that the apparent number of the stationary blades 1 is doubled is applied to the tip side of moving blades. The resonance rotational frequency is then reduced in half, the vibratory frequency is doubled for the same rotational frequency, and the resonance in the high-order mode can be prevented near the rated rotational frequency. Excessive blade vibration can be prevented, and the fatigue failure of the moving blades can be prevented. Since the half-blades 5 are small-sized, they have little effect on the performance of turbo-machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軸流タービンや軸流
コンプレッサなどのターボ機械の静翼列の構造に係り、
特に動翼の防振が可能なターボ機械の静翼構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a stationary blade row of a turbomachine such as an axial turbine or an axial compressor.
In particular, the present invention relates to a stationary blade structure of a turbomachine capable of damping a moving blade.

【0002】[0002]

【従来の技術】図2はターボ機械の1種であるガスター
ビンの一部断面側面図である。ガスタービンは、空気圧
縮機、燃焼器およびタービンからなる。空気取入口から
導入された空気は、空気圧縮機で圧縮されて高圧空気に
なり燃焼器に吹込まれる。燃焼器で燃料と混合されて燃
焼し、高温高圧の燃焼ガスとなり、タービンに送られ
る。タービンでは高温高圧の燃焼ガスのエネルギが動力
に変換され、低温低圧の燃焼ガスとなり排気口から排出
される。タービンで得られた動力エネルギの一部は、空
気圧縮機の駆動に使用され、残部は出力軸に結合された
発電機などの駆動に使用される。図に示すように空気圧
縮機およびタービンは軸流多段タイプである。
2. Description of the Related Art FIG. 2 is a partial sectional side view of a gas turbine which is a kind of turbomachine. Gas turbines consist of an air compressor, a combustor and a turbine. The air introduced from the air inlet is compressed by an air compressor to become high-pressure air and is blown into a combustor. The fuel is mixed with the fuel in the combustor and burned to produce high-temperature and high-pressure combustion gas, which is sent to the turbine. In the turbine, the energy of the high-temperature and high-pressure combustion gas is converted into power, and the low-temperature and low-pressure combustion gas is discharged from the exhaust port. A part of the power energy obtained by the turbine is used to drive the air compressor, and the remainder is used to drive a generator or the like coupled to the output shaft. As shown in the figure, the air compressor and the turbine are of an axial flow multistage type.

【0003】空気圧縮機およびタービンの各段は、動翼
列の前に静翼列が配置された構成となっている。図3は
静翼列の斜視図である。図において1は静翼、2は内側
シュラウド、3は外側シュラウドである。静翼列4は図
に示すように、円環状の内外シュラウド2、3の間に多
数の静翼1を植設した構造となっている。
[0003] Each stage of the air compressor and the turbine has a configuration in which a stationary blade row is arranged before a moving blade row. FIG. 3 is a perspective view of the stationary blade row. In the figure, 1 is a stationary blade, 2 is an inner shroud, and 3 is an outer shroud. As shown in the drawing, the stationary blade row 4 has a structure in which a large number of stationary blades 1 are implanted between annular inner and outer shrouds 2 and 3.

【0004】[0004]

【発明が解決しようとする課題】ターボ機械の動翼は、
流体性能向上の要求から複雑形状の薄い翼になってい
る。このような動翼は、様々な回転数において、様々な
モードの振動を起す。振動のモードは、1次モードが最
も周波数が小さく、2次、3次・・・n次というように
モードの次数が大きくなるに従って周波数が大きくな
る。振動による動翼の変形の形状は、モードの各次数で
異っている。図5は或る形の動翼の振動時の変形の大き
さと形状をコンピュータで計算し、コンピュータグラフ
ィック(CG)の手法を用いて表示した図面であり、
(A)は1次モード、(B)は2次モード、(C)は3
次モード、(D)は7次モードの各振動の変形の図であ
る。図のように1次モードの振動は動翼の先端側がうち
わのように厚さ方向に前後に曲がる振動であり、2次モ
ードは、動翼の先端側の前縁と後縁が逆方向に曲がるね
じれ振動であり、3次モードは後縁の半月状の部分の面
振動であり、7次モードは動翼先端側中央の楕円状の部
分の面振動である。これらの振動の形状および変形量は
動翼の形状に依存するものである。
The rotor blades of a turbomachine are:
Due to the demand for improved fluid performance, thin wings with complex shapes are used. Such rotor blades generate various modes of vibration at various rotation speeds. The vibration mode has the lowest frequency in the primary mode, and the frequency increases as the mode order increases, such as the second, third,. The shape of the deformation of the rotor blade due to vibration is different for each mode order. FIG. 5 is a drawing in which the magnitude and shape of deformation of a certain moving blade during vibration are calculated by a computer and displayed using a computer graphic (CG) method.
(A) is the primary mode, (B) is the secondary mode, (C) is 3
(D) is a diagram of deformation of each vibration in the seventh mode. As shown in the figure, the primary mode vibration is a vibration in which the tip side of the rotor blade bends back and forth in the thickness direction like a fan. In the secondary mode, the leading edge and the trailing edge on the tip side of the rotor blade are in opposite directions. The third mode is surface vibration of a semi-lunar portion at the trailing edge, and the seventh mode is surface vibration of an elliptical portion at the center of the blade tip side. The shape and amount of deformation of these vibrations depend on the shape of the moving blade.

【0005】図6はかかる動翼の振動を解析するために
作図されたキャンベル線図である。横軸は回転数N、縦
軸は周波数Hz、多数の斜線の右側の数字は回転の次
数、円は振動応力の測定値の大きさをそれぞれ表してい
る。本図の作成に用いられたタービンの静翼の枚数は2
4枚である。本図からわかるように振動応力の最大値
は、軸回転数が約18,000rpm、周波数が約7,
200Hzで7次の振動モードで現れており、そのとき
の回転の次数は24で静翼の枚数に一致している。この
ことから、静翼の枚数をn、軸回転数をNとするとnN
/60が動翼の7次振動モードにおける固有振動数と一
致したとき共振し、大きな振動応力が発生することがわ
かる。高次モードの振動の大きな振動応力が動翼の先端
や後縁など翼の薄い部分に発生するとその付近から疲労
破壊が進行する。
FIG. 6 is a Campbell diagram drawn to analyze the vibration of the moving blade. The horizontal axis represents the number of rotations N, the vertical axis represents the frequency Hz, the numbers to the right of the many oblique lines represent the order of rotation, and the circles represent the magnitude of the measured value of the vibration stress. The number of turbine vanes used in the creation of this drawing was 2
There are four. As can be seen from this figure, the maximum value of the vibration stress is such that the shaft rotation speed is about 18,000 rpm, the frequency is about 7,
Appears in the seventh vibration mode at 200 Hz, and the order of rotation at that time is 24, which corresponds to the number of stationary blades. From this, assuming that the number of stationary blades is n and the shaft rotation speed is N, nN
It can be seen that when / 60 coincides with the natural frequency of the rotor blade in the seventh vibration mode, resonance occurs and a large vibration stress is generated. When a large vibration stress of high-order mode vibration is generated in a thin portion of the blade such as a tip or a trailing edge of the blade, fatigue fracture proceeds from the vicinity thereof.

【0006】このような動翼の高次振動を防止するため
翼形状を変更し、翼の厚さを厚くして共振を避けること
が考えられる。しかし、このような対策はターボ機械の
性能の劣化や設計条件の見直しなどの問題が生じる。
In order to prevent such higher order vibration of the moving blade, it is conceivable to change the blade shape and increase the thickness of the blade to avoid resonance. However, such measures cause problems such as deterioration of the performance of the turbomachine and review of design conditions.

【0007】動翼の振動を防ぐため、ダンパを設けるこ
とが行われる。図4は、かかるダンパの1例として動翼
8の先端にZ形シュラウド9を設けたものの斜視図であ
る。Z形シュラウド9により隣り合う翼との間に拘束力
が生じて防振が達成される。このようなダンパは上記Z
形シュラウド9に限られず動翼の高さ方向の中間にスナ
パーを設け、隣り合う翼の間に拘束力を持たせたもの、
動翼の中間に小孔を穿設し、その中にレーシングワイヤ
を連続して貫通させ、レーシングワイヤと動翼との間の
摩擦力により防振を行うものなどがある。しかし、この
ようなダンパは、翼性能の低下をもたらすとともに、構
造の複雑化によるコストアップをもたらす。
[0007] In order to prevent vibration of the moving blade, a damper is provided. FIG. 4 is a perspective view of a damper provided with a Z-shaped shroud 9 at the tip of a moving blade 8 as an example of such a damper. The Z-shaped shroud 9 generates a restraining force between the adjacent wings, and achieves vibration isolation. Such a damper is provided by the above Z
Not limited to the shroud 9, a sniper is provided in the middle of the height direction of the moving blade to give a binding force between adjacent blades,
There is a type in which a small hole is formed in the middle of a moving blade, a racing wire is continuously penetrated therein, and vibration is prevented by a frictional force between the racing wire and the moving blade. However, such a damper causes a decrease in blade performance and an increase in cost due to a complicated structure.

【0008】本発明は従来技術のかかる問題点に鑑み案
出されたもので、動翼の形状を何らの変更することな
く、また、ダンパを付加することなしに動翼の共振を防
止することができるターボ機械の静翼構造を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to prevent the resonance of the moving blade without changing the shape of the moving blade and without adding a damper. It is an object of the present invention to provide a vane structure of a turbomachine capable of performing the above-described operation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のターボ機械の静翼構造は、軸流ターボ機械
の動翼列の前に設置される静翼列の出口の各静翼の中間
に外周から軸中心線に向って垂下する半羽根を設けたも
のである。
In order to achieve the above object, a vane structure of a turbomachine according to the present invention comprises: a vane at an outlet of a vane row installed in front of a rotor row of an axial flow turbomachine. A half-blade is provided at the middle of the blade from the outer periphery toward the axis center line.

【0010】軸流ターボ機械は、タービンであってもよ
いし、空気圧縮機であってもよい。
[0010] The axial-flow turbomachine may be a turbine or an air compressor.

【0011】半羽根の高さは、静翼の高さの1/5〜1
/3であるのが好ましい。
[0011] The height of the half blade is 1/5 to 1 of the height of the stationary blade.
/ 3 is preferred.

【0012】次に、本発明の作用を説明する。静翼列の
各静翼の間隔の中央に半羽根を設けると各動翼の先端側
に対して、見かけ上静翼の枚数が2倍になったと同様な
ウェークによる起振力が加えられることになる。そのた
め、共振回転数は半減されるし、同じ回転数であれば起
振周波数は2倍になるので、従来動翼に起っていた定格
回転数付近での高次モードの共振は起らず、過大な翼振
動を防ぐことができ、動翼の疲労破壊を防ぐことができ
る。なお、半羽根は小型なのでターボ機械の性能に対す
る影響は少ない。
Next, the operation of the present invention will be described. If a half blade is provided at the center of the interval between the stationary blades of the stationary blade row, the same wake-generating force as the doubling of the number of stationary blades will be applied to the tip side of each rotating blade. become. As a result, the resonance rotation speed is halved, and if the rotation speed is the same, the excitation frequency is doubled, so that higher-order mode resonance does not occur near the rated rotation speed which occurs in the conventional rotor blade. In addition, excessive blade vibration can be prevented, and fatigue destruction of the moving blade can be prevented. Since the half blades are small, they have little effect on the performance of the turbomachine.

【0013】[0013]

【発明の実施の形態】以下、本発明の1実施形態ににつ
いて図面を参照しつつ説明する。図1は、本発明のター
ボ機械の静翼構造の部分斜視図である。本図では図3を
用いて説明した従来の静翼構造と共通の部分について
は、同一の符号を付している。図において、6はタービ
ンまたは空気圧縮機であるターボ機械の図示しない動翼
列の前に設置される静翼列である。静翼列6は円環状の
内側シュラウド2と外側シュラウド3との間に多数の静
翼1を放射状に植設した構造となっている。5は半羽根
であり、静翼列6の出口7の各静翼1の中央に外周側の
外側シュラウド3から図示しない軸中心線に向って垂下
して設けられている。半羽根5の高さは静翼1の高さの
1/5〜1/3であるのが好ましいし、半羽根5の幅は
静翼1の幅の1/3〜1/2であるのが好ましい。半羽
根5は図のようにほぼ3角形状をしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial perspective view of the stationary blade structure of the turbomachine of the present invention. In this figure, the same parts as those of the conventional stationary blade structure described with reference to FIG. In the figure, reference numeral 6 denotes a stationary blade row installed in front of a rotor blade row (not shown) of a turbomachine, which is a turbine or an air compressor. The stationary blade row 6 has a structure in which a number of stationary blades 1 are radially implanted between an annular inner shroud 2 and an outer shroud 3. Reference numeral 5 denotes a half blade, which is provided at the center of each of the stationary blades 1 at the outlet 7 of the stationary blade row 6 so as to hang down from the outer side outer shroud 3 toward an axial center line (not shown). The height of the half blade 5 is preferably 1/5 to 1/3 of the height of the stationary blade 1, and the width of the half blade 5 is 1/3 to 1/2 of the width of the stationary blade 1. Is preferred. The half blade 5 has a substantially triangular shape as shown in the figure.

【0014】次に、本実施形態の作用を説明する。静翼
列6の各静翼1の間隔の中央に半羽根5を設けると、各
動翼8の先端側に対しては、見かけ上静翼1の枚数が2
倍になったと同様なウェークによる起振力が加えられる
ことになる。そのため共振回転数は半減されるし、同じ
回転数であれば起振周波数は2倍になるので、従来動翼
8に起っていた定格回転数付近での高次モードの共振は
起らず、過大な翼振動を防ぐことができ、動翼8の疲労
破壊を防ぐことができる。なお、半羽根5は小型なので
ターボ機械の性能に対する影響は少い。
Next, the operation of the present embodiment will be described. When the half blade 5 is provided at the center of the interval between the stationary blades 1 of the stationary blade row 6, the apparent number of stationary blades 1 is 2
Exciting force by the same wake will be applied as doubled. Therefore, the resonance rotation speed is halved, and the vibration frequency is doubled at the same rotation speed, so that higher-order mode resonance does not occur near the rated rotation speed which has conventionally occurred in the moving blade 8. Thus, excessive blade vibration can be prevented, and fatigue destruction of the moving blade 8 can be prevented. Since the half blades 5 are small, the influence on the performance of the turbomachine is small.

【0015】本発明は以上説明した実施形態に限られる
ものではなく、発明の要旨を逸脱しない範囲で種々の変
更が可能である。たとえば、半羽根5を各静翼1の間隔
の中央に1枚ずつ設ける例について説明したが、間隔を
3等分して2枚ずつ設けてもよい。
The present invention is not limited to the embodiment described above, and various changes can be made without departing from the gist of the invention. For example, although an example has been described in which the half blades 5 are provided one by one at the center of the interval between the stationary blades 1, the intervals may be equally divided into three and two blades may be provided.

【0016】[0016]

【発明の効果】以上説明したように、本発明のターボ機
械の静翼構造は、各静翼の中間に半羽根を設けたので各
動翼に対し、見かけ上静翼の枚数が2倍になったのと同
様なウェークによる起振力が加えられることになる。そ
の結果、動翼には定格回転数付近での高次モードの共振
を回避することができ、過大な翼振動による動翼の疲労
破壊を防ぐことができるなどの優れた効果がある。
As described above, in the vane structure of the turbomachine according to the present invention, since the half blade is provided in the middle of each vane, the number of vanes is apparently doubled for each rotor. Exciting force due to the same wake will be applied. As a result, the rotor blade has an excellent effect such that resonance of a higher mode near the rated rotation speed can be avoided, and fatigue failure of the rotor blade due to excessive blade vibration can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のターボ機械の静翼構造の部分斜視図で
ある。
FIG. 1 is a partial perspective view of a stationary vane structure of a turbomachine of the present invention.

【図2】ガスタービンの一部断面側面図である。FIG. 2 is a partial cross-sectional side view of the gas turbine.

【図3】従来のターボ機械の静翼構造の部分斜視図であ
る。
FIG. 3 is a partial perspective view of a stationary blade structure of a conventional turbomachine.

【図4】ダンパ付動翼の斜視図である。FIG. 4 is a perspective view of a rotor blade with a damper.

【図5】動翼の振動状況をCGを用いて表示した図であ
る。
FIG. 5 is a diagram showing a vibration state of a rotor blade using CG.

【図6】キャンベル線図である。FIG. 6 is a Campbell diagram.

【符号の説明】[Explanation of symbols]

1 静翼 2 内側シュラウド 3 外側シュラウド 5 半羽根 6 静翼列 8 動翼 Reference Signs List 1 stationary blade 2 inner shroud 3 outer shroud 5 half blade 6 stationary blade row 8 rotor blade

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軸流ターボ機械の動翼列の前に設置され
る静翼列の出口の各静翼の中間に外周から軸中心線に向
って垂下する半羽根を設けたことを特徴とするターボ機
械の静翼構造。
1. A half-blade hanging from an outer periphery toward an axis center line is provided in the middle of each stator blade at an outlet of a stator blade row installed in front of a rotor blade row of an axial-flow turbomachine. Turbomachinery vane structure.
【請求項2】 軸流ターボ機械はタービンである請求項
1記載のターボ機械の静翼構造。
2. The turbomachine stationary blade structure according to claim 1, wherein the axial-flow turbomachine is a turbine.
【請求項3】 軸流ターボ機械は空気圧縮機である請求
項1記載のターボ機械の静翼構造。
3. The turbomachine stationary blade structure according to claim 1, wherein the axial-flow turbomachine is an air compressor.
【請求項4】 半羽根の高さは静翼の高さの1/5〜1
/3である請求項1ないし請求項3記載のターボ機械の
静翼構造。
4. The height of the half blade is 1/5 to 1 of the height of the stationary blade.
The stator blade structure for a turbomachine according to claim 1, wherein the ratio is / 3.
JP11200066A 1999-07-14 1999-07-14 Stationary blade structure for axial turbo-machine Pending JP2001027103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11200066A JP2001027103A (en) 1999-07-14 1999-07-14 Stationary blade structure for axial turbo-machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11200066A JP2001027103A (en) 1999-07-14 1999-07-14 Stationary blade structure for axial turbo-machine

Publications (1)

Publication Number Publication Date
JP2001027103A true JP2001027103A (en) 2001-01-30

Family

ID=16418285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200066A Pending JP2001027103A (en) 1999-07-14 1999-07-14 Stationary blade structure for axial turbo-machine

Country Status (1)

Country Link
JP (1) JP2001027103A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211705A (en) * 2002-12-30 2004-07-29 General Electric Co <Ge> Method and device for bucket natural frequency tuning
JP2010138896A (en) * 2008-12-09 2010-06-24 Man Diesel Se Vibration reduction in turbocharger
EP2799721A1 (en) * 2013-05-03 2014-11-05 Techspace Aero S.A. Axial turbomachine stator guide with ailerons on the vane feet
EP3163028A1 (en) * 2015-10-26 2017-05-03 General Electric Company Compressor apparatus
US9874221B2 (en) 2014-12-29 2018-01-23 General Electric Company Axial compressor rotor incorporating splitter blades
US9938984B2 (en) 2014-12-29 2018-04-10 General Electric Company Axial compressor rotor incorporating non-axisymmetric hub flowpath and splittered blades
US10465555B2 (en) 2014-11-17 2019-11-05 Ihi Corporation Airfoil for axial flow machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721638B2 (en) * 2002-12-30 2011-07-13 ゼネラル・エレクトリック・カンパニイ Method and apparatus for adjusting bucket natural frequency
JP2004211705A (en) * 2002-12-30 2004-07-29 General Electric Co <Ge> Method and device for bucket natural frequency tuning
DE102008061235B4 (en) * 2008-12-09 2017-08-10 Man Diesel & Turbo Se Vibration reduction in an exhaust gas turbocharger
JP2010138896A (en) * 2008-12-09 2010-06-24 Man Diesel Se Vibration reduction in turbocharger
CN101749059B (en) * 2008-12-09 2014-05-07 曼柴油机欧洲股份公司 Vibration damping in an exhaust-gas turbocharger
US9739154B2 (en) 2013-05-03 2017-08-22 Safran Aero Boosters Sa Axial turbomachine stator with ailerons at the blade roots
EP2799721A1 (en) * 2013-05-03 2014-11-05 Techspace Aero S.A. Axial turbomachine stator guide with ailerons on the vane feet
US10465555B2 (en) 2014-11-17 2019-11-05 Ihi Corporation Airfoil for axial flow machine
US9874221B2 (en) 2014-12-29 2018-01-23 General Electric Company Axial compressor rotor incorporating splitter blades
US9938984B2 (en) 2014-12-29 2018-04-10 General Electric Company Axial compressor rotor incorporating non-axisymmetric hub flowpath and splittered blades
JP2017082784A (en) * 2015-10-26 2017-05-18 ゼネラル・エレクトリック・カンパニイ Compressor incorporating splitters
EP3163028A1 (en) * 2015-10-26 2017-05-03 General Electric Company Compressor apparatus
CN107035435A (en) * 2015-10-26 2017-08-11 通用电气公司 With reference to the compressor of current divider

Similar Documents

Publication Publication Date Title
CN109538352B (en) Outer drum rotor assembly and gas turbine engine
JP4495335B2 (en) Periodic stator airfoil
JP4482732B2 (en) Method and apparatus for assembling a gas turbine engine
CN109723508B (en) Structure for mitigating vibration modes of counter-rotating engine rotor
EP2518326A2 (en) Centrifugal compressor assembly with stator vane row
JP5681384B2 (en) Rotor blade for turbine engine
US20110274537A1 (en) Blade excitation reduction method and arrangement
JP2015140807A (en) High chord bucket with dual part span shrouds and curved dovetail
US20100054929A1 (en) Turbine airfoil clocking
US11111816B2 (en) Rotor blade arrangement
JP2017519154A (en) Diffuser for centrifugal compressor
US20190017385A1 (en) Rotor of a fluid flow engine
JP2017145829A (en) Turbine blade centroid shifting method and system
JP2001027103A (en) Stationary blade structure for axial turbo-machine
US10989227B2 (en) Rotor blade arrangement
US10876416B2 (en) Vane segment with ribs
WO2017162365A1 (en) Damping vibrations in a gas turbine
EP3901413A2 (en) Blades having tip pockets
JP6905074B2 (en) Blade with shroud with improved flutter resistance
EP4273408A1 (en) Centrifugal acceleration stabilizer
JP2021008820A (en) Aircraft gas turbin
EP4137703A1 (en) Impeller shroud frequency tuning rib
EP4219900A1 (en) Non-uniform turbomachinery blade tips for frequency tuning
JP2022063258A (en) Turbine bucket with dual part span shrouds and aerodynamic features
Najjar Review of aerothermally induced vibrations in gas turbine engines